| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvmptres2 | Structured version Visualization version GIF version | ||
| Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvmptadd.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvmptadd.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| dvmptadd.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
| dvmptadd.da | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| dvmptres2.z | ⊢ (𝜑 → 𝑍 ⊆ 𝑋) |
| dvmptres2.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
| dvmptres2.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| dvmptres2.i | ⊢ (𝜑 → ((int‘𝐽)‘𝑍) = 𝑌) |
| Ref | Expression |
|---|---|
| dvmptres2 | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑍 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptadd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | recnprss 25832 | . . . 4 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 4 | dvmptadd.a | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
| 5 | 4 | fmpttd 7048 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
| 6 | dvmptadd.da | . . . . . 6 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
| 7 | 6 | dmeqd 5844 | . . . . 5 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = dom (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| 8 | dvmptadd.b | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
| 9 | 8 | ralrimiva 3124 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉) |
| 10 | dmmptg 6189 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) |
| 12 | 7, 11 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = 𝑋) |
| 13 | dvbsss 25830 | . . . 4 ⊢ dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ⊆ 𝑆 | |
| 14 | 12, 13 | eqsstrrdi 3975 | . . 3 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 15 | dvmptres2.z | . . . 4 ⊢ (𝜑 → 𝑍 ⊆ 𝑋) | |
| 16 | 15, 14 | sstrd 3940 | . . 3 ⊢ (𝜑 → 𝑍 ⊆ 𝑆) |
| 17 | dvmptres2.k | . . . 4 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 18 | dvmptres2.j | . . . 4 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
| 19 | 17, 18 | dvres 25839 | . . 3 ⊢ (((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) ∧ (𝑋 ⊆ 𝑆 ∧ 𝑍 ⊆ 𝑆)) → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑍)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑍))) |
| 20 | 3, 5, 14, 16, 19 | syl22anc 838 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑍)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑍))) |
| 21 | 15 | resmptd 5988 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑍) = (𝑥 ∈ 𝑍 ↦ 𝐴)) |
| 22 | 21 | oveq2d 7362 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑍)) = (𝑆 D (𝑥 ∈ 𝑍 ↦ 𝐴))) |
| 23 | 6 | reseq1d 5926 | . . 3 ⊢ (𝜑 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑍)) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ ((int‘𝐽)‘𝑍))) |
| 24 | dvmptres2.i | . . . 4 ⊢ (𝜑 → ((int‘𝐽)‘𝑍) = 𝑌) | |
| 25 | 24 | reseq2d 5927 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ ((int‘𝐽)‘𝑍)) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑌)) |
| 26 | 17 | cnfldtopon 24697 | . . . . . . . . . 10 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
| 27 | resttopon 23076 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
| 28 | 26, 3, 27 | sylancr 587 | . . . . . . . . 9 ⊢ (𝜑 → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
| 29 | 18, 28 | eqeltrid 2835 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑆)) |
| 30 | topontop 22828 | . . . . . . . 8 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝐽 ∈ Top) | |
| 31 | 29, 30 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 32 | toponuni 22829 | . . . . . . . . 9 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝑆 = ∪ 𝐽) | |
| 33 | 29, 32 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = ∪ 𝐽) |
| 34 | 16, 33 | sseqtrd 3966 | . . . . . . 7 ⊢ (𝜑 → 𝑍 ⊆ ∪ 𝐽) |
| 35 | eqid 2731 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 36 | 35 | ntrss2 22972 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑍 ⊆ ∪ 𝐽) → ((int‘𝐽)‘𝑍) ⊆ 𝑍) |
| 37 | 31, 34, 36 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((int‘𝐽)‘𝑍) ⊆ 𝑍) |
| 38 | 24, 37 | eqsstrrd 3965 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑍) |
| 39 | 38, 15 | sstrd 3940 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 40 | 39 | resmptd 5988 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑌) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
| 41 | 23, 25, 40 | 3eqtrd 2770 | . 2 ⊢ (𝜑 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑍)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
| 42 | 20, 22, 41 | 3eqtr3d 2774 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑍 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 {cpr 4575 ∪ cuni 4856 ↦ cmpt 5170 dom cdm 5614 ↾ cres 5616 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 ↾t crest 17324 TopOpenctopn 17325 ℂfldccnfld 21291 Topctop 22808 TopOnctopon 22825 intcnt 22932 D cdv 25791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-fz 13408 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-rest 17326 df-topn 17327 df-topgen 17347 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-cnp 23143 df-xms 24235 df-ms 24236 df-limc 25794 df-dv 25795 |
| This theorem is referenced by: dvmptres 25894 dvmptcmul 25895 rolle 25921 mvth 25924 itgpowd 25984 taylthlem1 26308 pige3ALT 26456 logccv 26599 lgamgulmlem2 26967 dvrelog2 42105 dvrelog3 42106 lhe4.4ex1a 44370 binomcxplemdvbinom 44394 binomcxplemnotnn0 44397 itgsinexplem1 46000 dirkeritg 46148 fourierdlem39 46192 etransclem46 46326 |
| Copyright terms: Public domain | W3C validator |