| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recnprss | Structured version Visualization version GIF version | ||
| Description: Both ℝ and ℂ are subsets of ℂ. (Contributed by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| recnprss | ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri 4625 | . 2 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
| 2 | ax-resscn 11186 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 3 | sseq1 3984 | . . . 4 ⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ)) | |
| 4 | 2, 3 | mpbiri 258 | . . 3 ⊢ (𝑆 = ℝ → 𝑆 ⊆ ℂ) |
| 5 | eqimss 4017 | . . 3 ⊢ (𝑆 = ℂ → 𝑆 ⊆ ℂ) | |
| 6 | 4, 5 | jaoi 857 | . 2 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 {cpr 4603 ℂcc 11127 ℝcr 11128 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-ss 3943 df-sn 4602 df-pr 4604 |
| This theorem is referenced by: dvres3 25866 dvres3a 25867 dvcnp 25872 dvnff 25877 dvnadd 25883 dvnres 25885 cpnord 25889 cpncn 25890 cpnres 25891 dvadd 25895 dvmul 25896 dvaddf 25897 dvmulf 25898 dvcmul 25899 dvcmulf 25900 dvco 25903 dvcof 25904 dvmptid 25913 dvmptc 25914 dvmptres2 25918 dvmptcmul 25920 dvmptfsum 25931 dvcnvlem 25932 dvcnv 25933 dvlip2 25952 taylfvallem1 26316 tayl0 26321 taylply2 26327 taylply2OLD 26328 taylply 26329 dvtaylp 26330 dvntaylp 26331 taylthlem1 26333 ulmdvlem1 26361 ulmdvlem3 26363 ulmdv 26364 dvsconst 44354 dvsid 44355 dvsef 44356 dvconstbi 44358 expgrowth 44359 dvdmsscn 45965 dvnmptdivc 45967 dvnmptconst 45970 dvnxpaek 45971 dvnmul 45972 dvnprodlem3 45977 |
| Copyright terms: Public domain | W3C validator |