![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prf2 | Structured version Visualization version GIF version |
Description: Value of the pairing functor on morphisms. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
prfval.k | ⊢ 𝑃 = (𝐹 〈,〉F 𝐺) |
prfval.b | ⊢ 𝐵 = (Base‘𝐶) |
prfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
prfval.c | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
prfval.d | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) |
prf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
prf2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
prf2.k | ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) |
Ref | Expression |
---|---|
prf2 | ⊢ (𝜑 → ((𝑋(2nd ‘𝑃)𝑌)‘𝐾) = 〈((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prfval.k | . . 3 ⊢ 𝑃 = (𝐹 〈,〉F 𝐺) | |
2 | prfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
3 | prfval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | prfval.c | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
5 | prfval.d | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) | |
6 | prf1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | prf2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | 1, 2, 3, 4, 5, 6, 7 | prf2fval 18270 | . 2 ⊢ (𝜑 → (𝑋(2nd ‘𝑃)𝑌) = (ℎ ∈ (𝑋𝐻𝑌) ↦ 〈((𝑋(2nd ‘𝐹)𝑌)‘ℎ), ((𝑋(2nd ‘𝐺)𝑌)‘ℎ)〉)) |
9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ ℎ = 𝐾) → ℎ = 𝐾) | |
10 | 9 | fveq2d 6924 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐾) → ((𝑋(2nd ‘𝐹)𝑌)‘ℎ) = ((𝑋(2nd ‘𝐹)𝑌)‘𝐾)) |
11 | 9 | fveq2d 6924 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐾) → ((𝑋(2nd ‘𝐺)𝑌)‘ℎ) = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)) |
12 | 10, 11 | opeq12d 4905 | . 2 ⊢ ((𝜑 ∧ ℎ = 𝐾) → 〈((𝑋(2nd ‘𝐹)𝑌)‘ℎ), ((𝑋(2nd ‘𝐺)𝑌)‘ℎ)〉 = 〈((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)〉) |
13 | prf2.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) | |
14 | opex 5484 | . . 3 ⊢ 〈((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)〉 ∈ V | |
15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → 〈((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)〉 ∈ V) |
16 | 8, 12, 13, 15 | fvmptd 7036 | 1 ⊢ (𝜑 → ((𝑋(2nd ‘𝑃)𝑌)‘𝐾) = 〈((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 ‘cfv 6573 (class class class)co 7448 2nd c2nd 8029 Basecbs 17258 Hom chom 17322 Func cfunc 17918 〈,〉F cprf 18240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-ixp 8956 df-func 17922 df-prf 18244 |
This theorem is referenced by: prfcl 18272 prf1st 18273 prf2nd 18274 uncf2 18307 yonedalem22 18348 |
Copyright terms: Public domain | W3C validator |