Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvnxpaek Structured version   Visualization version   GIF version

Theorem dvnxpaek 42584
Description: The 𝑛-th derivative of the polynomial (x+A)^K. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvnxpaek.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvnxpaek.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
dvnxpaek.a (𝜑𝐴 ∈ ℂ)
dvnxpaek.k (𝜑𝐾 ∈ ℕ0)
dvnxpaek.f 𝐹 = (𝑥𝑋 ↦ ((𝑥 + 𝐴)↑𝐾))
Assertion
Ref Expression
dvnxpaek ((𝜑𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ if(𝐾 < 𝑁, 0, (((!‘𝐾) / (!‘(𝐾𝑁))) · ((𝑥 + 𝐴)↑(𝐾𝑁))))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem dvnxpaek
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6645 . . 3 (𝑛 = 0 → ((𝑆 D𝑛 𝐹)‘𝑛) = ((𝑆 D𝑛 𝐹)‘0))
2 breq2 5034 . . . . 5 (𝑛 = 0 → (𝐾 < 𝑛𝐾 < 0))
3 eqidd 2799 . . . . 5 (𝑛 = 0 → 0 = 0)
4 oveq2 7143 . . . . . . . 8 (𝑛 = 0 → (𝐾𝑛) = (𝐾 − 0))
54fveq2d 6649 . . . . . . 7 (𝑛 = 0 → (!‘(𝐾𝑛)) = (!‘(𝐾 − 0)))
65oveq2d 7151 . . . . . 6 (𝑛 = 0 → ((!‘𝐾) / (!‘(𝐾𝑛))) = ((!‘𝐾) / (!‘(𝐾 − 0))))
74oveq2d 7151 . . . . . 6 (𝑛 = 0 → ((𝑥 + 𝐴)↑(𝐾𝑛)) = ((𝑥 + 𝐴)↑(𝐾 − 0)))
86, 7oveq12d 7153 . . . . 5 (𝑛 = 0 → (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))) = (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0))))
92, 3, 8ifbieq12d 4452 . . . 4 (𝑛 = 0 → if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛)))) = if(𝐾 < 0, 0, (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0)))))
109mpteq2dv 5126 . . 3 (𝑛 = 0 → (𝑥𝑋 ↦ if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))))) = (𝑥𝑋 ↦ if(𝐾 < 0, 0, (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0))))))
111, 10eqeq12d 2814 . 2 (𝑛 = 0 → (((𝑆 D𝑛 𝐹)‘𝑛) = (𝑥𝑋 ↦ if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))))) ↔ ((𝑆 D𝑛 𝐹)‘0) = (𝑥𝑋 ↦ if(𝐾 < 0, 0, (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0)))))))
12 fveq2 6645 . . 3 (𝑛 = 𝑚 → ((𝑆 D𝑛 𝐹)‘𝑛) = ((𝑆 D𝑛 𝐹)‘𝑚))
13 breq2 5034 . . . . 5 (𝑛 = 𝑚 → (𝐾 < 𝑛𝐾 < 𝑚))
14 eqidd 2799 . . . . 5 (𝑛 = 𝑚 → 0 = 0)
15 oveq2 7143 . . . . . . . 8 (𝑛 = 𝑚 → (𝐾𝑛) = (𝐾𝑚))
1615fveq2d 6649 . . . . . . 7 (𝑛 = 𝑚 → (!‘(𝐾𝑛)) = (!‘(𝐾𝑚)))
1716oveq2d 7151 . . . . . 6 (𝑛 = 𝑚 → ((!‘𝐾) / (!‘(𝐾𝑛))) = ((!‘𝐾) / (!‘(𝐾𝑚))))
1815oveq2d 7151 . . . . . 6 (𝑛 = 𝑚 → ((𝑥 + 𝐴)↑(𝐾𝑛)) = ((𝑥 + 𝐴)↑(𝐾𝑚)))
1917, 18oveq12d 7153 . . . . 5 (𝑛 = 𝑚 → (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))) = (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))
2013, 14, 19ifbieq12d 4452 . . . 4 (𝑛 = 𝑚 → if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛)))) = if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))
2120mpteq2dv 5126 . . 3 (𝑛 = 𝑚 → (𝑥𝑋 ↦ if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))))) = (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))))
2212, 21eqeq12d 2814 . 2 (𝑛 = 𝑚 → (((𝑆 D𝑛 𝐹)‘𝑛) = (𝑥𝑋 ↦ if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))))) ↔ ((𝑆 D𝑛 𝐹)‘𝑚) = (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))))
