![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapocjN | Structured version Visualization version GIF version |
Description: The projective map of the orthocomplement of the join of two lattice elements. (Contributed by NM, 14-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pmapocj.b | ⊢ 𝐵 = (Base‘𝐾) |
pmapocj.j | ⊢ ∨ = (join‘𝐾) |
pmapocj.m | ⊢ ∧ = (meet‘𝐾) |
pmapocj.o | ⊢ ⊥ = (oc‘𝐾) |
pmapocj.f | ⊢ 𝐹 = (pmap‘𝐾) |
pmapocj.p | ⊢ + = (+𝑃‘𝐾) |
pmapocj.r | ⊢ 𝑁 = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
pmapocjN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘( ⊥ ‘(𝑋 ∨ 𝑌))) = (𝑁‘((𝐹‘𝑋) + (𝐹‘𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmapocj.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | pmapocj.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | pmapocj.f | . . . 4 ⊢ 𝐹 = (pmap‘𝐾) | |
4 | pmapocj.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
5 | pmapocj.r | . . . 4 ⊢ 𝑁 = (⊥𝑃‘𝐾) | |
6 | 1, 2, 3, 4, 5 | pmapj2N 39886 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 ∨ 𝑌)) = (𝑁‘(𝑁‘((𝐹‘𝑋) + (𝐹‘𝑌))))) |
7 | 6 | fveq2d 6924 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝐹‘(𝑋 ∨ 𝑌))) = (𝑁‘(𝑁‘(𝑁‘((𝐹‘𝑋) + (𝐹‘𝑌)))))) |
8 | simp1 1136 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ HL) | |
9 | hllat 39319 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
10 | 1, 2 | latjcl 18509 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
11 | 9, 10 | syl3an1 1163 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
12 | pmapocj.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
13 | 1, 12, 3, 5 | polpmapN 39869 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∨ 𝑌) ∈ 𝐵) → (𝑁‘(𝐹‘(𝑋 ∨ 𝑌))) = (𝐹‘( ⊥ ‘(𝑋 ∨ 𝑌)))) |
14 | 8, 11, 13 | syl2anc 583 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝐹‘(𝑋 ∨ 𝑌))) = (𝐹‘( ⊥ ‘(𝑋 ∨ 𝑌)))) |
15 | eqid 2740 | . . . . . 6 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
16 | 1, 15, 3 | pmapssat 39716 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ⊆ (Atoms‘𝐾)) |
17 | 16 | 3adant3 1132 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑋) ⊆ (Atoms‘𝐾)) |
18 | 1, 15, 3 | pmapssat 39716 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑌) ⊆ (Atoms‘𝐾)) |
19 | 18 | 3adant2 1131 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑌) ⊆ (Atoms‘𝐾)) |
20 | 15, 4 | paddssat 39771 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝐹‘𝑋) ⊆ (Atoms‘𝐾) ∧ (𝐹‘𝑌) ⊆ (Atoms‘𝐾)) → ((𝐹‘𝑋) + (𝐹‘𝑌)) ⊆ (Atoms‘𝐾)) |
21 | 8, 17, 19, 20 | syl3anc 1371 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝐹‘𝑋) + (𝐹‘𝑌)) ⊆ (Atoms‘𝐾)) |
22 | 15, 5 | 3polN 39873 | . . 3 ⊢ ((𝐾 ∈ HL ∧ ((𝐹‘𝑋) + (𝐹‘𝑌)) ⊆ (Atoms‘𝐾)) → (𝑁‘(𝑁‘(𝑁‘((𝐹‘𝑋) + (𝐹‘𝑌))))) = (𝑁‘((𝐹‘𝑋) + (𝐹‘𝑌)))) |
23 | 8, 21, 22 | syl2anc 583 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑁‘(𝑁‘((𝐹‘𝑋) + (𝐹‘𝑌))))) = (𝑁‘((𝐹‘𝑋) + (𝐹‘𝑌)))) |
24 | 7, 14, 23 | 3eqtr3d 2788 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘( ⊥ ‘(𝑋 ∨ 𝑌))) = (𝑁‘((𝐹‘𝑋) + (𝐹‘𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 occoc 17319 joincjn 18381 meetcmee 18382 Latclat 18501 Atomscatm 39219 HLchlt 39306 pmapcpmap 39454 +𝑃cpadd 39752 ⊥𝑃cpolN 39859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-polarityN 39860 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |