Step | Hyp | Ref
| Expression |
1 | | prfval.k |
. . . 4
⊢ 𝑃 = (𝐹 〈,〉F 𝐺) |
2 | | prfval.b |
. . . 4
⊢ 𝐵 = (Base‘𝐶) |
3 | | prfval.h |
. . . 4
⊢ 𝐻 = (Hom ‘𝐶) |
4 | | prfval.c |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
5 | | prfval.d |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) |
6 | 1, 2, 3, 4, 5 | prfval 17832 |
. . 3
⊢ (𝜑 → 𝑃 = 〈(𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉) |
7 | 2 | fvexi 6770 |
. . . . 5
⊢ 𝐵 ∈ V |
8 | 7 | mptex 7081 |
. . . 4
⊢ (𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉) ∈ V |
9 | 7, 7 | mpoex 7893 |
. . . 4
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) ∈ V |
10 | 8, 9 | op2ndd 7815 |
. . 3
⊢ (𝑃 = 〈(𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉 → (2nd
‘𝑃) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))) |
11 | 6, 10 | syl 17 |
. 2
⊢ (𝜑 → (2nd
‘𝑃) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))) |
12 | | simprl 767 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑥 = 𝑋) |
13 | | simprr 769 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑦 = 𝑌) |
14 | 12, 13 | oveq12d 7273 |
. . 3
⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌)) |
15 | 12, 13 | oveq12d 7273 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥(2nd ‘𝐹)𝑦) = (𝑋(2nd ‘𝐹)𝑌)) |
16 | 15 | fveq1d 6758 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝑥(2nd ‘𝐹)𝑦)‘ℎ) = ((𝑋(2nd ‘𝐹)𝑌)‘ℎ)) |
17 | 12, 13 | oveq12d 7273 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥(2nd ‘𝐺)𝑦) = (𝑋(2nd ‘𝐺)𝑌)) |
18 | 17 | fveq1d 6758 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝑥(2nd ‘𝐺)𝑦)‘ℎ) = ((𝑋(2nd ‘𝐺)𝑌)‘ℎ)) |
19 | 16, 18 | opeq12d 4809 |
. . 3
⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉 = 〈((𝑋(2nd ‘𝐹)𝑌)‘ℎ), ((𝑋(2nd ‘𝐺)𝑌)‘ℎ)〉) |
20 | 14, 19 | mpteq12dv 5161 |
. 2
⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉) = (ℎ ∈ (𝑋𝐻𝑌) ↦ 〈((𝑋(2nd ‘𝐹)𝑌)‘ℎ), ((𝑋(2nd ‘𝐺)𝑌)‘ℎ)〉)) |
21 | | prf1.x |
. 2
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
22 | | prf2.y |
. 2
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
23 | | ovex 7288 |
. . . 4
⊢ (𝑋𝐻𝑌) ∈ V |
24 | 23 | mptex 7081 |
. . 3
⊢ (ℎ ∈ (𝑋𝐻𝑌) ↦ 〈((𝑋(2nd ‘𝐹)𝑌)‘ℎ), ((𝑋(2nd ‘𝐺)𝑌)‘ℎ)〉) ∈ V |
25 | 24 | a1i 11 |
. 2
⊢ (𝜑 → (ℎ ∈ (𝑋𝐻𝑌) ↦ 〈((𝑋(2nd ‘𝐹)𝑌)‘ℎ), ((𝑋(2nd ‘𝐺)𝑌)‘ℎ)〉) ∈ V) |
26 | 11, 20, 21, 22, 25 | ovmpod 7403 |
1
⊢ (𝜑 → (𝑋(2nd ‘𝑃)𝑌) = (ℎ ∈ (𝑋𝐻𝑌) ↦ 〈((𝑋(2nd ‘𝐹)𝑌)‘ℎ), ((𝑋(2nd ‘𝐺)𝑌)‘ℎ)〉)) |