Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapocjN | Structured version Visualization version GIF version |
Description: The projective map of the orthocomplement of the join of two lattice elements. (Contributed by NM, 14-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pmapocj.b | ⊢ 𝐵 = (Base‘𝐾) |
pmapocj.j | ⊢ ∨ = (join‘𝐾) |
pmapocj.m | ⊢ ∧ = (meet‘𝐾) |
pmapocj.o | ⊢ ⊥ = (oc‘𝐾) |
pmapocj.f | ⊢ 𝐹 = (pmap‘𝐾) |
pmapocj.p | ⊢ + = (+𝑃‘𝐾) |
pmapocj.r | ⊢ 𝑁 = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
pmapocjN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘( ⊥ ‘(𝑋 ∨ 𝑌))) = (𝑁‘((𝐹‘𝑋) + (𝐹‘𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmapocj.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | pmapocj.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | pmapocj.f | . . . 4 ⊢ 𝐹 = (pmap‘𝐾) | |
4 | pmapocj.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
5 | pmapocj.r | . . . 4 ⊢ 𝑁 = (⊥𝑃‘𝐾) | |
6 | 1, 2, 3, 4, 5 | pmapj2N 37505 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 ∨ 𝑌)) = (𝑁‘(𝑁‘((𝐹‘𝑋) + (𝐹‘𝑌))))) |
7 | 6 | fveq2d 6662 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝐹‘(𝑋 ∨ 𝑌))) = (𝑁‘(𝑁‘(𝑁‘((𝐹‘𝑋) + (𝐹‘𝑌)))))) |
8 | simp1 1133 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ HL) | |
9 | hllat 36939 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
10 | 1, 2 | latjcl 17727 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
11 | 9, 10 | syl3an1 1160 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
12 | pmapocj.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
13 | 1, 12, 3, 5 | polpmapN 37488 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∨ 𝑌) ∈ 𝐵) → (𝑁‘(𝐹‘(𝑋 ∨ 𝑌))) = (𝐹‘( ⊥ ‘(𝑋 ∨ 𝑌)))) |
14 | 8, 11, 13 | syl2anc 587 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝐹‘(𝑋 ∨ 𝑌))) = (𝐹‘( ⊥ ‘(𝑋 ∨ 𝑌)))) |
15 | eqid 2758 | . . . . . 6 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
16 | 1, 15, 3 | pmapssat 37335 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ⊆ (Atoms‘𝐾)) |
17 | 16 | 3adant3 1129 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑋) ⊆ (Atoms‘𝐾)) |
18 | 1, 15, 3 | pmapssat 37335 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑌) ⊆ (Atoms‘𝐾)) |
19 | 18 | 3adant2 1128 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑌) ⊆ (Atoms‘𝐾)) |
20 | 15, 4 | paddssat 37390 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝐹‘𝑋) ⊆ (Atoms‘𝐾) ∧ (𝐹‘𝑌) ⊆ (Atoms‘𝐾)) → ((𝐹‘𝑋) + (𝐹‘𝑌)) ⊆ (Atoms‘𝐾)) |
21 | 8, 17, 19, 20 | syl3anc 1368 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝐹‘𝑋) + (𝐹‘𝑌)) ⊆ (Atoms‘𝐾)) |
22 | 15, 5 | 3polN 37492 | . . 3 ⊢ ((𝐾 ∈ HL ∧ ((𝐹‘𝑋) + (𝐹‘𝑌)) ⊆ (Atoms‘𝐾)) → (𝑁‘(𝑁‘(𝑁‘((𝐹‘𝑋) + (𝐹‘𝑌))))) = (𝑁‘((𝐹‘𝑋) + (𝐹‘𝑌)))) |
23 | 8, 21, 22 | syl2anc 587 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑁‘(𝑁‘((𝐹‘𝑋) + (𝐹‘𝑌))))) = (𝑁‘((𝐹‘𝑋) + (𝐹‘𝑌)))) |
24 | 7, 14, 23 | 3eqtr3d 2801 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘( ⊥ ‘(𝑋 ∨ 𝑌))) = (𝑁‘((𝐹‘𝑋) + (𝐹‘𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ⊆ wss 3858 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 occoc 16631 joincjn 17620 meetcmee 17621 Latclat 17721 Atomscatm 36839 HLchlt 36926 pmapcpmap 37073 +𝑃cpadd 37371 ⊥𝑃cpolN 37478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-riotaBAD 36529 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-iin 4886 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-1st 7693 df-2nd 7694 df-undef 7949 df-proset 17604 df-poset 17622 df-plt 17634 df-lub 17650 df-glb 17651 df-join 17652 df-meet 17653 df-p0 17715 df-p1 17716 df-lat 17722 df-clat 17784 df-oposet 36752 df-ol 36754 df-oml 36755 df-covers 36842 df-ats 36843 df-atl 36874 df-cvlat 36898 df-hlat 36927 df-psubsp 37079 df-pmap 37080 df-padd 37372 df-polarityN 37479 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |