MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvntaylp Structured version   Visualization version   GIF version

Theorem dvntaylp 26279
Description: The 𝑀-th derivative of the Taylor polynomial is the Taylor polynomial of the 𝑀-th derivative of the function. (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
dvntaylp.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvntaylp.f (𝜑𝐹:𝐴⟶ℂ)
dvntaylp.a (𝜑𝐴𝑆)
dvntaylp.m (𝜑𝑀 ∈ ℕ0)
dvntaylp.n (𝜑𝑁 ∈ ℕ0)
dvntaylp.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
Assertion
Ref Expression
dvntaylp (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = (𝑁(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))

Proof of Theorem dvntaylp
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvntaylp.m . . . . 5 (𝜑𝑀 ∈ ℕ0)
2 nn0uz 12835 . . . . 5 0 = (ℤ‘0)
31, 2eleqtrdi 2838 . . . 4 (𝜑𝑀 ∈ (ℤ‘0))
4 eluzfz2b 13494 . . . 4 (𝑀 ∈ (ℤ‘0) ↔ 𝑀 ∈ (0...𝑀))
53, 4sylib 218 . . 3 (𝜑𝑀 ∈ (0...𝑀))
6 fveq2 6858 . . . . . 6 (𝑚 = 0 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0))
7 fveq2 6858 . . . . . . . 8 (𝑚 = 0 → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘0))
87oveq2d 7403 . . . . . . 7 (𝑚 = 0 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0)))
9 oveq2 7395 . . . . . . . 8 (𝑚 = 0 → (𝑀𝑚) = (𝑀 − 0))
109oveq2d 7403 . . . . . . 7 (𝑚 = 0 → (𝑁 + (𝑀𝑚)) = (𝑁 + (𝑀 − 0)))
11 eqidd 2730 . . . . . . 7 (𝑚 = 0 → 𝐵 = 𝐵)
128, 10, 11oveq123d 7408 . . . . . 6 (𝑚 = 0 → ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵))
136, 12eqeq12d 2745 . . . . 5 (𝑚 = 0 → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵)))
1413imbi2d 340 . . . 4 (𝑚 = 0 → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵))))
15 fveq2 6858 . . . . . 6 (𝑚 = 𝑛 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛))
16 fveq2 6858 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘𝑛))
1716oveq2d 7403 . . . . . . 7 (𝑚 = 𝑛 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛)))
18 oveq2 7395 . . . . . . . 8 (𝑚 = 𝑛 → (𝑀𝑚) = (𝑀𝑛))
1918oveq2d 7403 . . . . . . 7 (𝑚 = 𝑛 → (𝑁 + (𝑀𝑚)) = (𝑁 + (𝑀𝑛)))
20 eqidd 2730 . . . . . . 7 (𝑚 = 𝑛𝐵 = 𝐵)
2117, 19, 20oveq123d 7408 . . . . . 6 (𝑚 = 𝑛 → ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))
2215, 21eqeq12d 2745 . . . . 5 (𝑚 = 𝑛 → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)))
2322imbi2d 340 . . . 4 (𝑚 = 𝑛 → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))))
24 fveq2 6858 . . . . . 6 (𝑚 = (𝑛 + 1) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)))
25 fveq2 6858 . . . . . . . 8 (𝑚 = (𝑛 + 1) → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))
2625oveq2d 7403 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1))))
27 oveq2 7395 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (𝑀𝑚) = (𝑀 − (𝑛 + 1)))
2827oveq2d 7403 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑁 + (𝑀𝑚)) = (𝑁 + (𝑀 − (𝑛 + 1))))
29 eqidd 2730 . . . . . . 7 (𝑚 = (𝑛 + 1) → 𝐵 = 𝐵)
3026, 28, 29oveq123d 7408 . . . . . 6 (𝑚 = (𝑛 + 1) → ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))
3124, 30eqeq12d 2745 . . . . 5 (𝑚 = (𝑛 + 1) → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵)))
3231imbi2d 340 . . . 4 (𝑚 = (𝑛 + 1) → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))))
33 fveq2 6858 . . . . . 6 (𝑚 = 𝑀 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀))
34 fveq2 6858 . . . . . . . 8 (𝑚 = 𝑀 → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘𝑀))
3534oveq2d 7403 . . . . . . 7 (𝑚 = 𝑀 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀)))
36 oveq2 7395 . . . . . . . 8 (𝑚 = 𝑀 → (𝑀𝑚) = (𝑀𝑀))
3736oveq2d 7403 . . . . . . 7 (𝑚 = 𝑀 → (𝑁 + (𝑀𝑚)) = (𝑁 + (𝑀𝑀)))
38 eqidd 2730 . . . . . . 7 (𝑚 = 𝑀𝐵 = 𝐵)
3935, 37, 38oveq123d 7408 . . . . . 6 (𝑚 = 𝑀 → ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
4033, 39eqeq12d 2745 . . . . 5 (𝑚 = 𝑀 → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)))
4140imbi2d 340 . . . 4 (𝑚 = 𝑀 → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))))
42 ssidd 3970 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
43 mapsspm 8849 . . . . . . . 8 (ℂ ↑m ℂ) ⊆ (ℂ ↑pm ℂ)
44 dvntaylp.s . . . . . . . . . 10 (𝜑𝑆 ∈ {ℝ, ℂ})
45 dvntaylp.f . . . . . . . . . 10 (𝜑𝐹:𝐴⟶ℂ)
46 dvntaylp.a . . . . . . . . . 10 (𝜑𝐴𝑆)
47 dvntaylp.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
4847, 1nn0addcld 12507 . . . . . . . . . 10 (𝜑 → (𝑁 + 𝑀) ∈ ℕ0)
49 dvntaylp.b . . . . . . . . . 10 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
50 eqid 2729 . . . . . . . . . 10 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵)
5144, 45, 46, 48, 49, 50taylpf 26273 . . . . . . . . 9 (𝜑 → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵):ℂ⟶ℂ)
52 cnex 11149 . . . . . . . . . 10 ℂ ∈ V
5352, 52elmap 8844 . . . . . . . . 9 (((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑m ℂ) ↔ ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵):ℂ⟶ℂ)
5451, 53sylibr 234 . . . . . . . 8 (𝜑 → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑m ℂ))
