MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptres2 Structured version   Visualization version   GIF version

Theorem dvmptres2 25866
Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptadd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptadd.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptadd.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptadd.da (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptres2.z (𝜑𝑍𝑋)
dvmptres2.j 𝐽 = (𝐾t 𝑆)
dvmptres2.k 𝐾 = (TopOpen‘ℂfld)
dvmptres2.i (𝜑 → ((int‘𝐽)‘𝑍) = 𝑌)
Assertion
Ref Expression
dvmptres2 (𝜑 → (𝑆 D (𝑥𝑍𝐴)) = (𝑥𝑌𝐵))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐽(𝑥)   𝐾(𝑥)

Proof of Theorem dvmptres2
StepHypRef Expression
1 dvmptadd.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
2 recnprss 25805 . . . 4 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
31, 2syl 17 . . 3 (𝜑𝑆 ⊆ ℂ)
4 dvmptadd.a . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
54fmpttd 7087 . . 3 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
6 dvmptadd.da . . . . . 6 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
76dmeqd 5869 . . . . 5 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = dom (𝑥𝑋𝐵))
8 dvmptadd.b . . . . . . 7 ((𝜑𝑥𝑋) → 𝐵𝑉)
98ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑥𝑋 𝐵𝑉)
10 dmmptg 6215 . . . . . 6 (∀𝑥𝑋 𝐵𝑉 → dom (𝑥𝑋𝐵) = 𝑋)
119, 10syl 17 . . . . 5 (𝜑 → dom (𝑥𝑋𝐵) = 𝑋)
127, 11eqtrd 2764 . . . 4 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = 𝑋)
13 dvbsss 25803 . . . 4 dom (𝑆 D (𝑥𝑋𝐴)) ⊆ 𝑆
1412, 13eqsstrrdi 3992 . . 3 (𝜑𝑋𝑆)
15 dvmptres2.z . . . 4 (𝜑𝑍𝑋)
1615, 14sstrd 3957 . . 3 (𝜑𝑍𝑆)
17 dvmptres2.k . . . 4 𝐾 = (TopOpen‘ℂfld)
18 dvmptres2.j . . . 4 𝐽 = (𝐾t 𝑆)
1917, 18dvres 25812 . . 3 (((𝑆 ⊆ ℂ ∧ (𝑥𝑋𝐴):𝑋⟶ℂ) ∧ (𝑋𝑆𝑍𝑆)) → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑍)) = ((𝑆 D (𝑥𝑋𝐴)) ↾ ((int‘𝐽)‘𝑍)))
203, 5, 14, 16, 19syl22anc 838 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑍)) = ((𝑆 D (𝑥𝑋𝐴)) ↾ ((int‘𝐽)‘𝑍)))
2115resmptd 6011 . . 3 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑍) = (𝑥𝑍𝐴))
2221oveq2d 7403 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑍)) = (𝑆 D (𝑥𝑍𝐴)))
236reseq1d 5949 . . 3 (𝜑 → ((𝑆 D (𝑥𝑋𝐴)) ↾ ((int‘𝐽)‘𝑍)) = ((𝑥𝑋𝐵) ↾ ((int‘𝐽)‘𝑍)))
24 dvmptres2.i . . . 4 (𝜑 → ((int‘𝐽)‘𝑍) = 𝑌)
2524reseq2d 5950 . . 3 (𝜑 → ((𝑥𝑋𝐵) ↾ ((int‘𝐽)‘𝑍)) = ((𝑥𝑋𝐵) ↾ 𝑌))
2617cnfldtopon 24670 . . . . . . . . . 10 𝐾 ∈ (TopOn‘ℂ)
27 resttopon 23048 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
2826, 3, 27sylancr 587 . . . . . . . . 9 (𝜑 → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
2918, 28eqeltrid 2832 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑆))
30 topontop 22800 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑆) → 𝐽 ∈ Top)
3129, 30syl 17 . . . . . . 7 (𝜑𝐽 ∈ Top)
32 toponuni 22801 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑆) → 𝑆 = 𝐽)
3329, 32syl 17 . . . . . . . 8 (𝜑𝑆 = 𝐽)
3416, 33sseqtrd 3983 . . . . . . 7 (𝜑𝑍 𝐽)
35 eqid 2729 . . . . . . . 8 𝐽 = 𝐽
3635ntrss2 22944 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑍 𝐽) → ((int‘𝐽)‘𝑍) ⊆ 𝑍)
3731, 34, 36syl2anc 584 . . . . . 6 (𝜑 → ((int‘𝐽)‘𝑍) ⊆ 𝑍)
3824, 37eqsstrrd 3982 . . . . 5 (𝜑𝑌𝑍)
3938, 15sstrd 3957 . . . 4 (𝜑𝑌𝑋)
4039resmptd 6011 . . 3 (𝜑 → ((𝑥𝑋𝐵) ↾ 𝑌) = (𝑥𝑌𝐵))
4123, 25, 403eqtrd 2768 . 2 (𝜑 → ((𝑆 D (𝑥𝑋𝐴)) ↾ ((int‘𝐽)‘𝑍)) = (𝑥𝑌𝐵))
4220, 22, 413eqtr3d 2772 1 (𝜑 → (𝑆 D (𝑥𝑍𝐴)) = (𝑥𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3914  {cpr 4591   cuni 4871  cmpt 5188  dom cdm 5638  cres 5640  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  t crest 17383  TopOpenctopn 17384  fldccnfld 21264  Topctop 22780  TopOnctopon 22797  intcnt 22904   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-fz 13469  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-rest 17385  df-topn 17386  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-cnp 23115  df-xms 24208  df-ms 24209  df-limc 25767  df-dv 25768
This theorem is referenced by:  dvmptres  25867  dvmptcmul  25868  rolle  25894  mvth  25897  itgpowd  25957  taylthlem1  26281  pige3ALT  26429  logccv  26572  lgamgulmlem2  26940  dvrelog2  42052  dvrelog3  42053  lhe4.4ex1a  44318  binomcxplemdvbinom  44342  binomcxplemnotnn0  44345  itgsinexplem1  45952  dirkeritg  46100  fourierdlem39  46144  etransclem46  46278
  Copyright terms: Public domain W3C validator