MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prf1 Structured version   Visualization version   GIF version

Theorem prf1 18093
Description: Value of the pairing functor on objects. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
prfval.k 𝑃 = (𝐹 ⟨,⟩F 𝐺)
prfval.b 𝐵 = (Base‘𝐶)
prfval.h 𝐻 = (Hom ‘𝐶)
prfval.c (𝜑𝐹 ∈ (𝐶 Func 𝐷))
prfval.d (𝜑𝐺 ∈ (𝐶 Func 𝐸))
prf1.x (𝜑𝑋𝐵)
Assertion
Ref Expression
prf1 (𝜑 → ((1st𝑃)‘𝑋) = ⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑋)⟩)

Proof of Theorem prf1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prfval.k . . . 4 𝑃 = (𝐹 ⟨,⟩F 𝐺)
2 prfval.b . . . 4 𝐵 = (Base‘𝐶)
3 prfval.h . . . 4 𝐻 = (Hom ‘𝐶)
4 prfval.c . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
5 prfval.d . . . 4 (𝜑𝐺 ∈ (𝐶 Func 𝐸))
61, 2, 3, 4, 5prfval 18092 . . 3 (𝜑𝑃 = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
72fvexi 6857 . . . . 5 𝐵 ∈ V
87mptex 7174 . . . 4 (𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) ∈ V
97, 7mpoex 8013 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)) ∈ V
108, 9op1std 7932 . . 3 (𝑃 = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩ → (1st𝑃) = (𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
116, 10syl 17 . 2 (𝜑 → (1st𝑃) = (𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
12 simpr 486 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
1312fveq2d 6847 . . 3 ((𝜑𝑥 = 𝑋) → ((1st𝐹)‘𝑥) = ((1st𝐹)‘𝑋))
1412fveq2d 6847 . . 3 ((𝜑𝑥 = 𝑋) → ((1st𝐺)‘𝑥) = ((1st𝐺)‘𝑋))
1513, 14opeq12d 4839 . 2 ((𝜑𝑥 = 𝑋) → ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ = ⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑋)⟩)
16 prf1.x . 2 (𝜑𝑋𝐵)
17 opex 5422 . . 3 ⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑋)⟩ ∈ V
1817a1i 11 . 2 (𝜑 → ⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑋)⟩ ∈ V)
1911, 15, 16, 18fvmptd 6956 1 (𝜑 → ((1st𝑃)‘𝑋) = ⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑋)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3444  cop 4593  cmpt 5189  cfv 6497  (class class class)co 7358  cmpo 7360  1st c1st 7920  2nd c2nd 7921  Basecbs 17088  Hom chom 17149   Func cfunc 17745   ⟨,⟩F cprf 18064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-map 8770  df-ixp 8839  df-func 17749  df-prf 18068
This theorem is referenced by:  prfcl  18096  uncf1  18130  uncf2  18131  yonedalem21  18167  yonedalem22  18172
  Copyright terms: Public domain W3C validator