5543, 54sselid 3944 . . . . . . 7 (𝜑 → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm ℂ))
56 dvn0 25826 . . . . . . 7 ((ℂ ⊆ ℂ ∧ ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm ℂ)) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))
5742, 55, 56syl2anc 584 . . . . . 6 (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))
58 recnprss 25805 . . . . . . . . . 10 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
5944, 58syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
6052a1i 11 . . . . . . . . . 10 (𝜑 → ℂ ∈ V)
61 elpm2r 8818 . . . . . . . . . 10 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
6260, 44, 45, 46, 61syl22anc 838 . . . . . . . . 9 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
63 dvn0 25826 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
6459, 62, 63syl2anc 584 . . . . . . . 8 (𝜑 → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
6564oveq2d 7403 . . . . . . 7 (𝜑 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0)) = (𝑆 Tayl 𝐹))
661nn0cnd 12505 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
6766subid1d 11522 . . . . . . . 8 (𝜑 → (𝑀 − 0) = 𝑀)
6867oveq2d 7403 . . . . . . 7 (𝜑 → (𝑁 + (𝑀 − 0)) = (𝑁 + 𝑀))
69 eqidd 2730 . . . . . . 7 (𝜑𝐵 = 𝐵)
7065, 68, 69oveq123d 7408 . . . . . 6 (𝜑 → ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))
7157, 70eqtr4d 2767 . . . . 5 (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵))
7271a1i 11 . . . 4 (𝑀 ∈ (ℤ‘0) → (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵)))
73 oveq2 7395 . . . . . . 7 (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) → (ℂ D ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛)) = (ℂ D ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)))
74 ssidd 3970 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → ℂ ⊆ ℂ)
7555adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm ℂ))
76 elfzouz 13624 . . . . . . . . . . 11 (𝑛 ∈ (0..^𝑀) → 𝑛 ∈ (ℤ‘0))
7776adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑛 ∈ (ℤ‘0))
7877, 2eleqtrrdi 2839 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑛 ∈ ℕ0)
79 dvnp1 25827 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm ℂ) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = (ℂ D ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛)))
8074, 75, 78, 79syl3anc 1373 . . . . . . . 8 ((𝜑𝑛 ∈ (0..^𝑀)) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = (ℂ D ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛)))
8144adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑆 ∈ {ℝ, ℂ})
8262adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
83 dvnf 25829 . . . . . . . . . . 11 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑛):dom ((𝑆 D𝑛 𝐹)‘𝑛)⟶ℂ)
8481, 82, 78, 83syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 𝐹)‘𝑛):dom ((𝑆 D𝑛 𝐹)‘𝑛)⟶ℂ)
85 dvnbss 25830 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑛 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹)
8681, 82, 78, 85syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹)
8745fdmd 6698 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 = 𝐴)
8887adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → dom 𝐹 = 𝐴)
8986, 88sseqtrd 3983 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ 𝐴)
9046adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝐴𝑆)
9189, 90sstrd 3957 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ 𝑆)
9247adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑁 ∈ ℕ0)
93 fzofzp1 13725 . . . . . . . . . . . . 13 (𝑛 ∈ (0..^𝑀) → (𝑛 + 1) ∈ (0...𝑀))
9493adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑛 + 1) ∈ (0...𝑀))
95 fznn0sub 13517 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ (0...𝑀) → (𝑀 − (𝑛 + 1)) ∈ ℕ0)
9694, 95syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑀 − (𝑛 + 1)) ∈ ℕ0)
9792, 96nn0addcld 12507 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑀 − (𝑛 + 1))) ∈ ℕ0)
9849adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
99 elfzofz 13636 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0..^𝑀) → 𝑛 ∈ (0...𝑀))
10099adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑛 ∈ (0...𝑀))
101 fznn0sub 13517 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (0...𝑀) → (𝑀𝑛) ∈ ℕ0)
102100, 101syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑀𝑛) ∈ ℕ0)
10392, 102nn0addcld 12507 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑀𝑛)) ∈ ℕ0)
104 dvnadd 25831 . . . . . . . . . . . . . 14 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑛 ∈ ℕ0 ∧ (𝑁 + (𝑀𝑛)) ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘(𝑁 + (𝑀𝑛))) = ((𝑆 D𝑛 𝐹)‘(𝑛 + (𝑁 + (𝑀𝑛)))))
10581, 82, 78, 103, 104syl22anc 838 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘(𝑁 + (𝑀𝑛))) = ((𝑆 D𝑛 𝐹)‘(𝑛 + (𝑁 + (𝑀𝑛)))))
10647nn0cnd 12505 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℂ)
107106adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑁 ∈ ℂ)
10896nn0cnd 12505 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑀 − (𝑛 + 1)) ∈ ℂ)
