| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmap1N | Structured version Visualization version GIF version | ||
| Description: Value of the projective map of a Hilbert lattice at lattice unity. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pmap1.u | ⊢ 1 = (1.‘𝐾) |
| pmap1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pmap1.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| pmap1N | ⊢ (𝐾 ∈ OP → (𝑀‘ 1 ) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | pmap1.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
| 3 | 1, 2 | op1cl 39294 | . . 3 ⊢ (𝐾 ∈ OP → 1 ∈ (Base‘𝐾)) |
| 4 | eqid 2731 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 5 | pmap1.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | pmap1.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 7 | 1, 4, 5, 6 | pmapval 39866 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾)) → (𝑀‘ 1 ) = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾) 1 }) |
| 8 | 3, 7 | mpdan 687 | . 2 ⊢ (𝐾 ∈ OP → (𝑀‘ 1 ) = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾) 1 }) |
| 9 | 1, 5 | atbase 39398 | . . . . 5 ⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ (Base‘𝐾)) |
| 10 | 1, 4, 2 | ople1 39300 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 𝑝(le‘𝐾) 1 ) |
| 11 | 9, 10 | sylan2 593 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑝 ∈ 𝐴) → 𝑝(le‘𝐾) 1 ) |
| 12 | 11 | ralrimiva 3124 | . . 3 ⊢ (𝐾 ∈ OP → ∀𝑝 ∈ 𝐴 𝑝(le‘𝐾) 1 ) |
| 13 | rabid2 3428 | . . 3 ⊢ (𝐴 = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾) 1 } ↔ ∀𝑝 ∈ 𝐴 𝑝(le‘𝐾) 1 ) | |
| 14 | 12, 13 | sylibr 234 | . 2 ⊢ (𝐾 ∈ OP → 𝐴 = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾) 1 }) |
| 15 | 8, 14 | eqtr4d 2769 | 1 ⊢ (𝐾 ∈ OP → (𝑀‘ 1 ) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 class class class wbr 5089 ‘cfv 6481 Basecbs 17120 lecple 17168 1.cp1 18328 OPcops 39281 Atomscatm 39372 pmapcpmap 39606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-lub 18250 df-p1 18330 df-oposet 39285 df-ats 39376 df-pmap 39613 |
| This theorem is referenced by: pmapglb2N 39880 pmapglb2xN 39881 |
| Copyright terms: Public domain | W3C validator |