| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmap1N | Structured version Visualization version GIF version | ||
| Description: Value of the projective map of a Hilbert lattice at lattice unity. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pmap1.u | ⊢ 1 = (1.‘𝐾) |
| pmap1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pmap1.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| pmap1N | ⊢ (𝐾 ∈ OP → (𝑀‘ 1 ) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | pmap1.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
| 3 | 1, 2 | op1cl 39173 | . . 3 ⊢ (𝐾 ∈ OP → 1 ∈ (Base‘𝐾)) |
| 4 | eqid 2730 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 5 | pmap1.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | pmap1.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 7 | 1, 4, 5, 6 | pmapval 39746 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾)) → (𝑀‘ 1 ) = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾) 1 }) |
| 8 | 3, 7 | mpdan 687 | . 2 ⊢ (𝐾 ∈ OP → (𝑀‘ 1 ) = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾) 1 }) |
| 9 | 1, 5 | atbase 39277 | . . . . 5 ⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ (Base‘𝐾)) |
| 10 | 1, 4, 2 | ople1 39179 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 𝑝(le‘𝐾) 1 ) |
| 11 | 9, 10 | sylan2 593 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑝 ∈ 𝐴) → 𝑝(le‘𝐾) 1 ) |
| 12 | 11 | ralrimiva 3126 | . . 3 ⊢ (𝐾 ∈ OP → ∀𝑝 ∈ 𝐴 𝑝(le‘𝐾) 1 ) |
| 13 | rabid2 3442 | . . 3 ⊢ (𝐴 = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾) 1 } ↔ ∀𝑝 ∈ 𝐴 𝑝(le‘𝐾) 1 ) | |
| 14 | 12, 13 | sylibr 234 | . 2 ⊢ (𝐾 ∈ OP → 𝐴 = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾) 1 }) |
| 15 | 8, 14 | eqtr4d 2768 | 1 ⊢ (𝐾 ∈ OP → (𝑀‘ 1 ) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 class class class wbr 5109 ‘cfv 6513 Basecbs 17185 lecple 17233 1.cp1 18389 OPcops 39160 Atomscatm 39251 pmapcpmap 39486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-lub 18311 df-p1 18391 df-oposet 39164 df-ats 39255 df-pmap 39493 |
| This theorem is referenced by: pmapglb2N 39760 pmapglb2xN 39761 |
| Copyright terms: Public domain | W3C validator |