23 fveq2 6645 . . 3 (𝑛 = (𝑚 + 1) → ((𝑆 D𝑛 𝐹)‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑚 + 1)))
24 breq2 5034 . . . . 5 (𝑛 = (𝑚 + 1) → (𝐾 < 𝑛𝐾 < (𝑚 + 1)))
25 eqidd 2799 . . . . 5 (𝑛 = (𝑚 + 1) → 0 = 0)
26 oveq2 7143 . . . . . . . 8 (𝑛 = (𝑚 + 1) → (𝐾𝑛) = (𝐾 − (𝑚 + 1)))
2726fveq2d 6649 . . . . . . 7 (𝑛 = (𝑚 + 1) → (!‘(𝐾𝑛)) = (!‘(𝐾 − (𝑚 + 1))))
2827oveq2d 7151 . . . . . 6 (𝑛 = (𝑚 + 1) → ((!‘𝐾) / (!‘(𝐾𝑛))) = ((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))))
2926oveq2d 7151 . . . . . 6 (𝑛 = (𝑚 + 1) → ((𝑥 + 𝐴)↑(𝐾𝑛)) = ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1))))
3028, 29oveq12d 7153 . . . . 5 (𝑛 = (𝑚 + 1) → (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))) = (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))
3124, 25, 30ifbieq12d 4452 . . . 4 (𝑛 = (𝑚 + 1) → if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛)))) = if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1))))))
3231mpteq2dv 5126 . . 3 (𝑛 = (𝑚 + 1) → (𝑥𝑋 ↦ if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))))) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
3323, 32eqeq12d 2814 . 2 (𝑛 = (𝑚 + 1) → (((𝑆 D𝑛 𝐹)‘𝑛) = (𝑥𝑋 ↦ if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))))) ↔ ((𝑆 D𝑛 𝐹)‘(𝑚 + 1)) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1))))))))
34 fveq2 6645 . . 3 (𝑛 = 𝑁 → ((𝑆 D𝑛 𝐹)‘𝑛) = ((𝑆 D𝑛 𝐹)‘𝑁))
35 breq2 5034 . . . . 5 (𝑛 = 𝑁 → (𝐾 < 𝑛𝐾 < 𝑁))
36 eqidd 2799 . . . . 5 (𝑛 = 𝑁 → 0 = 0)
37 oveq2 7143 . . . . . . . 8 (𝑛 = 𝑁 → (𝐾𝑛) = (𝐾𝑁))
3837fveq2d 6649 . . . . . . 7 (𝑛 = 𝑁 → (!‘(𝐾𝑛)) = (!‘(𝐾𝑁)))
3938oveq2d 7151 . . . . . 6 (𝑛 = 𝑁 → ((!‘𝐾) / (!‘(𝐾𝑛))) = ((!‘𝐾) / (!‘(𝐾𝑁))))
4037oveq2d 7151 . . . . . 6 (𝑛 = 𝑁 → ((𝑥 + 𝐴)↑(𝐾𝑛)) = ((𝑥 + 𝐴)↑(𝐾𝑁)))
4139, 40oveq12d 7153 . . . . 5 (𝑛 = 𝑁 → (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))) = (((!‘𝐾) / (!‘(𝐾𝑁))) · ((𝑥 + 𝐴)↑(𝐾𝑁))))
4235, 36, 41ifbieq12d 4452 . . . 4 (𝑛 = 𝑁 → if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛)))) = if(𝐾 < 𝑁, 0, (((!‘𝐾) / (!‘(𝐾𝑁))) · ((𝑥 + 𝐴)↑(𝐾𝑁)))))
4342mpteq2dv 5126 . . 3 (𝑛 = 𝑁 → (𝑥𝑋 ↦ if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))))) = (𝑥𝑋 ↦ if(𝐾 < 𝑁, 0, (((!‘𝐾) / (!‘(𝐾𝑁))) · ((𝑥 + 𝐴)↑(𝐾𝑁))))))
4434, 43eqeq12d 2814 . 2 (𝑛 = 𝑁 → (((𝑆 D𝑛 𝐹)‘𝑛) = (𝑥𝑋 ↦ if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))))) ↔ ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ if(𝐾 < 𝑁, 0, (((!‘𝐾) / (!‘(𝐾𝑁))) · ((𝑥 + 𝐴)↑(𝐾𝑁)))))))
45 dvnxpaek.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
46 recnprss 24507 . . . . 5 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
4745, 46syl 17 . . . 4 (𝜑𝑆 ⊆ ℂ)
48 cnex 10607 . . . . . 6 ℂ ∈ V
4948a1i 11 . . . . 5 (𝜑 → ℂ ∈ V)
50 dvnxpaek.x . . . . . . . . . . . 12 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
51 restsspw 16697 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t 𝑆) ⊆ 𝒫 𝑆
52 id 22 . . . . . . . . . . . . . 14 (𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
