Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > recnprss | Structured version Visualization version GIF version |
Description: Both ℝ and ℂ are subsets of ℂ. (Contributed by Mario Carneiro, 10-Feb-2015.) |
Ref | Expression |
---|---|
recnprss | ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri 4583 | . 2 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
2 | ax-resscn 10928 | . . . 4 ⊢ ℝ ⊆ ℂ | |
3 | sseq1 3946 | . . . 4 ⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ)) | |
4 | 2, 3 | mpbiri 257 | . . 3 ⊢ (𝑆 = ℝ → 𝑆 ⊆ ℂ) |
5 | eqimss 3977 | . . 3 ⊢ (𝑆 = ℂ → 𝑆 ⊆ ℂ) | |
6 | 4, 5 | jaoi 854 | . 2 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 {cpr 4563 ℂcc 10869 ℝcr 10870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-sn 4562 df-pr 4564 |
This theorem is referenced by: dvres3 25077 dvres3a 25078 dvcnp 25083 dvnff 25087 dvnadd 25093 dvnres 25095 cpnord 25099 cpncn 25100 cpnres 25101 dvadd 25104 dvmul 25105 dvaddf 25106 dvmulf 25107 dvcmul 25108 dvcmulf 25109 dvco 25111 dvcof 25112 dvmptid 25121 dvmptc 25122 dvmptres2 25126 dvmptcmul 25128 dvmptfsum 25139 dvcnvlem 25140 dvcnv 25141 dvlip2 25159 taylfvallem1 25516 tayl0 25521 taylply2 25527 taylply 25528 dvtaylp 25529 dvntaylp 25530 taylthlem1 25532 ulmdvlem1 25559 ulmdvlem3 25561 ulmdv 25562 dvsconst 41948 dvsid 41949 dvsef 41950 dvconstbi 41952 expgrowth 41953 dvdmsscn 43477 dvnmptdivc 43479 dvnmptconst 43482 dvnxpaek 43483 dvnmul 43484 dvnprodlem3 43489 |
Copyright terms: Public domain | W3C validator |