Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvcnp | Structured version Visualization version GIF version |
Description: The difference quotient is continuous at 𝐵 when the original function is differentiable at 𝐵. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) |
Ref | Expression |
---|---|
dvcnp.j | ⊢ 𝐽 = (𝐾 ↾t 𝐴) |
dvcnp.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
dvcnp.g | ⊢ 𝐺 = (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, ((𝑆 D 𝐹)‘𝐵), (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)))) |
Ref | Expression |
---|---|
dvcnp | ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvcnp.g | . 2 ⊢ 𝐺 = (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, ((𝑆 D 𝐹)‘𝐵), (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)))) | |
2 | dvfg 25070 | . . . . . . 7 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | |
3 | 2 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
4 | ffun 6603 | . . . . . 6 ⊢ ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹)) | |
5 | funfvbrb 6928 | . . . . . 6 ⊢ (Fun (𝑆 D 𝐹) → (𝐵 ∈ dom (𝑆 D 𝐹) ↔ 𝐵(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐵))) | |
6 | 3, 4, 5 | 3syl 18 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → (𝐵 ∈ dom (𝑆 D 𝐹) ↔ 𝐵(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐵))) |
7 | eqid 2738 | . . . . . 6 ⊢ (𝐾 ↾t 𝑆) = (𝐾 ↾t 𝑆) | |
8 | dvcnp.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
9 | eqid 2738 | . . . . . 6 ⊢ (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) | |
10 | recnprss 25068 | . . . . . . 7 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
11 | 10 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝑆 ⊆ ℂ) |
12 | simp2 1136 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝐹:𝐴⟶ℂ) | |
13 | simp3 1137 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝐴 ⊆ 𝑆) | |
14 | 7, 8, 9, 11, 12, 13 | eldv 25062 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → (𝐵(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐵) ↔ (𝐵 ∈ ((int‘(𝐾 ↾t 𝑆))‘𝐴) ∧ ((𝑆 D 𝐹)‘𝐵) ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) limℂ 𝐵)))) |
15 | 6, 14 | bitrd 278 | . . . 4 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → (𝐵 ∈ dom (𝑆 D 𝐹) ↔ (𝐵 ∈ ((int‘(𝐾 ↾t 𝑆))‘𝐴) ∧ ((𝑆 D 𝐹)‘𝐵) ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) limℂ 𝐵)))) |
16 | 15 | simplbda 500 | . . 3 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → ((𝑆 D 𝐹)‘𝐵) ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) limℂ 𝐵)) |
17 | 13, 11 | sstrd 3931 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝐴 ⊆ ℂ) |
18 | 17 | adantr 481 | . . . 4 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐴 ⊆ ℂ) |
19 | 11, 12, 13 | dvbss 25065 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → dom (𝑆 D 𝐹) ⊆ 𝐴) |
20 | 19 | sselda 3921 | . . . 4 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐵 ∈ 𝐴) |
21 | eldifsn 4720 | . . . . 5 ⊢ (𝑧 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵)) | |
22 | 12 | adantr 481 | . . . . . 6 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐹:𝐴⟶ℂ) |
23 | 22, 18, 20 | dvlem 25060 | . . . . 5 ⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) ∈ ℂ) |
24 | 21, 23 | sylan2br 595 | . . . 4 ⊢ ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) ∧ (𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵)) → (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) ∈ ℂ) |
25 | dvcnp.j | . . . 4 ⊢ 𝐽 = (𝐾 ↾t 𝐴) | |
26 | 18, 20, 24, 25, 8 | limcmpt2 25048 | . . 3 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → (((𝑆 D 𝐹)‘𝐵) ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) limℂ 𝐵) ↔ (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, ((𝑆 D 𝐹)‘𝐵), (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)))) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
27 | 16, 26 | mpbid 231 | . 2 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, ((𝑆 D 𝐹)‘𝐵), (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)))) ∈ ((𝐽 CnP 𝐾)‘𝐵)) |
28 | 1, 27 | eqeltrid 2843 | 1 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3884 ⊆ wss 3887 ifcif 4459 {csn 4561 {cpr 4563 class class class wbr 5074 ↦ cmpt 5157 dom cdm 5589 Fun wfun 6427 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 − cmin 11205 / cdiv 11632 ↾t crest 17131 TopOpenctopn 17132 ℂfldccnfld 20597 intcnt 22168 CnP ccnp 22376 limℂ climc 25026 D cdv 25027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fi 9170 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-icc 13086 df-fz 13240 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-starv 16977 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-rest 17133 df-topn 17134 df-topgen 17154 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-fbas 20594 df-fg 20595 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-lp 22287 df-perf 22288 df-cnp 22379 df-haus 22466 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-xms 23473 df-ms 23474 df-limc 25030 df-dv 25031 |
This theorem is referenced by: efrlim 26119 |
Copyright terms: Public domain | W3C validator |