Step | Hyp | Ref
| Expression |
1 | | dvntaylp.m |
. . . . 5
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
2 | | nn0uz 12549 |
. . . . 5
⊢
ℕ0 = (ℤ≥‘0) |
3 | 1, 2 | eleqtrdi 2849 |
. . . 4
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
4 | | eluzfz2b 13194 |
. . . 4
⊢ (𝑀 ∈
(ℤ≥‘0) ↔ 𝑀 ∈ (0...𝑀)) |
5 | 3, 4 | sylib 217 |
. . 3
⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
6 | | fveq2 6756 |
. . . . . 6
⊢ (𝑚 = 0 → ((ℂ
D𝑛 ((𝑁 +
𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0)) |
7 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑚 = 0 → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘0)) |
8 | 7 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑚 = 0 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))) |
9 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑚 = 0 → (𝑀 − 𝑚) = (𝑀 − 0)) |
10 | 9 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑚 = 0 → (𝑁 + (𝑀 − 𝑚)) = (𝑁 + (𝑀 − 0))) |
11 | | eqidd 2739 |
. . . . . . 7
⊢ (𝑚 = 0 → 𝐵 = 𝐵) |
12 | 8, 10, 11 | oveq123d 7276 |
. . . . . 6
⊢ (𝑚 = 0 → ((𝑁 + (𝑀 − 𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵)) |
13 | 6, 12 | eqeq12d 2754 |
. . . . 5
⊢ (𝑚 = 0 → (((ℂ
D𝑛 ((𝑁 +
𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀 − 𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵))) |
14 | 13 | imbi2d 340 |
. . . 4
⊢ (𝑚 = 0 → ((𝜑 → ((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀 − 𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵)))) |
15 | | fveq2 6756 |
. . . . . 6
⊢ (𝑚 = 𝑛 → ((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛)) |
16 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘𝑛)) |
17 | 16 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))) |
18 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (𝑀 − 𝑚) = (𝑀 − 𝑛)) |
19 | 18 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → (𝑁 + (𝑀 − 𝑚)) = (𝑁 + (𝑀 − 𝑛))) |
20 | | eqidd 2739 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → 𝐵 = 𝐵) |
21 | 17, 19, 20 | oveq123d 7276 |
. . . . . 6
⊢ (𝑚 = 𝑛 → ((𝑁 + (𝑀 − 𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀 − 𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)) |
22 | 15, 21 | eqeq12d 2754 |
. . . . 5
⊢ (𝑚 = 𝑛 → (((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀 − 𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀 − 𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))) |
23 | 22 | imbi2d 340 |
. . . 4
⊢ (𝑚 = 𝑛 → ((𝜑 → ((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀 − 𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀 − 𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)))) |
24 | | fveq2 6756 |
. . . . . 6
⊢ (𝑚 = (𝑛 + 1) → ((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1))) |
25 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑚 = (𝑛 + 1) → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘(𝑛 + 1))) |
26 | 25 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑚 = (𝑛 + 1) → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))) |
27 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑚 = (𝑛 + 1) → (𝑀 − 𝑚) = (𝑀 − (𝑛 + 1))) |
28 | 27 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑚 = (𝑛 + 1) → (𝑁 + (𝑀 − 𝑚)) = (𝑁 + (𝑀 − (𝑛 + 1)))) |
29 | | eqidd 2739 |
. . . . . . 7
⊢ (𝑚 = (𝑛 + 1) → 𝐵 = 𝐵) |
30 | 26, 28, 29 | oveq123d 7276 |
. . . . . 6
⊢ (𝑚 = (𝑛 + 1) → ((𝑁 + (𝑀 − 𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵)) |
31 | 24, 30 | eqeq12d 2754 |
. . . . 5
⊢ (𝑚 = (𝑛 + 1) → (((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀 − 𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))) |
32 | 31 | imbi2d 340 |
. . . 4
⊢ (𝑚 = (𝑛 + 1) → ((𝜑 → ((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀 − 𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵)))) |
33 | | fveq2 6756 |
. . . . . 6
⊢ (𝑚 = 𝑀 → ((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀)) |
34 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑚 = 𝑀 → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘𝑀)) |
35 | 34 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑚 = 𝑀 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))) |
36 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑚 = 𝑀 → (𝑀 − 𝑚) = (𝑀 − 𝑀)) |
37 | 36 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑚 = 𝑀 → (𝑁 + (𝑀 − 𝑚)) = (𝑁 + (𝑀 − 𝑀))) |
38 | | eqidd 2739 |
