| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recnprss | Structured version Visualization version GIF version | ||
| Description: Both ℝ and ℂ are subsets of ℂ. (Contributed by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| recnprss | ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri 4613 | . 2 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
| 2 | ax-resscn 11125 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 3 | sseq1 3972 | . . . 4 ⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ)) | |
| 4 | 2, 3 | mpbiri 258 | . . 3 ⊢ (𝑆 = ℝ → 𝑆 ⊆ ℂ) |
| 5 | eqimss 4005 | . . 3 ⊢ (𝑆 = ℂ → 𝑆 ⊆ ℂ) | |
| 6 | 4, 5 | jaoi 857 | . 2 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 {cpr 4591 ℂcc 11066 ℝcr 11067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: dvres3 25814 dvres3a 25815 dvcnp 25820 dvnff 25825 dvnadd 25831 dvnres 25833 cpnord 25837 cpncn 25838 cpnres 25839 dvadd 25843 dvmul 25844 dvaddf 25845 dvmulf 25846 dvcmul 25847 dvcmulf 25848 dvco 25851 dvcof 25852 dvmptid 25861 dvmptc 25862 dvmptres2 25866 dvmptcmul 25868 dvmptfsum 25879 dvcnvlem 25880 dvcnv 25881 dvlip2 25900 taylfvallem1 26264 tayl0 26269 taylply2 26275 taylply2OLD 26276 taylply 26277 dvtaylp 26278 dvntaylp 26279 taylthlem1 26281 ulmdvlem1 26309 ulmdvlem3 26311 ulmdv 26312 dvsconst 44319 dvsid 44320 dvsef 44321 dvconstbi 44323 expgrowth 44324 dvdmsscn 45934 dvnmptdivc 45936 dvnmptconst 45939 dvnxpaek 45940 dvnmul 45941 dvnprodlem3 45946 |
| Copyright terms: Public domain | W3C validator |