![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > recnprss | Structured version Visualization version GIF version |
Description: Both ℝ and ℂ are subsets of ℂ. (Contributed by Mario Carneiro, 10-Feb-2015.) |
Ref | Expression |
---|---|
recnprss | ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri 4671 | . 2 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
2 | ax-resscn 11241 | . . . 4 ⊢ ℝ ⊆ ℂ | |
3 | sseq1 4034 | . . . 4 ⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ)) | |
4 | 2, 3 | mpbiri 258 | . . 3 ⊢ (𝑆 = ℝ → 𝑆 ⊆ ℂ) |
5 | eqimss 4067 | . . 3 ⊢ (𝑆 = ℂ → 𝑆 ⊆ ℂ) | |
6 | 4, 5 | jaoi 856 | . 2 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 {cpr 4650 ℂcc 11182 ℝcr 11183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-sn 4649 df-pr 4651 |
This theorem is referenced by: dvres3 25968 dvres3a 25969 dvcnp 25974 dvnff 25979 dvnadd 25985 dvnres 25987 cpnord 25991 cpncn 25992 cpnres 25993 dvadd 25997 dvmul 25998 dvaddf 25999 dvmulf 26000 dvcmul 26001 dvcmulf 26002 dvco 26005 dvcof 26006 dvmptid 26015 dvmptc 26016 dvmptres2 26020 dvmptcmul 26022 dvmptfsum 26033 dvcnvlem 26034 dvcnv 26035 dvlip2 26054 taylfvallem1 26416 tayl0 26421 taylply2 26427 taylply2OLD 26428 taylply 26429 dvtaylp 26430 dvntaylp 26431 taylthlem1 26433 ulmdvlem1 26461 ulmdvlem3 26463 ulmdv 26464 dvsconst 44299 dvsid 44300 dvsef 44301 dvconstbi 44303 expgrowth 44304 dvdmsscn 45857 dvnmptdivc 45859 dvnmptconst 45862 dvnxpaek 45863 dvnmul 45864 dvnprodlem3 45869 |
Copyright terms: Public domain | W3C validator |