MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prf2 Structured version   Visualization version   GIF version

Theorem prf2 18158
Description: Value of the pairing functor on morphisms. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
prfval.k 𝑃 = (𝐹 ⟨,⟩F 𝐺)
prfval.b 𝐵 = (Base‘𝐶)
prfval.h 𝐻 = (Hom ‘𝐶)
prfval.c (𝜑𝐹 ∈ (𝐶 Func 𝐷))
prfval.d (𝜑𝐺 ∈ (𝐶 Func 𝐸))
prf1.x (𝜑𝑋𝐵)
prf2.y (𝜑𝑌𝐵)
prf2.k (𝜑𝐾 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
prf2 (𝜑 → ((𝑋(2nd𝑃)𝑌)‘𝐾) = ⟨((𝑋(2nd𝐹)𝑌)‘𝐾), ((𝑋(2nd𝐺)𝑌)‘𝐾)⟩)

Proof of Theorem prf2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 prfval.k . . 3 𝑃 = (𝐹 ⟨,⟩F 𝐺)
2 prfval.b . . 3 𝐵 = (Base‘𝐶)
3 prfval.h . . 3 𝐻 = (Hom ‘𝐶)
4 prfval.c . . 3 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
5 prfval.d . . 3 (𝜑𝐺 ∈ (𝐶 Func 𝐸))
6 prf1.x . . 3 (𝜑𝑋𝐵)
7 prf2.y . . 3 (𝜑𝑌𝐵)
81, 2, 3, 4, 5, 6, 7prf2fval 18157 . 2 (𝜑 → (𝑋(2nd𝑃)𝑌) = ( ∈ (𝑋𝐻𝑌) ↦ ⟨((𝑋(2nd𝐹)𝑌)‘), ((𝑋(2nd𝐺)𝑌)‘)⟩))
9 simpr 484 . . . 4 ((𝜑 = 𝐾) → = 𝐾)
109fveq2d 6886 . . 3 ((𝜑 = 𝐾) → ((𝑋(2nd𝐹)𝑌)‘) = ((𝑋(2nd𝐹)𝑌)‘𝐾))
119fveq2d 6886 . . 3 ((𝜑 = 𝐾) → ((𝑋(2nd𝐺)𝑌)‘) = ((𝑋(2nd𝐺)𝑌)‘𝐾))
1210, 11opeq12d 4874 . 2 ((𝜑 = 𝐾) → ⟨((𝑋(2nd𝐹)𝑌)‘), ((𝑋(2nd𝐺)𝑌)‘)⟩ = ⟨((𝑋(2nd𝐹)𝑌)‘𝐾), ((𝑋(2nd𝐺)𝑌)‘𝐾)⟩)
13 prf2.k . 2 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
14 opex 5455 . . 3 ⟨((𝑋(2nd𝐹)𝑌)‘𝐾), ((𝑋(2nd𝐺)𝑌)‘𝐾)⟩ ∈ V
1514a1i 11 . 2 (𝜑 → ⟨((𝑋(2nd𝐹)𝑌)‘𝐾), ((𝑋(2nd𝐺)𝑌)‘𝐾)⟩ ∈ V)
168, 12, 13, 15fvmptd 6996 1 (𝜑 → ((𝑋(2nd𝑃)𝑌)‘𝐾) = ⟨((𝑋(2nd𝐹)𝑌)‘𝐾), ((𝑋(2nd𝐺)𝑌)‘𝐾)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  Vcvv 3466  cop 4627  cfv 6534  (class class class)co 7402  2nd c2nd 7968  Basecbs 17145  Hom chom 17209   Func cfunc 17805   ⟨,⟩F cprf 18127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-1st 7969  df-2nd 7970  df-map 8819  df-ixp 8889  df-func 17809  df-prf 18131
This theorem is referenced by:  prfcl  18159  prf1st  18160  prf2nd  18161  uncf2  18194  yonedalem22  18235
  Copyright terms: Public domain W3C validator