| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmap1N | Structured version Visualization version GIF version | ||
| Description: Value of the projective map of a Hilbert lattice at lattice unity. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pmap1.u | ⊢ 1 = (1.‘𝐾) |
| pmap1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pmap1.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| pmap1N | ⊢ (𝐾 ∈ OP → (𝑀‘ 1 ) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | pmap1.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
| 3 | 1, 2 | op1cl 39174 | . . 3 ⊢ (𝐾 ∈ OP → 1 ∈ (Base‘𝐾)) |
| 4 | eqid 2729 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 5 | pmap1.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | pmap1.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 7 | 1, 4, 5, 6 | pmapval 39746 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾)) → (𝑀‘ 1 ) = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾) 1 }) |
| 8 | 3, 7 | mpdan 687 | . 2 ⊢ (𝐾 ∈ OP → (𝑀‘ 1 ) = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾) 1 }) |
| 9 | 1, 5 | atbase 39278 | . . . . 5 ⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ (Base‘𝐾)) |
| 10 | 1, 4, 2 | ople1 39180 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 𝑝(le‘𝐾) 1 ) |
| 11 | 9, 10 | sylan2 593 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑝 ∈ 𝐴) → 𝑝(le‘𝐾) 1 ) |
| 12 | 11 | ralrimiva 3121 | . . 3 ⊢ (𝐾 ∈ OP → ∀𝑝 ∈ 𝐴 𝑝(le‘𝐾) 1 ) |
| 13 | rabid2 3428 | . . 3 ⊢ (𝐴 = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾) 1 } ↔ ∀𝑝 ∈ 𝐴 𝑝(le‘𝐾) 1 ) | |
| 14 | 12, 13 | sylibr 234 | . 2 ⊢ (𝐾 ∈ OP → 𝐴 = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾) 1 }) |
| 15 | 8, 14 | eqtr4d 2767 | 1 ⊢ (𝐾 ∈ OP → (𝑀‘ 1 ) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3394 class class class wbr 5092 ‘cfv 6482 Basecbs 17120 lecple 17168 1.cp1 18328 OPcops 39161 Atomscatm 39252 pmapcpmap 39486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-lub 18250 df-p1 18330 df-oposet 39165 df-ats 39256 df-pmap 39493 |
| This theorem is referenced by: pmapglb2N 39760 pmapglb2xN 39761 |
| Copyright terms: Public domain | W3C validator |