Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmap1N Structured version   Visualization version   GIF version

Theorem pmap1N 39764
Description: Value of the projective map of a Hilbert lattice at lattice unity. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmap1.u 1 = (1.‘𝐾)
pmap1.a 𝐴 = (Atoms‘𝐾)
pmap1.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmap1N (𝐾 ∈ OP → (𝑀1 ) = 𝐴)

Proof of Theorem pmap1N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 pmap1.u . . . 4 1 = (1.‘𝐾)
31, 2op1cl 39181 . . 3 (𝐾 ∈ OP → 1 ∈ (Base‘𝐾))
4 eqid 2737 . . . 4 (le‘𝐾) = (le‘𝐾)
5 pmap1.a . . . 4 𝐴 = (Atoms‘𝐾)
6 pmap1.m . . . 4 𝑀 = (pmap‘𝐾)
71, 4, 5, 6pmapval 39754 . . 3 ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾)) → (𝑀1 ) = {𝑝𝐴𝑝(le‘𝐾) 1 })
83, 7mpdan 687 . 2 (𝐾 ∈ OP → (𝑀1 ) = {𝑝𝐴𝑝(le‘𝐾) 1 })
91, 5atbase 39285 . . . . 5 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
101, 4, 2ople1 39187 . . . . 5 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 𝑝(le‘𝐾) 1 )
119, 10sylan2 593 . . . 4 ((𝐾 ∈ OP ∧ 𝑝𝐴) → 𝑝(le‘𝐾) 1 )
1211ralrimiva 3146 . . 3 (𝐾 ∈ OP → ∀𝑝𝐴 𝑝(le‘𝐾) 1 )
13 rabid2 3471 . . 3 (𝐴 = {𝑝𝐴𝑝(le‘𝐾) 1 } ↔ ∀𝑝𝐴 𝑝(le‘𝐾) 1 )
1412, 13sylibr 234 . 2 (𝐾 ∈ OP → 𝐴 = {𝑝𝐴𝑝(le‘𝐾) 1 })
158, 14eqtr4d 2780 1 (𝐾 ∈ OP → (𝑀1 ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wral 3061  {crab 3436   class class class wbr 5151  cfv 6569  Basecbs 17254  lecple 17314  1.cp1 18491  OPcops 39168  Atomscatm 39259  pmapcpmap 39494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-lub 18413  df-p1 18493  df-oposet 39172  df-ats 39263  df-pmap 39501
This theorem is referenced by:  pmapglb2N  39768  pmapglb2xN  39769
  Copyright terms: Public domain W3C validator