Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prf1 Structured version   Visualization version   GIF version

Theorem prf1 17531
 Description: Value of the pairing functor on objects. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
prfval.k 𝑃 = (𝐹 ⟨,⟩F 𝐺)
prfval.b 𝐵 = (Base‘𝐶)
prfval.h 𝐻 = (Hom ‘𝐶)
prfval.c (𝜑𝐹 ∈ (𝐶 Func 𝐷))
prfval.d (𝜑𝐺 ∈ (𝐶 Func 𝐸))
prf1.x (𝜑𝑋𝐵)
Assertion
Ref Expression
prf1 (𝜑 → ((1st𝑃)‘𝑋) = ⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑋)⟩)

Proof of Theorem prf1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prfval.k . . . 4 𝑃 = (𝐹 ⟨,⟩F 𝐺)
2 prfval.b . . . 4 𝐵 = (Base‘𝐶)
3 prfval.h . . . 4 𝐻 = (Hom ‘𝐶)
4 prfval.c . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
5 prfval.d . . . 4 (𝜑𝐺 ∈ (𝐶 Func 𝐸))
61, 2, 3, 4, 5prfval 17530 . . 3 (𝜑𝑃 = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
72fvexi 6678 . . . . 5 𝐵 ∈ V
87mptex 6984 . . . 4 (𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) ∈ V
97, 7mpoex 7789 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)) ∈ V
108, 9op1std 7710 . . 3 (𝑃 = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩ → (1st𝑃) = (𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
116, 10syl 17 . 2 (𝜑 → (1st𝑃) = (𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
12 simpr 488 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
1312fveq2d 6668 . . 3 ((𝜑𝑥 = 𝑋) → ((1st𝐹)‘𝑥) = ((1st𝐹)‘𝑋))
1412fveq2d 6668 . . 3 ((𝜑𝑥 = 𝑋) → ((1st𝐺)‘𝑥) = ((1st𝐺)‘𝑋))
1513, 14opeq12d 4775 . 2 ((𝜑𝑥 = 𝑋) → ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ = ⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑋)⟩)
16 prf1.x . 2 (𝜑𝑋𝐵)
17 opex 5329 . . 3 ⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑋)⟩ ∈ V
1817a1i 11 . 2 (𝜑 → ⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑋)⟩ ∈ V)
1911, 15, 16, 18fvmptd 6772 1 (𝜑 → ((1st𝑃)‘𝑋) = ⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑋)⟩)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1539   ∈ wcel 2112  Vcvv 3410  ⟨cop 4532   ↦ cmpt 5117  ‘cfv 6341  (class class class)co 7157   ∈ cmpo 7159  1st c1st 7698  2nd c2nd 7699  Basecbs 16556  Hom chom 16649   Func cfunc 17198   ⟨,⟩F cprf 17502 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4803  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-id 5435  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-ov 7160  df-oprab 7161  df-mpo 7162  df-1st 7700  df-2nd 7701  df-map 8425  df-ixp 8494  df-func 17202  df-prf 17506 This theorem is referenced by:  prfcl  17534  uncf1  17567  uncf2  17568  yonedalem21  17604  yonedalem22  17609
 Copyright terms: Public domain W3C validator