![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvmptres2 | Structured version Visualization version GIF version |
Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
dvmptadd.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvmptadd.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
dvmptadd.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
dvmptadd.da | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
dvmptres2.z | ⊢ (𝜑 → 𝑍 ⊆ 𝑋) |
dvmptres2.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
dvmptres2.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
dvmptres2.i | ⊢ (𝜑 → ((int‘𝐽)‘𝑍) = 𝑌) |
Ref | Expression |
---|---|
dvmptres2 | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑍 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptadd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | recnprss 25268 | . . . 4 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
4 | dvmptadd.a | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
5 | 4 | fmpttd 7063 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
6 | dvmptadd.da | . . . . . 6 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
7 | 6 | dmeqd 5861 | . . . . 5 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = dom (𝑥 ∈ 𝑋 ↦ 𝐵)) |
8 | dvmptadd.b | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
9 | 8 | ralrimiva 3143 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉) |
10 | dmmptg 6194 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) |
12 | 7, 11 | eqtrd 2776 | . . . 4 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = 𝑋) |
13 | dvbsss 25266 | . . . 4 ⊢ dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ⊆ 𝑆 | |
14 | 12, 13 | eqsstrrdi 3999 | . . 3 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
15 | dvmptres2.z | . . . 4 ⊢ (𝜑 → 𝑍 ⊆ 𝑋) | |
16 | 15, 14 | sstrd 3954 | . . 3 ⊢ (𝜑 → 𝑍 ⊆ 𝑆) |
17 | dvmptres2.k | . . . 4 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
18 | dvmptres2.j | . . . 4 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
19 | 17, 18 | dvres 25275 | . . 3 ⊢ (((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) ∧ (𝑋 ⊆ 𝑆 ∧ 𝑍 ⊆ 𝑆)) → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑍)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑍))) |
20 | 3, 5, 14, 16, 19 | syl22anc 837 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑍)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑍))) |
21 | 15 | resmptd 5994 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑍) = (𝑥 ∈ 𝑍 ↦ 𝐴)) |
22 | 21 | oveq2d 7373 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑍)) = (𝑆 D (𝑥 ∈ 𝑍 ↦ 𝐴))) |
23 | 6 | reseq1d 5936 | . . 3 ⊢ (𝜑 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑍)) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ ((int‘𝐽)‘𝑍))) |
24 | dvmptres2.i | . . . 4 ⊢ (𝜑 → ((int‘𝐽)‘𝑍) = 𝑌) | |
25 | 24 | reseq2d 5937 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ ((int‘𝐽)‘𝑍)) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑌)) |
26 | 17 | cnfldtopon 24146 | . . . . . . . . . 10 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
27 | resttopon 22512 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
28 | 26, 3, 27 | sylancr 587 | . . . . . . . . 9 ⊢ (𝜑 → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
29 | 18, 28 | eqeltrid 2842 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑆)) |
30 | topontop 22262 | . . . . . . . 8 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝐽 ∈ Top) | |
31 | 29, 30 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Top) |
32 | toponuni 22263 | . . . . . . . . 9 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝑆 = ∪ 𝐽) | |
33 | 29, 32 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = ∪ 𝐽) |
34 | 16, 33 | sseqtrd 3984 | . . . . . . 7 ⊢ (𝜑 → 𝑍 ⊆ ∪ 𝐽) |
35 | eqid 2736 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
36 | 35 | ntrss2 22408 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑍 ⊆ ∪ 𝐽) → ((int‘𝐽)‘𝑍) ⊆ 𝑍) |
37 | 31, 34, 36 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((int‘𝐽)‘𝑍) ⊆ 𝑍) |
38 | 24, 37 | eqsstrrd 3983 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑍) |
39 | 38, 15 | sstrd 3954 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
40 | 39 | resmptd 5994 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑌) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
41 | 23, 25, 40 | 3eqtrd 2780 | . 2 ⊢ (𝜑 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑍)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
42 | 20, 22, 41 | 3eqtr3d 2784 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑍 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3910 {cpr 4588 ∪ cuni 4865 ↦ cmpt 5188 dom cdm 5633 ↾ cres 5635 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ℂcc 11049 ℝcr 11050 ↾t crest 17302 TopOpenctopn 17303 ℂfldccnfld 20796 Topctop 22242 TopOnctopon 22259 intcnt 22368 D cdv 25227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-pm 8768 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fi 9347 df-sup 9378 df-inf 9379 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-fz 13425 df-seq 13907 df-exp 13968 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-struct 17019 df-slot 17054 df-ndx 17066 df-base 17084 df-plusg 17146 df-mulr 17147 df-starv 17148 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-rest 17304 df-topn 17305 df-topgen 17325 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cld 22370 df-ntr 22371 df-cls 22372 df-cnp 22579 df-xms 23673 df-ms 23674 df-limc 25230 df-dv 25231 |
This theorem is referenced by: dvmptres 25327 dvmptcmul 25328 rolle 25354 mvth 25356 itgpowd 25414 taylthlem1 25732 pige3ALT 25876 logccv 26018 lgamgulmlem2 26379 dvrelog2 40521 dvrelog3 40522 lhe4.4ex1a 42599 binomcxplemdvbinom 42623 binomcxplemnotnn0 42626 itgsinexplem1 44185 dirkeritg 44333 fourierdlem39 44377 etransclem46 44511 |
Copyright terms: Public domain | W3C validator |