. . . . . . 7
⊢ (𝑚 = 𝑀 → 𝐵 = 𝐵) |
39 | 35, 37, 38 | oveq123d 7276 |
. . . . . 6
⊢ (𝑚 = 𝑀 → ((𝑁 + (𝑀 − 𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀 − 𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)) |
40 | 33, 39 | eqeq12d 2754 |
. . . . 5
⊢ (𝑚 = 𝑀 → (((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀 − 𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀 − 𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))) |
41 | 40 | imbi2d 340 |
. . . 4
⊢ (𝑚 = 𝑀 → ((𝜑 → ((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀 − 𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀 − 𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)))) |
42 | | ssidd 3940 |
. . . . . . 7
⊢ (𝜑 → ℂ ⊆
ℂ) |
43 | | mapsspm 8622 |
. . . . . . . 8
⊢ (ℂ
↑m ℂ) ⊆ (ℂ ↑pm
ℂ) |
44 | | dvntaylp.s |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
45 | | dvntaylp.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
46 | | dvntaylp.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
47 | | dvntaylp.n |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
48 | 47, 1 | nn0addcld 12227 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 + 𝑀) ∈
ℕ0) |
49 | | dvntaylp.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀))) |
50 | | eqid 2738 |
. . . . . . . . . 10
⊢ ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) |
51 | 44, 45, 46, 48, 49, 50 | taylpf 25430 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵):ℂ⟶ℂ) |
52 | | cnex 10883 |
. . . . . . . . . 10
⊢ ℂ
∈ V |
53 | 52, 52 | elmap 8617 |
. . . . . . . . 9
⊢ (((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑m
ℂ) ↔ ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵):ℂ⟶ℂ) |
54 | 51, 53 | sylibr 233 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑m
ℂ)) |
55 | 43, 54 | sselid 3915 |
. . . . . . 7
⊢ (𝜑 → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm
ℂ)) |
56 | | dvn0 24993 |
. . . . . . 7
⊢ ((ℂ
⊆ ℂ ∧ ((𝑁 +
𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm
ℂ)) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵)) |
57 | 42, 55, 56 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → ((ℂ
D𝑛 ((𝑁 +
𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵)) |
58 | | recnprss 24973 |
. . . . . . . . . 10
⊢ (𝑆 ∈ {ℝ, ℂ}
→ 𝑆 ⊆
ℂ) |
59 | 44, 58 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
60 | 52 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℂ ∈
V) |
61 | | elpm2r 8591 |
. . . . . . . . . 10
⊢
(((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
62 | 60, 44, 45, 46, 61 | syl22anc 835 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
63 | | dvn0 24993 |
. . . . . . . . 9
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆))
→ ((𝑆
D𝑛 𝐹)‘0) = 𝐹) |
64 | 59, 62, 63 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘0) = 𝐹) |
65 | 64 | oveq2d 7271 |
. . . . . . 7
⊢ (𝜑 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0)) = (𝑆 Tayl 𝐹)) |
66 | 1 | nn0cnd 12225 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℂ) |
67 | 66 | subid1d 11251 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 − 0) = 𝑀) |
68 | 67 | oveq2d 7271 |
. . . . . . 7
⊢ (𝜑 → (𝑁 + (𝑀 − 0)) = (𝑁 + 𝑀)) |
69 | | eqidd 2739 |
. . . . . . 7
⊢ (𝜑 → 𝐵 = 𝐵) |
70 | 65, 68, 69 | oveq123d 7276 |
. . . . . 6
⊢ (𝜑 → ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵)) |
71 | 57, 70 | eqtr4d 2781 |
. . . . 5
⊢ (𝜑 → ((ℂ
D𝑛 ((𝑁 +
𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵)) |
72 | 71 | a1i 11 |
. . . 4
⊢ (𝑀 ∈
(ℤ≥‘0) → (𝜑 → ((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵))) |
73 | | oveq2 7263 |
. . . . . . 7
⊢
(((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀 − 𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) → (ℂ D ((ℂ
D𝑛 ((𝑁 +
𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛)) = (ℂ D ((𝑁 + (𝑀 − 𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))) |
74 | | ssidd 3940 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → ℂ ⊆
ℂ) |
75 | 55 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm
ℂ)) |
76 | | elfzouz 13320 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (0..^𝑀) → 𝑛 ∈
(ℤ≥‘0)) |
77 | 76 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → 𝑛 ∈
(ℤ≥‘0)) |
78 | 77, 2 | eleqtrrdi 2850 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → 𝑛 ∈ ℕ0) |
79 | | dvnp1 24994 |
. . . . . . . . 9
