| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prf1 | Structured version Visualization version GIF version | ||
| Description: Value of the pairing functor on objects. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| prfval.k | ⊢ 𝑃 = (𝐹 〈,〉F 𝐺) |
| prfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| prfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| prfval.c | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| prfval.d | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) |
| prf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| prf1 | ⊢ (𝜑 → ((1st ‘𝑃)‘𝑋) = 〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐺)‘𝑋)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prfval.k | . . . 4 ⊢ 𝑃 = (𝐹 〈,〉F 𝐺) | |
| 2 | prfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | prfval.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 4 | prfval.c | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 5 | prfval.d | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) | |
| 6 | 1, 2, 3, 4, 5 | prfval 18160 | . . 3 ⊢ (𝜑 → 𝑃 = 〈(𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉) |
| 7 | 2 | fvexi 6872 | . . . . 5 ⊢ 𝐵 ∈ V |
| 8 | 7 | mptex 7197 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉) ∈ V |
| 9 | 7, 7 | mpoex 8058 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) ∈ V |
| 10 | 8, 9 | op1std 7978 | . . 3 ⊢ (𝑃 = 〈(𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉 → (1st ‘𝑃) = (𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉)) |
| 11 | 6, 10 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘𝑃) = (𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉)) |
| 12 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
| 13 | 12 | fveq2d 6862 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((1st ‘𝐹)‘𝑥) = ((1st ‘𝐹)‘𝑋)) |
| 14 | 12 | fveq2d 6862 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((1st ‘𝐺)‘𝑥) = ((1st ‘𝐺)‘𝑋)) |
| 15 | 13, 14 | opeq12d 4845 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 = 〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐺)‘𝑋)〉) |
| 16 | prf1.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 17 | opex 5424 | . . 3 ⊢ 〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐺)‘𝑋)〉 ∈ V | |
| 18 | 17 | a1i 11 | . 2 ⊢ (𝜑 → 〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐺)‘𝑋)〉 ∈ V) |
| 19 | 11, 15, 16, 18 | fvmptd 6975 | 1 ⊢ (𝜑 → ((1st ‘𝑃)‘𝑋) = 〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐺)‘𝑋)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 〈cop 4595 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 1st c1st 7966 2nd c2nd 7967 Basecbs 17179 Hom chom 17231 Func cfunc 17816 〈,〉F cprf 18132 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 df-ixp 8871 df-func 17820 df-prf 18136 |
| This theorem is referenced by: prfcl 18164 uncf1 18197 uncf2 18198 yonedalem21 18234 yonedalem22 18239 |
| Copyright terms: Public domain | W3C validator |