Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > recnprss | Structured version Visualization version GIF version |
Description: Both ℝ and ℂ are subsets of ℂ. (Contributed by Mario Carneiro, 10-Feb-2015.) |
Ref | Expression |
---|---|
recnprss | ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri 4585 | . 2 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
2 | ax-resscn 10917 | . . . 4 ⊢ ℝ ⊆ ℂ | |
3 | sseq1 3947 | . . . 4 ⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ)) | |
4 | 2, 3 | mpbiri 257 | . . 3 ⊢ (𝑆 = ℝ → 𝑆 ⊆ ℂ) |
5 | eqimss 3978 | . . 3 ⊢ (𝑆 = ℂ → 𝑆 ⊆ ℂ) | |
6 | 4, 5 | jaoi 854 | . 2 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ⊆ wss 3888 {cpr 4565 ℂcc 10858 ℝcr 10859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-resscn 10917 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3433 df-un 3893 df-in 3895 df-ss 3905 df-sn 4564 df-pr 4566 |
This theorem is referenced by: dvres3 25066 dvres3a 25067 dvcnp 25072 dvnff 25076 dvnadd 25082 dvnres 25084 cpnord 25088 cpncn 25089 cpnres 25090 dvadd 25093 dvmul 25094 dvaddf 25095 dvmulf 25096 dvcmul 25097 dvcmulf 25098 dvco 25100 dvcof 25101 dvmptid 25110 dvmptc 25111 dvmptres2 25115 dvmptcmul 25117 dvmptfsum 25128 dvcnvlem 25129 dvcnv 25130 dvlip2 25148 taylfvallem1 25505 tayl0 25510 taylply2 25516 taylply 25517 dvtaylp 25518 dvntaylp 25519 taylthlem1 25521 ulmdvlem1 25548 ulmdvlem3 25550 ulmdv 25551 dvsconst 41908 dvsid 41909 dvsef 41910 dvconstbi 41912 expgrowth 41913 dvdmsscn 43437 dvnmptdivc 43439 dvnmptconst 43442 dvnxpaek 43443 dvnmul 43444 dvnprodlem3 43449 |
Copyright terms: Public domain | W3C validator |