5351, 52sseldi 3913 . . . . . . . . . . . . 13 (𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆) → 𝑋 ∈ 𝒫 𝑆)
54 elpwi 4506 . . . . . . . . . . . . 13 (𝑋 ∈ 𝒫 𝑆𝑋𝑆)
5553, 54syl 17 . . . . . . . . . . . 12 (𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆) → 𝑋𝑆)
5650, 55syl 17 . . . . . . . . . . 11 (𝜑𝑋𝑆)
5756, 47sstrd 3925 . . . . . . . . . 10 (𝜑𝑋 ⊆ ℂ)
5857adantr 484 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑋 ⊆ ℂ)
59 simpr 488 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥𝑋)
6058, 59sseldd 3916 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
61 dvnxpaek.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
6261adantr 484 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
6360, 62addcld 10649 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑥 + 𝐴) ∈ ℂ)
64 dvnxpaek.k . . . . . . . 8 (𝜑𝐾 ∈ ℕ0)
6564adantr 484 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐾 ∈ ℕ0)
6663, 65expcld 13506 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑥 + 𝐴)↑𝐾) ∈ ℂ)
67 dvnxpaek.f . . . . . 6 𝐹 = (𝑥𝑋 ↦ ((𝑥 + 𝐴)↑𝐾))
6866, 67fmptd 6855 . . . . 5 (𝜑𝐹:𝑋⟶ℂ)
69 elpm2r 8407 . . . . 5 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
7049, 45, 68, 56, 69syl22anc 837 . . . 4 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
71 dvn0 24527 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
7247, 70, 71syl2anc 587 . . 3 (𝜑 → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
7367a1i 11 . . 3 (𝜑𝐹 = (𝑥𝑋 ↦ ((𝑥 + 𝐴)↑𝐾)))
7464nn0ge0d 11946 . . . . . . . 8 (𝜑 → 0 ≤ 𝐾)
75 0red 10633 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
7664nn0red 11944 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
7775, 76lenltd 10775 . . . . . . . 8 (𝜑 → (0 ≤ 𝐾 ↔ ¬ 𝐾 < 0))
7874, 77mpbid 235 . . . . . . 7 (𝜑 → ¬ 𝐾 < 0)
7978iffalsed 4436 . . . . . 6 (𝜑 → if(𝐾 < 0, 0, (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0)))) = (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0))))
8079adantr 484 . . . . 5 ((𝜑𝑥𝑋) → if(𝐾 < 0, 0, (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0)))) = (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0))))
8164nn0cnd 11945 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℂ)
8281subid1d 10975 . . . . . . . . . 10 (𝜑 → (𝐾 − 0) = 𝐾)
8382fveq2d 6649 . . . . . . . . 9 (𝜑 → (!‘(𝐾 − 0)) = (!‘𝐾))
8483oveq2d 7151 . . . . . . . 8 (𝜑 → ((!‘𝐾) / (!‘(𝐾 − 0))) = ((!‘𝐾) / (!‘𝐾)))
85 faccl 13639 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℕ)
8664, 85syl 17 . . . . . . . . . 10 (𝜑 → (!‘𝐾) ∈ ℕ)
8786nncnd 11641 . . . . . . . . 9 (𝜑 → (!‘𝐾) ∈ ℂ)
8886nnne0d 11675 . . . . . . . . 9 (𝜑 → (!‘𝐾) ≠ 0)
8987, 88dividd 11403 . . . . . . . 8 (𝜑 → ((!‘𝐾) / (!‘𝐾)) = 1)
9084, 89eqtrd 2833 . . . . . . 7 (𝜑 → ((!‘𝐾) / (!‘(𝐾 − 0))) = 1)
9182oveq2d 7151 . . . . . . 7 (𝜑 → ((𝑥 + 𝐴)↑(𝐾 − 0)) = ((𝑥 + 𝐴)↑𝐾))
9290, 91oveq12d 7153 . . . . . 6 (𝜑 → (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0))) = (1 · ((𝑥 + 𝐴)↑𝐾)))
