| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recnprss | Structured version Visualization version GIF version | ||
| Description: Both ℝ and ℂ are subsets of ℂ. (Contributed by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| recnprss | ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri 4603 | . 2 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
| 2 | ax-resscn 11085 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 3 | sseq1 3963 | . . . 4 ⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ)) | |
| 4 | 2, 3 | mpbiri 258 | . . 3 ⊢ (𝑆 = ℝ → 𝑆 ⊆ ℂ) |
| 5 | eqimss 3996 | . . 3 ⊢ (𝑆 = ℂ → 𝑆 ⊆ ℂ) | |
| 6 | 4, 5 | jaoi 857 | . 2 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 {cpr 4581 ℂcc 11026 ℝcr 11027 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-ss 3922 df-sn 4580 df-pr 4582 |
| This theorem is referenced by: dvres3 25830 dvres3a 25831 dvcnp 25836 dvnff 25841 dvnadd 25847 dvnres 25849 cpnord 25853 cpncn 25854 cpnres 25855 dvadd 25859 dvmul 25860 dvaddf 25861 dvmulf 25862 dvcmul 25863 dvcmulf 25864 dvco 25867 dvcof 25868 dvmptid 25877 dvmptc 25878 dvmptres2 25882 dvmptcmul 25884 dvmptfsum 25895 dvcnvlem 25896 dvcnv 25897 dvlip2 25916 taylfvallem1 26280 tayl0 26285 taylply2 26291 taylply2OLD 26292 taylply 26293 dvtaylp 26294 dvntaylp 26295 taylthlem1 26297 ulmdvlem1 26325 ulmdvlem3 26327 ulmdv 26328 dvsconst 44303 dvsid 44304 dvsef 44305 dvconstbi 44307 expgrowth 44308 dvdmsscn 45918 dvnmptdivc 45920 dvnmptconst 45923 dvnxpaek 45924 dvnmul 45925 dvnprodlem3 45930 |
| Copyright terms: Public domain | W3C validator |