| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recnprss | Structured version Visualization version GIF version | ||
| Description: Both ℝ and ℂ are subsets of ℂ. (Contributed by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| recnprss | ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri 4599 | . 2 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
| 2 | ax-resscn 11070 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 3 | sseq1 3956 | . . . 4 ⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ)) | |
| 4 | 2, 3 | mpbiri 258 | . . 3 ⊢ (𝑆 = ℝ → 𝑆 ⊆ ℂ) |
| 5 | eqimss 3989 | . . 3 ⊢ (𝑆 = ℂ → 𝑆 ⊆ ℂ) | |
| 6 | 4, 5 | jaoi 857 | . 2 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 {cpr 4577 ℂcc 11011 ℝcr 11012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-resscn 11070 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-ss 3915 df-sn 4576 df-pr 4578 |
| This theorem is referenced by: dvres3 25842 dvres3a 25843 dvcnp 25848 dvnff 25853 dvnadd 25859 dvnres 25861 cpnord 25865 cpncn 25866 cpnres 25867 dvadd 25871 dvmul 25872 dvaddf 25873 dvmulf 25874 dvcmul 25875 dvcmulf 25876 dvco 25879 dvcof 25880 dvmptid 25889 dvmptc 25890 dvmptres2 25894 dvmptcmul 25896 dvmptfsum 25907 dvcnvlem 25908 dvcnv 25909 dvlip2 25928 taylfvallem1 26292 tayl0 26297 taylply2 26303 taylply2OLD 26304 taylply 26305 dvtaylp 26306 dvntaylp 26307 taylthlem1 26309 ulmdvlem1 26337 ulmdvlem3 26339 ulmdv 26340 dvsconst 44447 dvsid 44448 dvsef 44449 dvconstbi 44451 expgrowth 44452 dvdmsscn 46058 dvnmptdivc 46060 dvnmptconst 46063 dvnxpaek 46064 dvnmul 46065 dvnprodlem3 46070 |
| Copyright terms: Public domain | W3C validator |