⊢ ((ℂ
⊆ ℂ ∧ ((𝑁 +
𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm
ℂ) ∧ 𝑛 ∈
ℕ0) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = (ℂ D ((ℂ
D𝑛 ((𝑁 +
𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛))) |
80 | 74, 75, 78, 79 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → ((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = (ℂ D ((ℂ
D𝑛 ((𝑁 +
𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛))) |
81 | 44 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → 𝑆 ∈ {ℝ, ℂ}) |
82 | 62 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
83 | | dvnf 24996 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)
∧ 𝑛 ∈
ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑛):dom ((𝑆 D𝑛 𝐹)‘𝑛)⟶ℂ) |
84 | 81, 82, 78, 83 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 𝐹)‘𝑛):dom ((𝑆 D𝑛 𝐹)‘𝑛)⟶ℂ) |
85 | | dvnbss 24997 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)
∧ 𝑛 ∈
ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹) |
86 | 81, 82, 78, 85 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹) |
87 | 45 | fdmd 6595 |
. . . . . . . . . . . . 13
⊢ (𝜑 → dom 𝐹 = 𝐴) |
88 | 87 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → dom 𝐹 = 𝐴) |
89 | 86, 88 | sseqtrd 3957 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ 𝐴) |
90 | 46 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → 𝐴 ⊆ 𝑆) |
91 | 89, 90 | sstrd 3927 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ 𝑆) |
92 | 47 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → 𝑁 ∈
ℕ0) |
93 | | fzofzp1 13412 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (0..^𝑀) → (𝑛 + 1) ∈ (0...𝑀)) |
94 | 93 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → (𝑛 + 1) ∈ (0...𝑀)) |
95 | | fznn0sub 13217 |
. . . . . . . . . . . 12
⊢ ((𝑛 + 1) ∈ (0...𝑀) → (𝑀 − (𝑛 + 1)) ∈
ℕ0) |
96 | 94, 95 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → (𝑀 − (𝑛 + 1)) ∈
ℕ0) |
97 | 92, 96 | nn0addcld 12227 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑀 − (𝑛 + 1))) ∈
ℕ0) |
98 | 49 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀))) |
99 | | elfzofz 13331 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ (0..^𝑀) → 𝑛 ∈ (0...𝑀)) |
100 | 99 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → 𝑛 ∈ (0...𝑀)) |
101 | | fznn0sub 13217 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ (0...𝑀) → (𝑀 − 𝑛) ∈
ℕ0) |
102 | 100, 101 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → (𝑀 − 𝑛) ∈
ℕ0) |
103 | 92, 102 | nn0addcld 12227 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑀 − 𝑛)) ∈
ℕ0) |
104 | | dvnadd 24998 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆))
∧ (𝑛 ∈
ℕ0 ∧ (𝑁 + (𝑀 − 𝑛)) ∈ ℕ0)) →
((𝑆 D𝑛
((𝑆 D𝑛
𝐹)‘𝑛))‘(𝑁 + (𝑀 − 𝑛))) = ((𝑆 D𝑛 𝐹)‘(𝑛 + (𝑁 + (𝑀 − 𝑛))))) |
105 | 81, 82, 78, 103, 104 | syl22anc 835 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘(𝑁 + (𝑀 − 𝑛))) = ((𝑆 D𝑛 𝐹)‘(𝑛 + (𝑁 + (𝑀 − 𝑛))))) |
106 | 47 | nn0cnd 12225 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑁 ∈ ℂ) |
107 | 106 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → 𝑁 ∈ ℂ) |
108 | 96 | nn0cnd 12225 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → (𝑀 − (𝑛 + 1)) ∈ ℂ) |
109 | | 1cnd 10901 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → 1 ∈ ℂ) |
110 | 107, 108,
109 | addassd 10928 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1))) + 1) = (𝑁 + ((𝑀 − (𝑛 + 1)) + 1))) |
111 | 66 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → 𝑀 ∈ ℂ) |
112 | 78 | nn0cnd 12225 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → 𝑛 ∈ ℂ) |
113 | 111, 112,
109 | nppcan2d 11288 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → ((𝑀 − (𝑛 + 1)) + 1) = (𝑀 − 𝑛)) |
114 | 113 | oveq2d 7271 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → (𝑁 + ((𝑀 − (𝑛 + 1)) + 1)) = (𝑁 + (𝑀 − 𝑛))) |
115 | 110, 114 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1))) + 1) = (𝑁 + (𝑀 − 𝑛))) |
116 | 115 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1)) = ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘(𝑁 + (𝑀 − 𝑛)))) |
117 | 112, 111 | pncan3d 11265 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → (𝑛 + (𝑀 − 𝑛)) = 𝑀) |
118 | 117 | oveq2d 7271 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑛 + (𝑀 − 𝑛))) = (𝑁 + 𝑀)) |
119 | 111, 112 | subcld 11262 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → (𝑀 − 𝑛) ∈ ℂ) |
120 | 107, 112,
