Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnp Structured version   Visualization version   GIF version

Theorem dvcnp 24130
 Description: The difference quotient is continuous at 𝐵 when the original function is differentiable at 𝐵. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvcnp.j 𝐽 = (𝐾t 𝐴)
dvcnp.k 𝐾 = (TopOpen‘ℂfld)
dvcnp.g 𝐺 = (𝑧𝐴 ↦ if(𝑧 = 𝐵, ((𝑆 D 𝐹)‘𝐵), (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))))
Assertion
Ref Expression
dvcnp (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹   𝑧,𝐾   𝑧,𝑆   𝑧,𝐽
Allowed substitution hint:   𝐺(𝑧)

Proof of Theorem dvcnp
StepHypRef Expression
1 dvcnp.g . 2 𝐺 = (𝑧𝐴 ↦ if(𝑧 = 𝐵, ((𝑆 D 𝐹)‘𝐵), (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))))
2 dvfg 24118 . . . . . . 7 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
323ad2ant1 1124 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
4 ffun 6296 . . . . . 6 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
5 funfvbrb 6595 . . . . . 6 (Fun (𝑆 D 𝐹) → (𝐵 ∈ dom (𝑆 D 𝐹) ↔ 𝐵(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐵)))
63, 4, 53syl 18 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (𝐵 ∈ dom (𝑆 D 𝐹) ↔ 𝐵(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐵)))
7 eqid 2778 . . . . . 6 (𝐾t 𝑆) = (𝐾t 𝑆)
8 dvcnp.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
9 eqid 2778 . . . . . 6 (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)))
10 recnprss 24116 . . . . . . 7 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
11103ad2ant1 1124 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝑆 ⊆ ℂ)
12 simp2 1128 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝐹:𝐴⟶ℂ)
13 simp3 1129 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝐴𝑆)
147, 8, 9, 11, 12, 13eldv 24110 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (𝐵(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐵) ↔ (𝐵 ∈ ((int‘(𝐾t 𝑆))‘𝐴) ∧ ((𝑆 D 𝐹)‘𝐵) ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))) lim 𝐵))))
156, 14bitrd 271 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (𝐵 ∈ dom (𝑆 D 𝐹) ↔ (𝐵 ∈ ((int‘(𝐾t 𝑆))‘𝐴) ∧ ((𝑆 D 𝐹)‘𝐵) ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))) lim 𝐵))))
1615simplbda 495 . . 3 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → ((𝑆 D 𝐹)‘𝐵) ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))) lim 𝐵))
1713, 11sstrd 3831 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝐴 ⊆ ℂ)
1817adantr 474 . . . 4 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐴 ⊆ ℂ)
1911, 12, 13dvbss 24113 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → dom (𝑆 D 𝐹) ⊆ 𝐴)
2019sselda 3821 . . . 4 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐵𝐴)
21 eldifsn 4550 . . . . 5 (𝑧 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑧𝐴𝑧𝐵))
2212adantr 474 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐹:𝐴⟶ℂ)
2322, 18, 20dvlem 24108 . . . . 5 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) ∈ ℂ)
2421, 23sylan2br 588 . . . 4 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) ∧ (𝑧𝐴𝑧𝐵)) → (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) ∈ ℂ)
25 dvcnp.j . . . 4 𝐽 = (𝐾t 𝐴)
2618, 20, 24, 25, 8limcmpt2 24096 . . 3 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → (((𝑆 D 𝐹)‘𝐵) ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))) lim 𝐵) ↔ (𝑧𝐴 ↦ if(𝑧 = 𝐵, ((𝑆 D 𝐹)‘𝐵), (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)))) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
2716, 26mpbid 224 . 2 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → (𝑧𝐴 ↦ if(𝑧 = 𝐵, ((𝑆 D 𝐹)‘𝐵), (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)))) ∈ ((𝐽 CnP 𝐾)‘𝐵))
281, 27syl5eqel 2863 1 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∧ w3a 1071   = wceq 1601   ∈ wcel 2107   ≠ wne 2969   ∖ cdif 3789   ⊆ wss 3792  ifcif 4307  {csn 4398  {cpr 4400   class class class wbr 4888   ↦ cmpt 4967  dom cdm 5357  Fun wfun 6131  ⟶wf 6133  ‘cfv 6137  (class class class)co 6924  ℂcc 10272  ℝcr 10273   − cmin 10608   / cdiv 11035   ↾t crest 16478  TopOpenctopn 16479  ℂfldccnfld 20153  intcnt 21240   CnP ccnp 21448   limℂ climc 24074   D cdv 24075 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-pm 8145  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fi 8607  df-sup 8638  df-inf 8639  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11036  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-7 11448  df-8 11449  df-9 11450  df-n0 11648  df-z 11734  df-dec 11851  df-uz 11998  df-q 12101  df-rp 12143  df-xneg 12262  df-xadd 12263  df-xmul 12264  df-icc 12499  df-fz 12649  df-seq 13125  df-exp 13184  df-cj 14252  df-re 14253  df-im 14254  df-sqrt 14388  df-abs 14389  df-struct 16268  df-ndx 16269  df-slot 16270  df-base 16272  df-plusg 16362  df-mulr 16363  df-starv 16364  df-tset 16368  df-ple 16369  df-ds 16371  df-unif 16372  df-rest 16480  df-topn 16481  df-topgen 16501  df-psmet 20145  df-xmet 20146  df-met 20147  df-bl 20148  df-mopn 20149  df-fbas 20150  df-fg 20151  df-cnfld 20154  df-top 21117  df-topon 21134  df-topsp 21156  df-bases 21169  df-cld 21242  df-ntr 21243  df-cls 21244  df-nei 21321  df-lp 21359  df-perf 21360  df-cnp 21451  df-haus 21538  df-fil 22069  df-fm 22161  df-flim 22162  df-flf 22163  df-xms 22544  df-ms 22545  df-limc 24078  df-dv 24079 This theorem is referenced by:  efrlim  25159
 Copyright terms: Public domain W3C validator