9392adantr 484 . . . . 5 ((𝜑𝑥𝑋) → (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0))) = (1 · ((𝑥 + 𝐴)↑𝐾)))
9466mulid2d 10648 . . . . 5 ((𝜑𝑥𝑋) → (1 · ((𝑥 + 𝐴)↑𝐾)) = ((𝑥 + 𝐴)↑𝐾))
9580, 93, 943eqtrrd 2838 . . . 4 ((𝜑𝑥𝑋) → ((𝑥 + 𝐴)↑𝐾) = if(𝐾 < 0, 0, (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0)))))
9695mpteq2dva 5125 . . 3 (𝜑 → (𝑥𝑋 ↦ ((𝑥 + 𝐴)↑𝐾)) = (𝑥𝑋 ↦ if(𝐾 < 0, 0, (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0))))))
9772, 73, 963eqtrd 2837 . 2 (𝜑 → ((𝑆 D𝑛 𝐹)‘0) = (𝑥𝑋 ↦ if(𝐾 < 0, 0, (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0))))))
9847adantr 484 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → 𝑆 ⊆ ℂ)
9970adantr 484 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → 𝐹 ∈ (ℂ ↑pm 𝑆))
100 simpr 488 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
101 dvnp1 24528 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑚)))
10298, 99, 100, 101syl3anc 1368 . . . 4 ((𝜑𝑚 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑚)))
103102adantr 484 . . 3 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑆 D𝑛 𝐹)‘𝑚) = (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) → ((𝑆 D𝑛 𝐹)‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑚)))
104 oveq2 7143 . . . 4 (((𝑆 D𝑛 𝐹)‘𝑚) = (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))) → (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))))
105104adantl 485 . . 3 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑆 D𝑛 𝐹)‘𝑚) = (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) → (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))))
106 iftrue 4431 . . . . . . . . 9 (𝐾 < 𝑚 → if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))) = 0)
107106mpteq2dv 5126 . . . . . . . 8 (𝐾 < 𝑚 → (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))) = (𝑥𝑋 ↦ 0))
108107oveq2d 7151 . . . . . . 7 (𝐾 < 𝑚 → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑆 D (𝑥𝑋 ↦ 0)))
109108adantl 485 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑆 D (𝑥𝑋 ↦ 0)))
110 0cnd 10623 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
11145, 50, 110dvmptconst 42557 . . . . . . 7 (𝜑 → (𝑆 D (𝑥𝑋 ↦ 0)) = (𝑥𝑋 ↦ 0))
112111ad2antrr 725 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → (𝑆 D (𝑥𝑋 ↦ 0)) = (𝑥𝑋 ↦ 0))
11376ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → 𝐾 ∈ ℝ)
114 nn0re 11894 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
115114ad2antlr 726 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → 𝑚 ∈ ℝ)
116 simpr 488 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → 𝐾 < 𝑚)
117113, 115, 116ltled 10777 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → 𝐾𝑚)
11864nn0zd 12073 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ ℤ)
119118adantr 484 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ0) → 𝐾 ∈ ℤ)
120100nn0zd 12073 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℤ)
121 zleltp1 12021 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝐾𝑚𝐾 < (𝑚 + 1)))
