| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recnprss | Structured version Visualization version GIF version | ||
| Description: Both ℝ and ℂ are subsets of ℂ. (Contributed by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| recnprss | ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri 4616 | . 2 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
| 2 | ax-resscn 11132 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 3 | sseq1 3975 | . . . 4 ⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ)) | |
| 4 | 2, 3 | mpbiri 258 | . . 3 ⊢ (𝑆 = ℝ → 𝑆 ⊆ ℂ) |
| 5 | eqimss 4008 | . . 3 ⊢ (𝑆 = ℂ → 𝑆 ⊆ ℂ) | |
| 6 | 4, 5 | jaoi 857 | . 2 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 {cpr 4594 ℂcc 11073 ℝcr 11074 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 df-sn 4593 df-pr 4595 |
| This theorem is referenced by: dvres3 25821 dvres3a 25822 dvcnp 25827 dvnff 25832 dvnadd 25838 dvnres 25840 cpnord 25844 cpncn 25845 cpnres 25846 dvadd 25850 dvmul 25851 dvaddf 25852 dvmulf 25853 dvcmul 25854 dvcmulf 25855 dvco 25858 dvcof 25859 dvmptid 25868 dvmptc 25869 dvmptres2 25873 dvmptcmul 25875 dvmptfsum 25886 dvcnvlem 25887 dvcnv 25888 dvlip2 25907 taylfvallem1 26271 tayl0 26276 taylply2 26282 taylply2OLD 26283 taylply 26284 dvtaylp 26285 dvntaylp 26286 taylthlem1 26288 ulmdvlem1 26316 ulmdvlem3 26318 ulmdv 26319 dvsconst 44326 dvsid 44327 dvsef 44328 dvconstbi 44330 expgrowth 44331 dvdmsscn 45941 dvnmptdivc 45943 dvnmptconst 45946 dvnxpaek 45947 dvnmul 45948 dvnprodlem3 45953 |
| Copyright terms: Public domain | W3C validator |