![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prf1 | Structured version Visualization version GIF version |
Description: Value of the pairing functor on objects. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
prfval.k | ⊢ 𝑃 = (𝐹 ⟨,⟩F 𝐺) |
prfval.b | ⊢ 𝐵 = (Base‘𝐶) |
prfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
prfval.c | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
prfval.d | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) |
prf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
prf1 | ⊢ (𝜑 → ((1st ‘𝑃)‘𝑋) = ⟨((1st ‘𝐹)‘𝑋), ((1st ‘𝐺)‘𝑋)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prfval.k | . . . 4 ⊢ 𝑃 = (𝐹 ⟨,⟩F 𝐺) | |
2 | prfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | prfval.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | prfval.c | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
5 | prfval.d | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) | |
6 | 1, 2, 3, 4, 5 | prfval 18147 | . . 3 ⊢ (𝜑 → 𝑃 = ⟨(𝑥 ∈ 𝐵 ↦ ⟨((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)⟩), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)⟩))⟩) |
7 | 2 | fvexi 6902 | . . . . 5 ⊢ 𝐵 ∈ V |
8 | 7 | mptex 7221 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ ⟨((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)⟩) ∈ V |
9 | 7, 7 | mpoex 8062 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)⟩)) ∈ V |
10 | 8, 9 | op1std 7981 | . . 3 ⊢ (𝑃 = ⟨(𝑥 ∈ 𝐵 ↦ ⟨((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)⟩), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)⟩))⟩ → (1st ‘𝑃) = (𝑥 ∈ 𝐵 ↦ ⟨((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)⟩)) |
11 | 6, 10 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘𝑃) = (𝑥 ∈ 𝐵 ↦ ⟨((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)⟩)) |
12 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
13 | 12 | fveq2d 6892 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((1st ‘𝐹)‘𝑥) = ((1st ‘𝐹)‘𝑋)) |
14 | 12 | fveq2d 6892 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((1st ‘𝐺)‘𝑥) = ((1st ‘𝐺)‘𝑋)) |
15 | 13, 14 | opeq12d 4880 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ⟨((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)⟩ = ⟨((1st ‘𝐹)‘𝑋), ((1st ‘𝐺)‘𝑋)⟩) |
16 | prf1.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
17 | opex 5463 | . . 3 ⊢ ⟨((1st ‘𝐹)‘𝑋), ((1st ‘𝐺)‘𝑋)⟩ ∈ V | |
18 | 17 | a1i 11 | . 2 ⊢ (𝜑 → ⟨((1st ‘𝐹)‘𝑋), ((1st ‘𝐺)‘𝑋)⟩ ∈ V) |
19 | 11, 15, 16, 18 | fvmptd 7002 | 1 ⊢ (𝜑 → ((1st ‘𝑃)‘𝑋) = ⟨((1st ‘𝐹)‘𝑋), ((1st ‘𝐺)‘𝑋)⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⟨cop 4633 ↦ cmpt 5230 ‘cfv 6540 (class class class)co 7405 ∈ cmpo 7407 1st c1st 7969 2nd c2nd 7970 Basecbs 17140 Hom chom 17204 Func cfunc 17800 ⟨,⟩F cprf 18119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-map 8818 df-ixp 8888 df-func 17804 df-prf 18123 |
This theorem is referenced by: prfcl 18151 uncf1 18185 uncf2 18186 yonedalem21 18222 yonedalem22 18227 |
Copyright terms: Public domain | W3C validator |