| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recnprss | Structured version Visualization version GIF version | ||
| Description: Both ℝ and ℂ are subsets of ℂ. (Contributed by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| recnprss | ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri 4600 | . 2 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
| 2 | ax-resscn 11060 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 3 | sseq1 3960 | . . . 4 ⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ)) | |
| 4 | 2, 3 | mpbiri 258 | . . 3 ⊢ (𝑆 = ℝ → 𝑆 ⊆ ℂ) |
| 5 | eqimss 3993 | . . 3 ⊢ (𝑆 = ℂ → 𝑆 ⊆ ℂ) | |
| 6 | 4, 5 | jaoi 857 | . 2 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 {cpr 4578 ℂcc 11001 ℝcr 11002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-resscn 11060 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-ss 3919 df-sn 4577 df-pr 4579 |
| This theorem is referenced by: dvres3 25839 dvres3a 25840 dvcnp 25845 dvnff 25850 dvnadd 25856 dvnres 25858 cpnord 25862 cpncn 25863 cpnres 25864 dvadd 25868 dvmul 25869 dvaddf 25870 dvmulf 25871 dvcmul 25872 dvcmulf 25873 dvco 25876 dvcof 25877 dvmptid 25886 dvmptc 25887 dvmptres2 25891 dvmptcmul 25893 dvmptfsum 25904 dvcnvlem 25905 dvcnv 25906 dvlip2 25925 taylfvallem1 26289 tayl0 26294 taylply2 26300 taylply2OLD 26301 taylply 26302 dvtaylp 26303 dvntaylp 26304 taylthlem1 26306 ulmdvlem1 26334 ulmdvlem3 26336 ulmdv 26337 dvsconst 44362 dvsid 44363 dvsef 44364 dvconstbi 44366 expgrowth 44367 dvdmsscn 45973 dvnmptdivc 45975 dvnmptconst 45978 dvnxpaek 45979 dvnmul 45980 dvnprodlem3 45985 |
| Copyright terms: Public domain | W3C validator |