![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prf1 | Structured version Visualization version GIF version |
Description: Value of the pairing functor on objects. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
prfval.k | ⊢ 𝑃 = (𝐹 〈,〉F 𝐺) |
prfval.b | ⊢ 𝐵 = (Base‘𝐶) |
prfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
prfval.c | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
prfval.d | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) |
prf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
prf1 | ⊢ (𝜑 → ((1st ‘𝑃)‘𝑋) = 〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐺)‘𝑋)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prfval.k | . . . 4 ⊢ 𝑃 = (𝐹 〈,〉F 𝐺) | |
2 | prfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | prfval.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | prfval.c | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
5 | prfval.d | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) | |
6 | 1, 2, 3, 4, 5 | prfval 18255 | . . 3 ⊢ (𝜑 → 𝑃 = 〈(𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉) |
7 | 2 | fvexi 6921 | . . . . 5 ⊢ 𝐵 ∈ V |
8 | 7 | mptex 7243 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉) ∈ V |
9 | 7, 7 | mpoex 8103 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) ∈ V |
10 | 8, 9 | op1std 8023 | . . 3 ⊢ (𝑃 = 〈(𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉 → (1st ‘𝑃) = (𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉)) |
11 | 6, 10 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘𝑃) = (𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉)) |
12 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
13 | 12 | fveq2d 6911 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((1st ‘𝐹)‘𝑥) = ((1st ‘𝐹)‘𝑋)) |
14 | 12 | fveq2d 6911 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((1st ‘𝐺)‘𝑥) = ((1st ‘𝐺)‘𝑋)) |
15 | 13, 14 | opeq12d 4886 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 = 〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐺)‘𝑋)〉) |
16 | prf1.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
17 | opex 5475 | . . 3 ⊢ 〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐺)‘𝑋)〉 ∈ V | |
18 | 17 | a1i 11 | . 2 ⊢ (𝜑 → 〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐺)‘𝑋)〉 ∈ V) |
19 | 11, 15, 16, 18 | fvmptd 7023 | 1 ⊢ (𝜑 → ((1st ‘𝑃)‘𝑋) = 〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐺)‘𝑋)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 〈cop 4637 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 1st c1st 8011 2nd c2nd 8012 Basecbs 17245 Hom chom 17309 Func cfunc 17905 〈,〉F cprf 18227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-map 8867 df-ixp 8937 df-func 17909 df-prf 18231 |
This theorem is referenced by: prfcl 18259 uncf1 18293 uncf2 18294 yonedalem21 18330 yonedalem22 18335 |
Copyright terms: Public domain | W3C validator |