Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapocjN Structured version   Visualization version   GIF version

Theorem pmapocjN 39913
Description: The projective map of the orthocomplement of the join of two lattice elements. (Contributed by NM, 14-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapocj.b 𝐵 = (Base‘𝐾)
pmapocj.j = (join‘𝐾)
pmapocj.m = (meet‘𝐾)
pmapocj.o = (oc‘𝐾)
pmapocj.f 𝐹 = (pmap‘𝐾)
pmapocj.p + = (+𝑃𝐾)
pmapocj.r 𝑁 = (⊥𝑃𝐾)
Assertion
Ref Expression
pmapocjN ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘( ‘(𝑋 𝑌))) = (𝑁‘((𝐹𝑋) + (𝐹𝑌))))

Proof of Theorem pmapocjN
StepHypRef Expression
1 pmapocj.b . . . 4 𝐵 = (Base‘𝐾)
2 pmapocj.j . . . 4 = (join‘𝐾)
3 pmapocj.f . . . 4 𝐹 = (pmap‘𝐾)
4 pmapocj.p . . . 4 + = (+𝑃𝐾)
5 pmapocj.r . . . 4 𝑁 = (⊥𝑃𝐾)
61, 2, 3, 4, 5pmapj2N 39912 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 𝑌)) = (𝑁‘(𝑁‘((𝐹𝑋) + (𝐹𝑌)))))
76fveq2d 6911 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝐹‘(𝑋 𝑌))) = (𝑁‘(𝑁‘(𝑁‘((𝐹𝑋) + (𝐹𝑌))))))
8 simp1 1135 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ HL)
9 hllat 39345 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
101, 2latjcl 18497 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
119, 10syl3an1 1162 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
12 pmapocj.o . . . 4 = (oc‘𝐾)
131, 12, 3, 5polpmapN 39895 . . 3 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑁‘(𝐹‘(𝑋 𝑌))) = (𝐹‘( ‘(𝑋 𝑌))))
148, 11, 13syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝐹‘(𝑋 𝑌))) = (𝐹‘( ‘(𝑋 𝑌))))
15 eqid 2735 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
161, 15, 3pmapssat 39742 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝐹𝑋) ⊆ (Atoms‘𝐾))
17163adant3 1131 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐹𝑋) ⊆ (Atoms‘𝐾))
181, 15, 3pmapssat 39742 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝐹𝑌) ⊆ (Atoms‘𝐾))
19183adant2 1130 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐹𝑌) ⊆ (Atoms‘𝐾))
2015, 4paddssat 39797 . . . 4 ((𝐾 ∈ HL ∧ (𝐹𝑋) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑌) ⊆ (Atoms‘𝐾)) → ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾))
218, 17, 19, 20syl3anc 1370 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾))
2215, 53polN 39899 . . 3 ((𝐾 ∈ HL ∧ ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾)) → (𝑁‘(𝑁‘(𝑁‘((𝐹𝑋) + (𝐹𝑌))))) = (𝑁‘((𝐹𝑋) + (𝐹𝑌))))
238, 21, 22syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑁‘(𝑁‘((𝐹𝑋) + (𝐹𝑌))))) = (𝑁‘((𝐹𝑋) + (𝐹𝑌))))
247, 14, 233eqtr3d 2783 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘( ‘(𝑋 𝑌))) = (𝑁‘((𝐹𝑋) + (𝐹𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  wss 3963  cfv 6563  (class class class)co 7431  Basecbs 17245  occoc 17306  joincjn 18369  meetcmee 18370  Latclat 18489  Atomscatm 39245  HLchlt 39332  pmapcpmap 39480  +𝑃cpadd 39778  𝑃cpolN 39885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-polarityN 39886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator