MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptres2 Structured version   Visualization version   GIF version

Theorem dvmptres2 25031
Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptadd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptadd.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptadd.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptadd.da (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptres2.z (𝜑𝑍𝑋)
dvmptres2.j 𝐽 = (𝐾t 𝑆)
dvmptres2.k 𝐾 = (TopOpen‘ℂfld)
dvmptres2.i (𝜑 → ((int‘𝐽)‘𝑍) = 𝑌)
Assertion
Ref Expression
dvmptres2 (𝜑 → (𝑆 D (𝑥𝑍𝐴)) = (𝑥𝑌𝐵))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐽(𝑥)   𝐾(𝑥)

Proof of Theorem dvmptres2
StepHypRef Expression
1 dvmptadd.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
2 recnprss 24973 . . . 4 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
31, 2syl 17 . . 3 (𝜑𝑆 ⊆ ℂ)
4 dvmptadd.a . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
54fmpttd 6971 . . 3 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
6 dvmptadd.da . . . . . 6 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
76dmeqd 5803 . . . . 5 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = dom (𝑥𝑋𝐵))
8 dvmptadd.b . . . . . . 7 ((𝜑𝑥𝑋) → 𝐵𝑉)
98ralrimiva 3107 . . . . . 6 (𝜑 → ∀𝑥𝑋 𝐵𝑉)
10 dmmptg 6134 . . . . . 6 (∀𝑥𝑋 𝐵𝑉 → dom (𝑥𝑋𝐵) = 𝑋)
119, 10syl 17 . . . . 5 (𝜑 → dom (𝑥𝑋𝐵) = 𝑋)
127, 11eqtrd 2778 . . . 4 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = 𝑋)
13 dvbsss 24971 . . . 4 dom (𝑆 D (𝑥𝑋𝐴)) ⊆ 𝑆
1412, 13eqsstrrdi 3972 . . 3 (𝜑𝑋𝑆)
15 dvmptres2.z . . . 4 (𝜑𝑍𝑋)
1615, 14sstrd 3927 . . 3 (𝜑𝑍𝑆)
17 dvmptres2.k . . . 4 𝐾 = (TopOpen‘ℂfld)
18 dvmptres2.j . . . 4 𝐽 = (𝐾t 𝑆)
1917, 18dvres 24980 . . 3 (((𝑆 ⊆ ℂ ∧ (𝑥𝑋𝐴):𝑋⟶ℂ) ∧ (𝑋𝑆𝑍𝑆)) → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑍)) = ((𝑆 D (𝑥𝑋𝐴)) ↾ ((int‘𝐽)‘𝑍)))
203, 5, 14, 16, 19syl22anc 835 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑍)) = ((𝑆 D (𝑥𝑋𝐴)) ↾ ((int‘𝐽)‘𝑍)))
2115resmptd 5937 . . 3 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑍) = (𝑥𝑍𝐴))
2221oveq2d 7271 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑍)) = (𝑆 D (𝑥𝑍𝐴)))
236reseq1d 5879 . . 3 (𝜑 → ((𝑆 D (𝑥𝑋𝐴)) ↾ ((int‘𝐽)‘𝑍)) = ((𝑥𝑋𝐵) ↾ ((int‘𝐽)‘𝑍)))
24 dvmptres2.i . . . 4 (𝜑 → ((int‘𝐽)‘𝑍) = 𝑌)
2524reseq2d 5880 . . 3 (𝜑 → ((𝑥𝑋𝐵) ↾ ((int‘𝐽)‘𝑍)) = ((𝑥𝑋𝐵) ↾ 𝑌))
2617cnfldtopon 23852 . . . . . . . . . 10 𝐾 ∈ (TopOn‘ℂ)
27 resttopon 22220 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
2826, 3, 27sylancr 586 . . . . . . . . 9 (𝜑 → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
2918, 28eqeltrid 2843 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑆))
30 topontop 21970 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑆) → 𝐽 ∈ Top)
3129, 30syl 17 . . . . . . 7 (𝜑𝐽 ∈ Top)
32 toponuni 21971 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑆) → 𝑆 = 𝐽)
3329, 32syl 17 . . . . . . . 8 (𝜑𝑆 = 𝐽)
3416, 33sseqtrd 3957 . . . . . . 7 (𝜑𝑍 𝐽)
35 eqid 2738 . . . . . . . 8 𝐽 = 𝐽
3635ntrss2 22116 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑍 𝐽) → ((int‘𝐽)‘𝑍) ⊆ 𝑍)
3731, 34, 36syl2anc 583 . . . . . 6 (𝜑 → ((int‘𝐽)‘𝑍) ⊆ 𝑍)
3824, 37eqsstrrd 3956 . . . . 5 (𝜑𝑌𝑍)
3938, 15sstrd 3927 . . . 4 (𝜑𝑌𝑋)
4039resmptd 5937 . . 3 (𝜑 → ((𝑥𝑋𝐵) ↾ 𝑌) = (𝑥𝑌𝐵))
4123, 25, 403eqtrd 2782 . 2 (𝜑 → ((𝑆 D (𝑥𝑋𝐴)) ↾ ((int‘𝐽)‘𝑍)) = (𝑥𝑌𝐵))
4220, 22, 413eqtr3d 2786 1 (𝜑 → (𝑆 D (𝑥𝑍𝐴)) = (𝑥𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883  {cpr 4560   cuni 4836  cmpt 5153  dom cdm 5580  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  t crest 17048  TopOpenctopn 17049  fldccnfld 20510  Topctop 21950  TopOnctopon 21967  intcnt 22076   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-cnp 22287  df-xms 23381  df-ms 23382  df-limc 24935  df-dv 24936
This theorem is referenced by:  dvmptres  25032  dvmptcmul  25033  rolle  25059  mvth  25061  itgpowd  25119  taylthlem1  25437  pige3ALT  25581  logccv  25723  lgamgulmlem2  26084  dvrelog2  40000  dvrelog3  40001  lhe4.4ex1a  41836  binomcxplemdvbinom  41860  binomcxplemnotnn0  41863  itgsinexplem1  43385  dirkeritg  43533  fourierdlem39  43577  etransclem46  43711
  Copyright terms: Public domain W3C validator