![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prf2 | Structured version Visualization version GIF version |
Description: Value of the pairing functor on morphisms. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
prfval.k | ⊢ 𝑃 = (𝐹 ⟨,⟩F 𝐺) |
prfval.b | ⊢ 𝐵 = (Base‘𝐶) |
prfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
prfval.c | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
prfval.d | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) |
prf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
prf2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
prf2.k | ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) |
Ref | Expression |
---|---|
prf2 | ⊢ (𝜑 → ((𝑋(2nd ‘𝑃)𝑌)‘𝐾) = ⟨((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prfval.k | . . 3 ⊢ 𝑃 = (𝐹 ⟨,⟩F 𝐺) | |
2 | prfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
3 | prfval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | prfval.c | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
5 | prfval.d | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) | |
6 | prf1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | prf2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | 1, 2, 3, 4, 5, 6, 7 | prf2fval 18157 | . 2 ⊢ (𝜑 → (𝑋(2nd ‘𝑃)𝑌) = (ℎ ∈ (𝑋𝐻𝑌) ↦ ⟨((𝑋(2nd ‘𝐹)𝑌)‘ℎ), ((𝑋(2nd ‘𝐺)𝑌)‘ℎ)⟩)) |
9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ ℎ = 𝐾) → ℎ = 𝐾) | |
10 | 9 | fveq2d 6886 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐾) → ((𝑋(2nd ‘𝐹)𝑌)‘ℎ) = ((𝑋(2nd ‘𝐹)𝑌)‘𝐾)) |
11 | 9 | fveq2d 6886 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐾) → ((𝑋(2nd ‘𝐺)𝑌)‘ℎ) = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)) |
12 | 10, 11 | opeq12d 4874 | . 2 ⊢ ((𝜑 ∧ ℎ = 𝐾) → ⟨((𝑋(2nd ‘𝐹)𝑌)‘ℎ), ((𝑋(2nd ‘𝐺)𝑌)‘ℎ)⟩ = ⟨((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)⟩) |
13 | prf2.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) | |
14 | opex 5455 | . . 3 ⊢ ⟨((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)⟩ ∈ V | |
15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → ⟨((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)⟩ ∈ V) |
16 | 8, 12, 13, 15 | fvmptd 6996 | 1 ⊢ (𝜑 → ((𝑋(2nd ‘𝑃)𝑌)‘𝐾) = ⟨((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ⟨cop 4627 ‘cfv 6534 (class class class)co 7402 2nd c2nd 7968 Basecbs 17145 Hom chom 17209 Func cfunc 17805 ⟨,⟩F cprf 18127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-1st 7969 df-2nd 7970 df-map 8819 df-ixp 8889 df-func 17809 df-prf 18131 |
This theorem is referenced by: prfcl 18159 prf1st 18160 prf2nd 18161 uncf2 18194 yonedalem22 18235 |
Copyright terms: Public domain | W3C validator |