![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvcnp | Structured version Visualization version GIF version |
Description: The difference quotient is continuous at 𝐵 when the original function is differentiable at 𝐵. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) |
Ref | Expression |
---|---|
dvcnp.j | ⊢ 𝐽 = (𝐾 ↾t 𝐴) |
dvcnp.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
dvcnp.g | ⊢ 𝐺 = (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, ((𝑆 D 𝐹)‘𝐵), (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)))) |
Ref | Expression |
---|---|
dvcnp | ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvcnp.g | . 2 ⊢ 𝐺 = (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, ((𝑆 D 𝐹)‘𝐵), (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)))) | |
2 | dvfg 24118 | . . . . . . 7 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | |
3 | 2 | 3ad2ant1 1124 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
4 | ffun 6296 | . . . . . 6 ⊢ ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹)) | |
5 | funfvbrb 6595 | . . . . . 6 ⊢ (Fun (𝑆 D 𝐹) → (𝐵 ∈ dom (𝑆 D 𝐹) ↔ 𝐵(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐵))) | |
6 | 3, 4, 5 | 3syl 18 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → (𝐵 ∈ dom (𝑆 D 𝐹) ↔ 𝐵(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐵))) |
7 | eqid 2778 | . . . . . 6 ⊢ (𝐾 ↾t 𝑆) = (𝐾 ↾t 𝑆) | |
8 | dvcnp.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
9 | eqid 2778 | . . . . . 6 ⊢ (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) | |
10 | recnprss 24116 | . . . . . . 7 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
11 | 10 | 3ad2ant1 1124 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝑆 ⊆ ℂ) |
12 | simp2 1128 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝐹:𝐴⟶ℂ) | |
13 | simp3 1129 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝐴 ⊆ 𝑆) | |
14 | 7, 8, 9, 11, 12, 13 | eldv 24110 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → (𝐵(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐵) ↔ (𝐵 ∈ ((int‘(𝐾 ↾t 𝑆))‘𝐴) ∧ ((𝑆 D 𝐹)‘𝐵) ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) limℂ 𝐵)))) |
15 | 6, 14 | bitrd 271 | . . . 4 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → (𝐵 ∈ dom (𝑆 D 𝐹) ↔ (𝐵 ∈ ((int‘(𝐾 ↾t 𝑆))‘𝐴) ∧ ((𝑆 D 𝐹)‘𝐵) ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) limℂ 𝐵)))) |
16 | 15 | simplbda 495 | . . 3 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → ((𝑆 D 𝐹)‘𝐵) ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) limℂ 𝐵)) |
17 | 13, 11 | sstrd 3831 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝐴 ⊆ ℂ) |
18 | 17 | adantr 474 | . . . 4 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐴 ⊆ ℂ) |
19 | 11, 12, 13 | dvbss 24113 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → dom (𝑆 D 𝐹) ⊆ 𝐴) |
20 | 19 | sselda 3821 | . . . 4 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐵 ∈ 𝐴) |
21 | eldifsn 4550 | . . . . 5 ⊢ (𝑧 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵)) | |
22 | 12 | adantr 474 | . . . . . 6 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐹:𝐴⟶ℂ) |
23 | 22, 18, 20 | dvlem 24108 | . . . . 5 ⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) ∈ ℂ) |
24 | 21, 23 | sylan2br 588 | . . . 4 ⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) ∧ (𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵)) → (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) ∈ ℂ) |
25 | dvcnp.j | . . . 4 ⊢ 𝐽 = (𝐾 ↾t 𝐴) | |
26 | 18, 20, 24, 25, 8 | limcmpt2 24096 | . . 3 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → (((𝑆 D 𝐹)‘𝐵) ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) limℂ 𝐵) ↔ (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, ((𝑆 D 𝐹)‘𝐵), (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)))) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
27 | 16, 26 | mpbid 224 | . 2 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, ((𝑆 D 𝐹)‘𝐵), (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)))) ∈ ((𝐽 CnP 𝐾)‘𝐵)) |
28 | 1, 27 | syl5eqel 2863 | 1 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 ∖ cdif 3789 ⊆ wss 3792 ifcif 4307 {csn 4398 {cpr 4400 class class class wbr 4888 ↦ cmpt 4967 dom cdm 5357 Fun wfun 6131 ⟶wf 6133 ‘cfv 6137 (class class class)co 6924 ℂcc 10272 ℝcr 10273 − cmin 10608 / cdiv 11035 ↾t crest 16478 TopOpenctopn 16479 ℂfldccnfld 20153 intcnt 21240 CnP ccnp 21448 limℂ climc 24074 D cdv 24075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-map 8144 df-pm 8145 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fi 8607 df-sup 8638 df-inf 8639 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11036 df-nn 11380 df-2 11443 df-3 11444 df-4 11445 df-5 11446 df-6 11447 df-7 11448 df-8 11449 df-9 11450 df-n0 11648 df-z 11734 df-dec 11851 df-uz 11998 df-q 12101 df-rp 12143 df-xneg 12262 df-xadd 12263 df-xmul 12264 df-icc 12499 df-fz 12649 df-seq 13125 df-exp 13184 df-cj 14252 df-re 14253 df-im 14254 df-sqrt 14388 df-abs 14389 df-struct 16268 df-ndx 16269 df-slot 16270 df-base 16272 df-plusg 16362 df-mulr 16363 df-starv 16364 df-tset 16368 df-ple 16369 df-ds 16371 df-unif 16372 df-rest 16480 df-topn 16481 df-topgen 16501 df-psmet 20145 df-xmet 20146 df-met 20147 df-bl 20148 df-mopn 20149 df-fbas 20150 df-fg 20151 df-cnfld 20154 df-top 21117 df-topon 21134 df-topsp 21156 df-bases 21169 df-cld 21242 df-ntr 21243 df-cls 21244 df-nei 21321 df-lp 21359 df-perf 21360 df-cnp 21451 df-haus 21538 df-fil 22069 df-fm 22161 df-flim 22162 df-flf 22163 df-xms 22544 df-ms 22545 df-limc 24078 df-dv 24079 |
This theorem is referenced by: efrlim 25159 |
Copyright terms: Public domain | W3C validator |