122119, 120, 121syl2anc 587 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → (𝐾𝑚𝐾 < (𝑚 + 1)))
123122adantr 484 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → (𝐾𝑚𝐾 < (𝑚 + 1)))
124117, 123mpbid 235 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → 𝐾 < (𝑚 + 1))
125124iftrued 4433 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1))))) = 0)
126125mpteq2dv 5126 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))) = (𝑥𝑋 ↦ 0))
127126eqcomd 2804 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → (𝑥𝑋 ↦ 0) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
128109, 112, 1273eqtrd 2837 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
129 simpl 486 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝐾 < 𝑚) → (𝜑𝑚 ∈ ℕ0))
130 simpr 488 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝐾 < 𝑚) → ¬ 𝐾 < 𝑚)
131129, 100, 1143syl 18 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝐾 < 𝑚) → 𝑚 ∈ ℝ)
13276ad2antrr 725 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝐾 < 𝑚) → 𝐾 ∈ ℝ)
133131, 132lenltd 10775 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝐾 < 𝑚) → (𝑚𝐾 ↔ ¬ 𝐾 < 𝑚))
134130, 133mpbird 260 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝐾 < 𝑚) → 𝑚𝐾)
135 simpr 488 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → 𝑚 = 𝐾)
136114ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → 𝑚 ∈ ℝ)
13776ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → 𝐾 ∈ ℝ)
138136, 137lttri3d 10769 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → (𝑚 = 𝐾 ↔ (¬ 𝑚 < 𝐾 ∧ ¬ 𝐾 < 𝑚)))
139135, 138mpbid 235 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → (¬ 𝑚 < 𝐾 ∧ ¬ 𝐾 < 𝑚))
140 simpr 488 . . . . . . . . . . . . 13 ((¬ 𝑚 < 𝐾 ∧ ¬ 𝐾 < 𝑚) → ¬ 𝐾 < 𝑚)
141139, 140syl 17 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → ¬ 𝐾 < 𝑚)
142141iffalsed 4436 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))) = (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))
143142mpteq2dv 5126 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))) = (𝑥𝑋 ↦ (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))
144143oveq2d 7151 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑆 D (𝑥𝑋 ↦ (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))))
145 oveq2 7143 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝐾 → (𝐾𝑚) = (𝐾𝐾))
146145fveq2d 6649 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝐾 → (!‘(𝐾𝑚)) = (!‘(𝐾𝐾)))
147146adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 = 𝐾) → (!‘(𝐾𝑚)) = (!‘(𝐾𝐾)))
14881subidd 10974 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐾𝐾) = 0)
149148fveq2d 6649 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (!‘(𝐾𝐾)) = (!‘0))
150 fac0 13632 . . . . . . . . . . . . . . . . . . . . . 22 (!‘0) = 1
151150a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (!‘0) = 1)
152149, 151eqtrd 2833 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (!‘(𝐾𝐾)) = 1)
