![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prf2 | Structured version Visualization version GIF version |
Description: Value of the pairing functor on morphisms. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
prfval.k | ⊢ 𝑃 = (𝐹 ⟨,⟩F 𝐺) |
prfval.b | ⊢ 𝐵 = (Base‘𝐶) |
prfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
prfval.c | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
prfval.d | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) |
prf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
prf2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
prf2.k | ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) |
Ref | Expression |
---|---|
prf2 | ⊢ (𝜑 → ((𝑋(2nd ‘𝑃)𝑌)‘𝐾) = ⟨((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prfval.k | . . 3 ⊢ 𝑃 = (𝐹 ⟨,⟩F 𝐺) | |
2 | prfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
3 | prfval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | prfval.c | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
5 | prfval.d | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) | |
6 | prf1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | prf2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | 1, 2, 3, 4, 5, 6, 7 | prf2fval 18094 | . 2 ⊢ (𝜑 → (𝑋(2nd ‘𝑃)𝑌) = (ℎ ∈ (𝑋𝐻𝑌) ↦ ⟨((𝑋(2nd ‘𝐹)𝑌)‘ℎ), ((𝑋(2nd ‘𝐺)𝑌)‘ℎ)⟩)) |
9 | simpr 486 | . . . 4 ⊢ ((𝜑 ∧ ℎ = 𝐾) → ℎ = 𝐾) | |
10 | 9 | fveq2d 6847 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐾) → ((𝑋(2nd ‘𝐹)𝑌)‘ℎ) = ((𝑋(2nd ‘𝐹)𝑌)‘𝐾)) |
11 | 9 | fveq2d 6847 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐾) → ((𝑋(2nd ‘𝐺)𝑌)‘ℎ) = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)) |
12 | 10, 11 | opeq12d 4839 | . 2 ⊢ ((𝜑 ∧ ℎ = 𝐾) → ⟨((𝑋(2nd ‘𝐹)𝑌)‘ℎ), ((𝑋(2nd ‘𝐺)𝑌)‘ℎ)⟩ = ⟨((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)⟩) |
13 | prf2.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) | |
14 | opex 5422 | . . 3 ⊢ ⟨((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)⟩ ∈ V | |
15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → ⟨((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)⟩ ∈ V) |
16 | 8, 12, 13, 15 | fvmptd 6956 | 1 ⊢ (𝜑 → ((𝑋(2nd ‘𝑃)𝑌)‘𝐾) = ⟨((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3444 ⟨cop 4593 ‘cfv 6497 (class class class)co 7358 2nd c2nd 7921 Basecbs 17088 Hom chom 17149 Func cfunc 17745 ⟨,⟩F cprf 18064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-1st 7922 df-2nd 7923 df-map 8770 df-ixp 8839 df-func 17749 df-prf 18068 |
This theorem is referenced by: prfcl 18096 prf1st 18097 prf2nd 18098 uncf2 18131 yonedalem22 18172 |
Copyright terms: Public domain | W3C validator |