| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prf2 | Structured version Visualization version GIF version | ||
| Description: Value of the pairing functor on morphisms. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| prfval.k | ⊢ 𝑃 = (𝐹 〈,〉F 𝐺) |
| prfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| prfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| prfval.c | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| prfval.d | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) |
| prf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| prf2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| prf2.k | ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) |
| Ref | Expression |
|---|---|
| prf2 | ⊢ (𝜑 → ((𝑋(2nd ‘𝑃)𝑌)‘𝐾) = 〈((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prfval.k | . . 3 ⊢ 𝑃 = (𝐹 〈,〉F 𝐺) | |
| 2 | prfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | prfval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 4 | prfval.c | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 5 | prfval.d | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) | |
| 6 | prf1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | prf2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | prf2fval 18138 | . 2 ⊢ (𝜑 → (𝑋(2nd ‘𝑃)𝑌) = (ℎ ∈ (𝑋𝐻𝑌) ↦ 〈((𝑋(2nd ‘𝐹)𝑌)‘ℎ), ((𝑋(2nd ‘𝐺)𝑌)‘ℎ)〉)) |
| 9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ ℎ = 𝐾) → ℎ = 𝐾) | |
| 10 | 9 | fveq2d 6844 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐾) → ((𝑋(2nd ‘𝐹)𝑌)‘ℎ) = ((𝑋(2nd ‘𝐹)𝑌)‘𝐾)) |
| 11 | 9 | fveq2d 6844 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐾) → ((𝑋(2nd ‘𝐺)𝑌)‘ℎ) = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)) |
| 12 | 10, 11 | opeq12d 4841 | . 2 ⊢ ((𝜑 ∧ ℎ = 𝐾) → 〈((𝑋(2nd ‘𝐹)𝑌)‘ℎ), ((𝑋(2nd ‘𝐺)𝑌)‘ℎ)〉 = 〈((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)〉) |
| 13 | prf2.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) | |
| 14 | opex 5419 | . . 3 ⊢ 〈((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)〉 ∈ V | |
| 15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → 〈((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)〉 ∈ V) |
| 16 | 8, 12, 13, 15 | fvmptd 6957 | 1 ⊢ (𝜑 → ((𝑋(2nd ‘𝑃)𝑌)‘𝐾) = 〈((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 〈cop 4591 ‘cfv 6499 (class class class)co 7369 2nd c2nd 7946 Basecbs 17155 Hom chom 17207 Func cfunc 17792 〈,〉F cprf 18108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-map 8778 df-ixp 8848 df-func 17796 df-prf 18112 |
| This theorem is referenced by: prfcl 18140 prf1st 18141 prf2nd 18142 uncf2 18174 yonedalem22 18215 |
| Copyright terms: Public domain | W3C validator |