MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptres2 Structured version   Visualization version   GIF version

Theorem dvmptres2 24016
Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptadd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptadd.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptadd.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptadd.da (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptres2.z (𝜑𝑍𝑋)
dvmptres2.j 𝐽 = (𝐾t 𝑆)
dvmptres2.k 𝐾 = (TopOpen‘ℂfld)
dvmptres2.i (𝜑 → ((int‘𝐽)‘𝑍) = 𝑌)
Assertion
Ref Expression
dvmptres2 (𝜑 → (𝑆 D (𝑥𝑍𝐴)) = (𝑥𝑌𝐵))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐽(𝑥)   𝐾(𝑥)

Proof of Theorem dvmptres2
StepHypRef Expression
1 dvmptadd.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
2 recnprss 23959 . . . 4 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
31, 2syl 17 . . 3 (𝜑𝑆 ⊆ ℂ)
4 dvmptadd.a . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
54fmpttd 6575 . . 3 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
6 dvmptadd.da . . . . . 6 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
76dmeqd 5494 . . . . 5 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = dom (𝑥𝑋𝐵))
8 dvmptadd.b . . . . . . 7 ((𝜑𝑥𝑋) → 𝐵𝑉)
98ralrimiva 3113 . . . . . 6 (𝜑 → ∀𝑥𝑋 𝐵𝑉)
10 dmmptg 5818 . . . . . 6 (∀𝑥𝑋 𝐵𝑉 → dom (𝑥𝑋𝐵) = 𝑋)
119, 10syl 17 . . . . 5 (𝜑 → dom (𝑥𝑋𝐵) = 𝑋)
127, 11eqtrd 2799 . . . 4 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = 𝑋)
13 dvbsss 23957 . . . 4 dom (𝑆 D (𝑥𝑋𝐴)) ⊆ 𝑆
1412, 13syl6eqssr 3816 . . 3 (𝜑𝑋𝑆)
15 dvmptres2.z . . . 4 (𝜑𝑍𝑋)
1615, 14sstrd 3771 . . 3 (𝜑𝑍𝑆)
17 dvmptres2.k . . . 4 𝐾 = (TopOpen‘ℂfld)
18 dvmptres2.j . . . 4 𝐽 = (𝐾t 𝑆)
1917, 18dvres 23966 . . 3 (((𝑆 ⊆ ℂ ∧ (𝑥𝑋𝐴):𝑋⟶ℂ) ∧ (𝑋𝑆𝑍𝑆)) → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑍)) = ((𝑆 D (𝑥𝑋𝐴)) ↾ ((int‘𝐽)‘𝑍)))
203, 5, 14, 16, 19syl22anc 867 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑍)) = ((𝑆 D (𝑥𝑋𝐴)) ↾ ((int‘𝐽)‘𝑍)))
2115resmptd 5629 . . 3 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑍) = (𝑥𝑍𝐴))
2221oveq2d 6858 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑍)) = (𝑆 D (𝑥𝑍𝐴)))
236reseq1d 5564 . . 3 (𝜑 → ((𝑆 D (𝑥𝑋𝐴)) ↾ ((int‘𝐽)‘𝑍)) = ((𝑥𝑋𝐵) ↾ ((int‘𝐽)‘𝑍)))
24 dvmptres2.i . . . 4 (𝜑 → ((int‘𝐽)‘𝑍) = 𝑌)
2524reseq2d 5565 . . 3 (𝜑 → ((𝑥𝑋𝐵) ↾ ((int‘𝐽)‘𝑍)) = ((𝑥𝑋𝐵) ↾ 𝑌))
2617cnfldtopon 22865 . . . . . . . . . 10 𝐾 ∈ (TopOn‘ℂ)
27 resttopon 21245 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
2826, 3, 27sylancr 581 . . . . . . . . 9 (𝜑 → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
2918, 28syl5eqel 2848 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑆))
30 topontop 20997 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑆) → 𝐽 ∈ Top)
3129, 30syl 17 . . . . . . 7 (𝜑𝐽 ∈ Top)
32 toponuni 20998 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑆) → 𝑆 = 𝐽)
3329, 32syl 17 . . . . . . . 8 (𝜑𝑆 = 𝐽)
3416, 33sseqtrd 3801 . . . . . . 7 (𝜑𝑍 𝐽)
35 eqid 2765 . . . . . . . 8 𝐽 = 𝐽
3635ntrss2 21141 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑍 𝐽) → ((int‘𝐽)‘𝑍) ⊆ 𝑍)
3731, 34, 36syl2anc 579 . . . . . 6 (𝜑 → ((int‘𝐽)‘𝑍) ⊆ 𝑍)
3824, 37eqsstr3d 3800 . . . . 5 (𝜑𝑌𝑍)
3938, 15sstrd 3771 . . . 4 (𝜑𝑌𝑋)
4039resmptd 5629 . . 3 (𝜑 → ((𝑥𝑋𝐵) ↾ 𝑌) = (𝑥𝑌𝐵))
4123, 25, 403eqtrd 2803 . 2 (𝜑 → ((𝑆 D (𝑥𝑋𝐴)) ↾ ((int‘𝐽)‘𝑍)) = (𝑥𝑌𝐵))
4220, 22, 413eqtr3d 2807 1 (𝜑 → (𝑆 D (𝑥𝑍𝐴)) = (𝑥𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  wral 3055  wss 3732  {cpr 4336   cuni 4594  cmpt 4888  dom cdm 5277  cres 5279  wf 6064  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  t crest 16349  TopOpenctopn 16350  fldccnfld 20019  Topctop 20977  TopOnctopon 20994  intcnt 21101   D cdv 23918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fi 8524  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-fz 12534  df-seq 13009  df-exp 13068  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-plusg 16229  df-mulr 16230  df-starv 16231  df-tset 16235  df-ple 16236  df-ds 16238  df-unif 16239  df-rest 16351  df-topn 16352  df-topgen 16372  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-cnp 21312  df-xms 22404  df-ms 22405  df-limc 23921  df-dv 23922
This theorem is referenced by:  dvmptres  24017  dvmptcmul  24018  rolle  24044  mvth  24046  taylthlem1  24418  pige3  24561  logccv  24700  lgamgulmlem2  25047  itgpowd  38408  lhe4.4ex1a  39134  binomcxplemdvbinom  39158  binomcxplemnotnn0  39161  itgsinexplem1  40739  dirkeritg  40888  fourierdlem39  40932  etransclem46  41066
  Copyright terms: Public domain W3C validator