119 | add12d 11131 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑛 + (𝑀 − 𝑛))) = (𝑛 + (𝑁 + (𝑀 − 𝑛)))) |
121 | 118, 120 | eqtr3d 2780 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → (𝑁 + 𝑀) = (𝑛 + (𝑁 + (𝑀 − 𝑛)))) |
122 | 121 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑛 + (𝑁 + (𝑀 − 𝑛))))) |
123 | 105, 116,
122 | 3eqtr4d 2788 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀))) |
124 | 123 | dmeqd 5803 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1)) = dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀))) |
125 | 98, 124 | eleqtrrd 2842 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → 𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1))) |
126 | 81, 84, 91, 97, 125 | dvtaylp 25434 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → (ℂ D (((𝑁 + (𝑀 − (𝑛 + 1))) + 1)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛)))𝐵)) |
127 | 115 | oveq1d 7270 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → (((𝑁 + (𝑀 − (𝑛 + 1))) + 1)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) = ((𝑁 + (𝑀 − 𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)) |
128 | 127 | oveq2d 7271 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → (ℂ D (((𝑁 + (𝑀 − (𝑛 + 1))) + 1)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)) = (ℂ D ((𝑁 + (𝑀 − 𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))) |
129 | 59 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → 𝑆 ⊆ ℂ) |
130 | | dvnp1 24994 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)
∧ 𝑛 ∈
ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛))) |
131 | 129, 82, 78, 130 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛))) |
132 | 131 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1))) = (𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛)))) |
133 | 132 | eqcomd 2744 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → (𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛))) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))) |
134 | 133 | oveqd 7272 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛)))𝐵) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵)) |
135 | 126, 128,
134 | 3eqtr3rd 2787 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵) = (ℂ D ((𝑁 + (𝑀 − 𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))) |
136 | 80, 135 | eqeq12d 2754 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → (((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵) ↔ (ℂ D ((ℂ
D𝑛 ((𝑁 +
𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛)) = (ℂ D ((𝑁 + (𝑀 − 𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)))) |
137 | 73, 136 | syl5ibr 245 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑀)) → (((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀 − 𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) → ((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))) |
138 | 137 | expcom 413 |
. . . . 5
⊢ (𝑛 ∈ (0..^𝑀) → (𝜑 → (((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀 − 𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) → ((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵)))) |
139 | 138 | a2d 29 |
. . . 4
⊢ (𝑛 ∈ (0..^𝑀) → ((𝜑 → ((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀 − 𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)) → (𝜑 → ((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵)))) |
140 | 14, 23, 32, 41, 72, 139 | fzind2 13433 |
. . 3
⊢ (𝑀 ∈ (0...𝑀) → (𝜑 → ((ℂ D𝑛
((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀 − 𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))) |
141 | 5, 140 | mpcom 38 |
. 2
⊢ (𝜑 → ((ℂ
D𝑛 ((𝑁 +
𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀 − 𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)) |
142 | 66 | subidd 11250 |
. . . . 5
⊢ (𝜑 → (𝑀 − 𝑀) = 0) |
143 | 142 | oveq2d 7271 |
. . . 4
⊢ (𝜑 → (𝑁 + (𝑀 − 𝑀)) = (𝑁 + 0)) |
144 | 106 | addid1d 11105 |
. . . 4
⊢ (𝜑 → (𝑁 + 0) = 𝑁) |
145 | 143, 144 | eqtrd 2778 |
. . 3
⊢ (𝜑 → (𝑁 + (𝑀 − 𝑀)) = 𝑁) |
146 | 145 | oveq1d 7270 |
. 2
⊢ (𝜑 → ((𝑁 + (𝑀 − 𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) = (𝑁(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)) |
147 | 141, 146 | eqtrd 2778 |
1
⊢ (𝜑 → ((ℂ
D𝑛 ((𝑁 +
𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = (𝑁(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)) |