Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > recnprss | Structured version Visualization version GIF version |
Description: Both ℝ and ℂ are subsets of ℂ. (Contributed by Mario Carneiro, 10-Feb-2015.) |
Ref | Expression |
---|---|
recnprss | ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri 4580 | . 2 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
2 | ax-resscn 10859 | . . . 4 ⊢ ℝ ⊆ ℂ | |
3 | sseq1 3942 | . . . 4 ⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ)) | |
4 | 2, 3 | mpbiri 257 | . . 3 ⊢ (𝑆 = ℝ → 𝑆 ⊆ ℂ) |
5 | eqimss 3973 | . . 3 ⊢ (𝑆 = ℂ → 𝑆 ⊆ ℂ) | |
6 | 4, 5 | jaoi 853 | . 2 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 {cpr 4560 ℂcc 10800 ℝcr 10801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-sn 4559 df-pr 4561 |
This theorem is referenced by: dvres3 24982 dvres3a 24983 dvcnp 24988 dvnff 24992 dvnadd 24998 dvnres 25000 cpnord 25004 cpncn 25005 cpnres 25006 dvadd 25009 dvmul 25010 dvaddf 25011 dvmulf 25012 dvcmul 25013 dvcmulf 25014 dvco 25016 dvcof 25017 dvmptid 25026 dvmptc 25027 dvmptres2 25031 dvmptcmul 25033 dvmptfsum 25044 dvcnvlem 25045 dvcnv 25046 dvlip2 25064 taylfvallem1 25421 tayl0 25426 taylply2 25432 taylply 25433 dvtaylp 25434 dvntaylp 25435 taylthlem1 25437 ulmdvlem1 25464 ulmdvlem3 25466 ulmdv 25467 dvsconst 41837 dvsid 41838 dvsef 41839 dvconstbi 41841 expgrowth 41842 dvdmsscn 43367 dvnmptdivc 43369 dvnmptconst 43372 dvnxpaek 43373 dvnmul 43374 dvnprodlem3 43379 |
Copyright terms: Public domain | W3C validator |