MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptres2 Structured version   Visualization version   GIF version

Theorem dvmptres2 24859
Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptadd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptadd.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptadd.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptadd.da (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptres2.z (𝜑𝑍𝑋)
dvmptres2.j 𝐽 = (𝐾t 𝑆)
dvmptres2.k 𝐾 = (TopOpen‘ℂfld)
dvmptres2.i (𝜑 → ((int‘𝐽)‘𝑍) = 𝑌)
Assertion
Ref Expression
dvmptres2 (𝜑 → (𝑆 D (𝑥𝑍𝐴)) = (𝑥𝑌𝐵))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐽(𝑥)   𝐾(𝑥)

Proof of Theorem dvmptres2
StepHypRef Expression
1 dvmptadd.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
2 recnprss 24801 . . . 4 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
31, 2syl 17 . . 3 (𝜑𝑆 ⊆ ℂ)
4 dvmptadd.a . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
54fmpttd 6932 . . 3 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
6 dvmptadd.da . . . . . 6 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
76dmeqd 5774 . . . . 5 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = dom (𝑥𝑋𝐵))
8 dvmptadd.b . . . . . . 7 ((𝜑𝑥𝑋) → 𝐵𝑉)
98ralrimiva 3105 . . . . . 6 (𝜑 → ∀𝑥𝑋 𝐵𝑉)
10 dmmptg 6105 . . . . . 6 (∀𝑥𝑋 𝐵𝑉 → dom (𝑥𝑋𝐵) = 𝑋)
119, 10syl 17 . . . . 5 (𝜑 → dom (𝑥𝑋𝐵) = 𝑋)
127, 11eqtrd 2777 . . . 4 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = 𝑋)
13 dvbsss 24799 . . . 4 dom (𝑆 D (𝑥𝑋𝐴)) ⊆ 𝑆
1412, 13eqsstrrdi 3956 . . 3 (𝜑𝑋𝑆)
15 dvmptres2.z . . . 4 (𝜑𝑍𝑋)
1615, 14sstrd 3911 . . 3 (𝜑𝑍𝑆)
17 dvmptres2.k . . . 4 𝐾 = (TopOpen‘ℂfld)
18 dvmptres2.j . . . 4 𝐽 = (𝐾t 𝑆)
1917, 18dvres 24808 . . 3 (((𝑆 ⊆ ℂ ∧ (𝑥𝑋𝐴):𝑋⟶ℂ) ∧ (𝑋𝑆𝑍𝑆)) → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑍)) = ((𝑆 D (𝑥𝑋𝐴)) ↾ ((int‘𝐽)‘𝑍)))
203, 5, 14, 16, 19syl22anc 839 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑍)) = ((𝑆 D (𝑥𝑋𝐴)) ↾ ((int‘𝐽)‘𝑍)))
2115resmptd 5908 . . 3 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑍) = (𝑥𝑍𝐴))
2221oveq2d 7229 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑍)) = (𝑆 D (𝑥𝑍𝐴)))
236reseq1d 5850 . . 3 (𝜑 → ((𝑆 D (𝑥𝑋𝐴)) ↾ ((int‘𝐽)‘𝑍)) = ((𝑥𝑋𝐵) ↾ ((int‘𝐽)‘𝑍)))
24 dvmptres2.i . . . 4 (𝜑 → ((int‘𝐽)‘𝑍) = 𝑌)
2524reseq2d 5851 . . 3 (𝜑 → ((𝑥𝑋𝐵) ↾ ((int‘𝐽)‘𝑍)) = ((𝑥𝑋𝐵) ↾ 𝑌))
2617cnfldtopon 23680 . . . . . . . . . 10 𝐾 ∈ (TopOn‘ℂ)
27 resttopon 22058 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
2826, 3, 27sylancr 590 . . . . . . . . 9 (𝜑 → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
2918, 28eqeltrid 2842 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑆))
30 topontop 21810 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑆) → 𝐽 ∈ Top)
3129, 30syl 17 . . . . . . 7 (𝜑𝐽 ∈ Top)
32 toponuni 21811 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑆) → 𝑆 = 𝐽)
3329, 32syl 17 . . . . . . . 8 (𝜑𝑆 = 𝐽)
3416, 33sseqtrd 3941 . . . . . . 7 (𝜑𝑍 𝐽)
35 eqid 2737 . . . . . . . 8 𝐽 = 𝐽
3635ntrss2 21954 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑍 𝐽) → ((int‘𝐽)‘𝑍) ⊆ 𝑍)
3731, 34, 36syl2anc 587 . . . . . 6 (𝜑 → ((int‘𝐽)‘𝑍) ⊆ 𝑍)
3824, 37eqsstrrd 3940 . . . . 5 (𝜑𝑌𝑍)
3938, 15sstrd 3911 . . . 4 (𝜑𝑌𝑋)
4039resmptd 5908 . . 3 (𝜑 → ((𝑥𝑋𝐵) ↾ 𝑌) = (𝑥𝑌𝐵))
4123, 25, 403eqtrd 2781 . 2 (𝜑 → ((𝑆 D (𝑥𝑋𝐴)) ↾ ((int‘𝐽)‘𝑍)) = (𝑥𝑌𝐵))
4220, 22, 413eqtr3d 2785 1 (𝜑 → (𝑆 D (𝑥𝑍𝐴)) = (𝑥𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  wss 3866  {cpr 4543   cuni 4819  cmpt 5135  dom cdm 5551  cres 5553  wf 6376  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  t crest 16925  TopOpenctopn 16926  fldccnfld 20363  Topctop 21790  TopOnctopon 21807  intcnt 21914   D cdv 24760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fi 9027  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-fz 13096  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-struct 16700  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-mulr 16816  df-starv 16817  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-rest 16927  df-topn 16928  df-topgen 16948  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-cnp 22125  df-xms 23218  df-ms 23219  df-limc 24763  df-dv 24764
This theorem is referenced by:  dvmptres  24860  dvmptcmul  24861  rolle  24887  mvth  24889  itgpowd  24947  taylthlem1  25265  pige3ALT  25409  logccv  25551  lgamgulmlem2  25912  dvrelog2  39805  dvrelog3  39806  lhe4.4ex1a  41620  binomcxplemdvbinom  41644  binomcxplemnotnn0  41647  itgsinexplem1  43170  dirkeritg  43318  fourierdlem39  43362  etransclem46  43496
  Copyright terms: Public domain W3C validator