![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > recnprss | Structured version Visualization version GIF version |
Description: Both ℝ and ℂ are subsets of ℂ. (Contributed by Mario Carneiro, 10-Feb-2015.) |
Ref | Expression |
---|---|
recnprss | ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri 4653 | . 2 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
2 | ax-resscn 11209 | . . . 4 ⊢ ℝ ⊆ ℂ | |
3 | sseq1 4020 | . . . 4 ⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ)) | |
4 | 2, 3 | mpbiri 258 | . . 3 ⊢ (𝑆 = ℝ → 𝑆 ⊆ ℂ) |
5 | eqimss 4053 | . . 3 ⊢ (𝑆 = ℂ → 𝑆 ⊆ ℂ) | |
6 | 4, 5 | jaoi 857 | . 2 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 847 = wceq 1536 ∈ wcel 2105 ⊆ wss 3962 {cpr 4632 ℂcc 11150 ℝcr 11151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-resscn 11209 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-un 3967 df-ss 3979 df-sn 4631 df-pr 4633 |
This theorem is referenced by: dvres3 25962 dvres3a 25963 dvcnp 25968 dvnff 25973 dvnadd 25979 dvnres 25981 cpnord 25985 cpncn 25986 cpnres 25987 dvadd 25991 dvmul 25992 dvaddf 25993 dvmulf 25994 dvcmul 25995 dvcmulf 25996 dvco 25999 dvcof 26000 dvmptid 26009 dvmptc 26010 dvmptres2 26014 dvmptcmul 26016 dvmptfsum 26027 dvcnvlem 26028 dvcnv 26029 dvlip2 26048 taylfvallem1 26412 tayl0 26417 taylply2 26423 taylply2OLD 26424 taylply 26425 dvtaylp 26426 dvntaylp 26427 taylthlem1 26429 ulmdvlem1 26457 ulmdvlem3 26459 ulmdv 26460 dvsconst 44325 dvsid 44326 dvsef 44327 dvconstbi 44329 expgrowth 44330 dvdmsscn 45891 dvnmptdivc 45893 dvnmptconst 45896 dvnxpaek 45897 dvnmul 45898 dvnprodlem3 45903 |
Copyright terms: Public domain | W3C validator |