| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prf2 | Structured version Visualization version GIF version | ||
| Description: Value of the pairing functor on morphisms. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| prfval.k | ⊢ 𝑃 = (𝐹 〈,〉F 𝐺) |
| prfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| prfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| prfval.c | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| prfval.d | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) |
| prf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| prf2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| prf2.k | ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) |
| Ref | Expression |
|---|---|
| prf2 | ⊢ (𝜑 → ((𝑋(2nd ‘𝑃)𝑌)‘𝐾) = 〈((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prfval.k | . . 3 ⊢ 𝑃 = (𝐹 〈,〉F 𝐺) | |
| 2 | prfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | prfval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 4 | prfval.c | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 5 | prfval.d | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) | |
| 6 | prf1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | prf2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | prf2fval 18169 | . 2 ⊢ (𝜑 → (𝑋(2nd ‘𝑃)𝑌) = (ℎ ∈ (𝑋𝐻𝑌) ↦ 〈((𝑋(2nd ‘𝐹)𝑌)‘ℎ), ((𝑋(2nd ‘𝐺)𝑌)‘ℎ)〉)) |
| 9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ ℎ = 𝐾) → ℎ = 𝐾) | |
| 10 | 9 | fveq2d 6865 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐾) → ((𝑋(2nd ‘𝐹)𝑌)‘ℎ) = ((𝑋(2nd ‘𝐹)𝑌)‘𝐾)) |
| 11 | 9 | fveq2d 6865 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐾) → ((𝑋(2nd ‘𝐺)𝑌)‘ℎ) = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)) |
| 12 | 10, 11 | opeq12d 4848 | . 2 ⊢ ((𝜑 ∧ ℎ = 𝐾) → 〈((𝑋(2nd ‘𝐹)𝑌)‘ℎ), ((𝑋(2nd ‘𝐺)𝑌)‘ℎ)〉 = 〈((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)〉) |
| 13 | prf2.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) | |
| 14 | opex 5427 | . . 3 ⊢ 〈((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)〉 ∈ V | |
| 15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → 〈((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)〉 ∈ V) |
| 16 | 8, 12, 13, 15 | fvmptd 6978 | 1 ⊢ (𝜑 → ((𝑋(2nd ‘𝑃)𝑌)‘𝐾) = 〈((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 〈cop 4598 ‘cfv 6514 (class class class)co 7390 2nd c2nd 7970 Basecbs 17186 Hom chom 17238 Func cfunc 17823 〈,〉F cprf 18139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 df-ixp 8874 df-func 17827 df-prf 18143 |
| This theorem is referenced by: prfcl 18171 prf1st 18172 prf2nd 18173 uncf2 18205 yonedalem22 18246 |
| Copyright terms: Public domain | W3C validator |