109 1cnd 11169 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → 1 ∈ ℂ)
110107, 108, 109addassd 11196 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1))) + 1) = (𝑁 + ((𝑀 − (𝑛 + 1)) + 1)))
11166adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑀 ∈ ℂ)
11278nn0cnd 12505 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑛 ∈ ℂ)
113111, 112, 109nppcan2d 11559 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑀 − (𝑛 + 1)) + 1) = (𝑀𝑛))
114113oveq2d 7403 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + ((𝑀 − (𝑛 + 1)) + 1)) = (𝑁 + (𝑀𝑛)))
115110, 114eqtrd 2764 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1))) + 1) = (𝑁 + (𝑀𝑛)))
116115fveq2d 6862 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1)) = ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘(𝑁 + (𝑀𝑛))))
117112, 111pncan3d 11536 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑛 + (𝑀𝑛)) = 𝑀)
118117oveq2d 7403 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑛 + (𝑀𝑛))) = (𝑁 + 𝑀))
119111, 112subcld 11533 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑀𝑛) ∈ ℂ)
120107, 112, 119add12d 11401 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑛 + (𝑀𝑛))) = (𝑛 + (𝑁 + (𝑀𝑛))))
121118, 120eqtr3d 2766 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + 𝑀) = (𝑛 + (𝑁 + (𝑀𝑛))))
122121fveq2d 6862 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑛 + (𝑁 + (𝑀𝑛)))))
123105, 116, 1223eqtr4d 2774 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
124123dmeqd 5869 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1)) = dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
12598, 124eleqtrrd 2831 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1)))
12681, 84, 91, 97, 125dvtaylp 26278 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → (ℂ D (((𝑁 + (𝑀 − (𝑛 + 1))) + 1)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛)))𝐵))
127115oveq1d 7402 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → (((𝑁 + (𝑀 − (𝑛 + 1))) + 1)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))
128127oveq2d 7403 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → (ℂ D (((𝑁 + (𝑀 − (𝑛 + 1))) + 1)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)) = (ℂ D ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)))
12959adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑆 ⊆ ℂ)
130 dvnp1 25827 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛)))
131129, 82, 78, 130syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛)))
132131oveq2d 7403 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1))) = (𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛))))
133132eqcomd 2735 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛))) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1))))
134133oveqd 7404 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛)))𝐵) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))
135126, 128, 1343eqtr3rd 2773 . . . . . . . 8 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵) = (ℂ D ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)))
13680, 135eqeq12d 2745 . . . . . . 7 ((𝜑𝑛 ∈ (0..^𝑀)) → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵) ↔ (ℂ D ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛)) = (ℂ D ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))))
13773, 136imbitrrid 246 . . . . . 6 ((𝜑𝑛 ∈ (0..^𝑀)) → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵)))
138137expcom 413 . . . . 5 (𝑛 ∈ (0..^𝑀) → (𝜑 → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))))
139138a2d 29 . . . 4 (𝑛 ∈ (0..^𝑀) → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)) → (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))))
14014, 23, 32, 41, 72, 139fzind2 13746 . . 3 (𝑀 ∈ (0...𝑀) → (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)))
1415, 140mpcom 38 . 2 (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
14266subidd 11521 . . . . 5 (𝜑 → (𝑀𝑀) = 0)
143142oveq2d 7403 . . . 4 (𝜑 → (𝑁 + (𝑀𝑀)) = (𝑁 + 0))
144106addridd 11374 . . . 4 (𝜑 → (𝑁 + 0) = 𝑁)
145143, 144eqtrd 2764 . . 3 (𝜑 → (𝑁 + (𝑀𝑀)) = 𝑁)
146145oveq1d 7402 . 2 (𝜑 → ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) = (𝑁(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
147141, 146eqtrd 2764 1 (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = (𝑁(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  {cpr 4591  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  pm cpm 8800  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  cmin 11405  0cn0 12442  cuz 12793  ...cfz 13468  ..^cfzo 13615   D cdv 25764   D𝑛 cdvn 25765   Tayl ctayl 26260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-fac 14239  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-ur 20091  df-ring 20144  df-cring 20145  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-tsms 24014  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-dvn 25769  df-tayl 26262
This theorem is referenced by:  dvntaylp0  26280  taylthlem1  26281
  Copyright terms: Public domain W3C validator