MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prf2 Structured version   Visualization version   GIF version

Theorem prf2 18150
Description: Value of the pairing functor on morphisms. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
prfval.k 𝑃 = (𝐹 ⟨,⟩F 𝐺)
prfval.b 𝐵 = (Base‘𝐶)
prfval.h 𝐻 = (Hom ‘𝐶)
prfval.c (𝜑𝐹 ∈ (𝐶 Func 𝐷))
prfval.d (𝜑𝐺 ∈ (𝐶 Func 𝐸))
prf1.x (𝜑𝑋𝐵)
prf2.y (𝜑𝑌𝐵)
prf2.k (𝜑𝐾 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
prf2 (𝜑 → ((𝑋(2nd𝑃)𝑌)‘𝐾) = ⟨((𝑋(2nd𝐹)𝑌)‘𝐾), ((𝑋(2nd𝐺)𝑌)‘𝐾)⟩)

Proof of Theorem prf2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 prfval.k . . 3 𝑃 = (𝐹 ⟨,⟩F 𝐺)
2 prfval.b . . 3 𝐵 = (Base‘𝐶)
3 prfval.h . . 3 𝐻 = (Hom ‘𝐶)
4 prfval.c . . 3 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
5 prfval.d . . 3 (𝜑𝐺 ∈ (𝐶 Func 𝐸))
6 prf1.x . . 3 (𝜑𝑋𝐵)
7 prf2.y . . 3 (𝜑𝑌𝐵)
81, 2, 3, 4, 5, 6, 7prf2fval 18149 . 2 (𝜑 → (𝑋(2nd𝑃)𝑌) = ( ∈ (𝑋𝐻𝑌) ↦ ⟨((𝑋(2nd𝐹)𝑌)‘), ((𝑋(2nd𝐺)𝑌)‘)⟩))
9 simpr 485 . . . 4 ((𝜑 = 𝐾) → = 𝐾)
109fveq2d 6892 . . 3 ((𝜑 = 𝐾) → ((𝑋(2nd𝐹)𝑌)‘) = ((𝑋(2nd𝐹)𝑌)‘𝐾))
119fveq2d 6892 . . 3 ((𝜑 = 𝐾) → ((𝑋(2nd𝐺)𝑌)‘) = ((𝑋(2nd𝐺)𝑌)‘𝐾))
1210, 11opeq12d 4880 . 2 ((𝜑 = 𝐾) → ⟨((𝑋(2nd𝐹)𝑌)‘), ((𝑋(2nd𝐺)𝑌)‘)⟩ = ⟨((𝑋(2nd𝐹)𝑌)‘𝐾), ((𝑋(2nd𝐺)𝑌)‘𝐾)⟩)
13 prf2.k . 2 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
14 opex 5463 . . 3 ⟨((𝑋(2nd𝐹)𝑌)‘𝐾), ((𝑋(2nd𝐺)𝑌)‘𝐾)⟩ ∈ V
1514a1i 11 . 2 (𝜑 → ⟨((𝑋(2nd𝐹)𝑌)‘𝐾), ((𝑋(2nd𝐺)𝑌)‘𝐾)⟩ ∈ V)
168, 12, 13, 15fvmptd 7002 1 (𝜑 → ((𝑋(2nd𝑃)𝑌)‘𝐾) = ⟨((𝑋(2nd𝐹)𝑌)‘𝐾), ((𝑋(2nd𝐺)𝑌)‘𝐾)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  cop 4633  cfv 6540  (class class class)co 7405  2nd c2nd 7970  Basecbs 17140  Hom chom 17204   Func cfunc 17800   ⟨,⟩F cprf 18119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-map 8818  df-ixp 8888  df-func 17804  df-prf 18123
This theorem is referenced by:  prfcl  18151  prf1st  18152  prf2nd  18153  uncf2  18186  yonedalem22  18227
  Copyright terms: Public domain W3C validator