| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prf1 | Structured version Visualization version GIF version | ||
| Description: Value of the pairing functor on objects. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| prfval.k | ⊢ 𝑃 = (𝐹 〈,〉F 𝐺) |
| prfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| prfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| prfval.c | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| prfval.d | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) |
| prf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| prf1 | ⊢ (𝜑 → ((1st ‘𝑃)‘𝑋) = 〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐺)‘𝑋)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prfval.k | . . . 4 ⊢ 𝑃 = (𝐹 〈,〉F 𝐺) | |
| 2 | prfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | prfval.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 4 | prfval.c | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 5 | prfval.d | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) | |
| 6 | 1, 2, 3, 4, 5 | prfval 18105 | . . 3 ⊢ (𝜑 → 𝑃 = 〈(𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉) |
| 7 | 2 | fvexi 6836 | . . . . 5 ⊢ 𝐵 ∈ V |
| 8 | 7 | mptex 7157 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉) ∈ V |
| 9 | 7, 7 | mpoex 8011 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) ∈ V |
| 10 | 8, 9 | op1std 7931 | . . 3 ⊢ (𝑃 = 〈(𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉 → (1st ‘𝑃) = (𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉)) |
| 11 | 6, 10 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘𝑃) = (𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉)) |
| 12 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
| 13 | 12 | fveq2d 6826 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((1st ‘𝐹)‘𝑥) = ((1st ‘𝐹)‘𝑋)) |
| 14 | 12 | fveq2d 6826 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((1st ‘𝐺)‘𝑥) = ((1st ‘𝐺)‘𝑋)) |
| 15 | 13, 14 | opeq12d 4830 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 = 〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐺)‘𝑋)〉) |
| 16 | prf1.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 17 | opex 5402 | . . 3 ⊢ 〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐺)‘𝑋)〉 ∈ V | |
| 18 | 17 | a1i 11 | . 2 ⊢ (𝜑 → 〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐺)‘𝑋)〉 ∈ V) |
| 19 | 11, 15, 16, 18 | fvmptd 6936 | 1 ⊢ (𝜑 → ((1st ‘𝑃)‘𝑋) = 〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐺)‘𝑋)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 1st c1st 7919 2nd c2nd 7920 Basecbs 17120 Hom chom 17172 Func cfunc 17761 〈,〉F cprf 18077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-ixp 8822 df-func 17765 df-prf 18081 |
| This theorem is referenced by: prfcl 18109 uncf1 18142 uncf2 18143 yonedalem21 18179 yonedalem22 18184 |
| Copyright terms: Public domain | W3C validator |