Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapocjN Structured version   Visualization version   GIF version

Theorem pmapocjN 38606
Description: The projective map of the orthocomplement of the join of two lattice elements. (Contributed by NM, 14-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapocj.b 𝐵 = (Base‘𝐾)
pmapocj.j = (join‘𝐾)
pmapocj.m = (meet‘𝐾)
pmapocj.o = (oc‘𝐾)
pmapocj.f 𝐹 = (pmap‘𝐾)
pmapocj.p + = (+𝑃𝐾)
pmapocj.r 𝑁 = (⊥𝑃𝐾)
Assertion
Ref Expression
pmapocjN ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘( ‘(𝑋 𝑌))) = (𝑁‘((𝐹𝑋) + (𝐹𝑌))))

Proof of Theorem pmapocjN
StepHypRef Expression
1 pmapocj.b . . . 4 𝐵 = (Base‘𝐾)
2 pmapocj.j . . . 4 = (join‘𝐾)
3 pmapocj.f . . . 4 𝐹 = (pmap‘𝐾)
4 pmapocj.p . . . 4 + = (+𝑃𝐾)
5 pmapocj.r . . . 4 𝑁 = (⊥𝑃𝐾)
61, 2, 3, 4, 5pmapj2N 38605 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 𝑌)) = (𝑁‘(𝑁‘((𝐹𝑋) + (𝐹𝑌)))))
76fveq2d 6882 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝐹‘(𝑋 𝑌))) = (𝑁‘(𝑁‘(𝑁‘((𝐹𝑋) + (𝐹𝑌))))))
8 simp1 1136 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ HL)
9 hllat 38038 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
101, 2latjcl 18374 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
119, 10syl3an1 1163 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
12 pmapocj.o . . . 4 = (oc‘𝐾)
131, 12, 3, 5polpmapN 38588 . . 3 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑁‘(𝐹‘(𝑋 𝑌))) = (𝐹‘( ‘(𝑋 𝑌))))
148, 11, 13syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝐹‘(𝑋 𝑌))) = (𝐹‘( ‘(𝑋 𝑌))))
15 eqid 2731 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
161, 15, 3pmapssat 38435 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝐹𝑋) ⊆ (Atoms‘𝐾))
17163adant3 1132 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐹𝑋) ⊆ (Atoms‘𝐾))
181, 15, 3pmapssat 38435 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝐹𝑌) ⊆ (Atoms‘𝐾))
19183adant2 1131 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐹𝑌) ⊆ (Atoms‘𝐾))
2015, 4paddssat 38490 . . . 4 ((𝐾 ∈ HL ∧ (𝐹𝑋) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑌) ⊆ (Atoms‘𝐾)) → ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾))
218, 17, 19, 20syl3anc 1371 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾))
2215, 53polN 38592 . . 3 ((𝐾 ∈ HL ∧ ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾)) → (𝑁‘(𝑁‘(𝑁‘((𝐹𝑋) + (𝐹𝑌))))) = (𝑁‘((𝐹𝑋) + (𝐹𝑌))))
238, 21, 22syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑁‘(𝑁‘((𝐹𝑋) + (𝐹𝑌))))) = (𝑁‘((𝐹𝑋) + (𝐹𝑌))))
247, 14, 233eqtr3d 2779 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘( ‘(𝑋 𝑌))) = (𝑁‘((𝐹𝑋) + (𝐹𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  wss 3944  cfv 6532  (class class class)co 7393  Basecbs 17126  occoc 17187  joincjn 18246  meetcmee 18247  Latclat 18366  Atomscatm 37938  HLchlt 38025  pmapcpmap 38173  +𝑃cpadd 38471  𝑃cpolN 38578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-1st 7957  df-2nd 7958  df-proset 18230  df-poset 18248  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 37851  df-ol 37853  df-oml 37854  df-covers 37941  df-ats 37942  df-atl 37973  df-cvlat 37997  df-hlat 38026  df-psubsp 38179  df-pmap 38180  df-padd 38472  df-polarityN 38579
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator