| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmap1N | Structured version Visualization version GIF version | ||
| Description: Value of the projective map of a Hilbert lattice at lattice unity. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pmap1.u | ⊢ 1 = (1.‘𝐾) |
| pmap1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pmap1.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| pmap1N | ⊢ (𝐾 ∈ OP → (𝑀‘ 1 ) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | pmap1.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
| 3 | 1, 2 | op1cl 39145 | . . 3 ⊢ (𝐾 ∈ OP → 1 ∈ (Base‘𝐾)) |
| 4 | eqid 2734 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 5 | pmap1.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | pmap1.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 7 | 1, 4, 5, 6 | pmapval 39718 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾)) → (𝑀‘ 1 ) = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾) 1 }) |
| 8 | 3, 7 | mpdan 687 | . 2 ⊢ (𝐾 ∈ OP → (𝑀‘ 1 ) = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾) 1 }) |
| 9 | 1, 5 | atbase 39249 | . . . . 5 ⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ (Base‘𝐾)) |
| 10 | 1, 4, 2 | ople1 39151 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 𝑝(le‘𝐾) 1 ) |
| 11 | 9, 10 | sylan2 593 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑝 ∈ 𝐴) → 𝑝(le‘𝐾) 1 ) |
| 12 | 11 | ralrimiva 3133 | . . 3 ⊢ (𝐾 ∈ OP → ∀𝑝 ∈ 𝐴 𝑝(le‘𝐾) 1 ) |
| 13 | rabid2 3453 | . . 3 ⊢ (𝐴 = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾) 1 } ↔ ∀𝑝 ∈ 𝐴 𝑝(le‘𝐾) 1 ) | |
| 14 | 12, 13 | sylibr 234 | . 2 ⊢ (𝐾 ∈ OP → 𝐴 = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾) 1 }) |
| 15 | 8, 14 | eqtr4d 2772 | 1 ⊢ (𝐾 ∈ OP → (𝑀‘ 1 ) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∀wral 3050 {crab 3419 class class class wbr 5123 ‘cfv 6541 Basecbs 17229 lecple 17280 1.cp1 18438 OPcops 39132 Atomscatm 39223 pmapcpmap 39458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-lub 18360 df-p1 18440 df-oposet 39136 df-ats 39227 df-pmap 39465 |
| This theorem is referenced by: pmapglb2N 39732 pmapglb2xN 39733 |
| Copyright terms: Public domain | W3C validator |