153152adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 = 𝐾) → (!‘(𝐾𝐾)) = 1)
154147, 153eqtrd 2833 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 = 𝐾) → (!‘(𝐾𝑚)) = 1)
155154oveq2d 7151 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 = 𝐾) → ((!‘𝐾) / (!‘(𝐾𝑚))) = ((!‘𝐾) / 1))
15687div1d 11397 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((!‘𝐾) / 1) = (!‘𝐾))
157156adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 = 𝐾) → ((!‘𝐾) / 1) = (!‘𝐾))
158155, 157eqtrd 2833 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 = 𝐾) → ((!‘𝐾) / (!‘(𝐾𝑚))) = (!‘𝐾))
159158adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑚 = 𝐾) ∧ 𝑥𝑋) → ((!‘𝐾) / (!‘(𝐾𝑚))) = (!‘𝐾))
160145adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 = 𝐾) → (𝐾𝑚) = (𝐾𝐾))
161148adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 = 𝐾) → (𝐾𝐾) = 0)
162160, 161eqtrd 2833 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 = 𝐾) → (𝐾𝑚) = 0)
163162oveq2d 7151 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 = 𝐾) → ((𝑥 + 𝐴)↑(𝐾𝑚)) = ((𝑥 + 𝐴)↑0))
164163adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 = 𝐾) ∧ 𝑥𝑋) → ((𝑥 + 𝐴)↑(𝐾𝑚)) = ((𝑥 + 𝐴)↑0))
16563exp0d 13500 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑋) → ((𝑥 + 𝐴)↑0) = 1)
166165adantlr 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 = 𝐾) ∧ 𝑥𝑋) → ((𝑥 + 𝐴)↑0) = 1)
167164, 166eqtrd 2833 . . . . . . . . . . . . . . 15 (((𝜑𝑚 = 𝐾) ∧ 𝑥𝑋) → ((𝑥 + 𝐴)↑(𝐾𝑚)) = 1)
168159, 167oveq12d 7153 . . . . . . . . . . . . . 14 (((𝜑𝑚 = 𝐾) ∧ 𝑥𝑋) → (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))) = ((!‘𝐾) · 1))
16987mulid1d 10647 . . . . . . . . . . . . . . 15 (𝜑 → ((!‘𝐾) · 1) = (!‘𝐾))
170169ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑚 = 𝐾) ∧ 𝑥𝑋) → ((!‘𝐾) · 1) = (!‘𝐾))
171168, 170eqtrd 2833 . . . . . . . . . . . . 13 (((𝜑𝑚 = 𝐾) ∧ 𝑥𝑋) → (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))) = (!‘𝐾))
172171mpteq2dva 5125 . . . . . . . . . . . 12 ((𝜑𝑚 = 𝐾) → (𝑥𝑋 ↦ (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))) = (𝑥𝑋 ↦ (!‘𝐾)))
173172oveq2d 7151 . . . . . . . . . . 11 ((𝜑𝑚 = 𝐾) → (𝑆 D (𝑥𝑋 ↦ (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))) = (𝑆 D (𝑥𝑋 ↦ (!‘𝐾))))
17445, 50, 87dvmptconst 42557 . . . . . . . . . . . 12 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (!‘𝐾))) = (𝑥𝑋 ↦ 0))
175174adantr 484 . . . . . . . . . . 11 ((𝜑𝑚 = 𝐾) → (𝑆 D (𝑥𝑋 ↦ (!‘𝐾))) = (𝑥𝑋 ↦ 0))
176173, 175eqtrd 2833 . . . . . . . . . 10 ((𝜑𝑚 = 𝐾) → (𝑆 D (𝑥𝑋 ↦ (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))) = (𝑥𝑋 ↦ 0))
177176adantlr 714 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → (𝑆 D (𝑥𝑋 ↦ (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))) = (𝑥𝑋 ↦ 0))
178137ltp1d 11559 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → 𝐾 < (𝐾 + 1))
179 oveq1 7142 . . . . . . . . . . . . . . 15 (𝑚 = 𝐾 → (𝑚 + 1) = (𝐾 + 1))
180179eqcomd 2804 . . . . . . . . . . . . . 14 (𝑚 = 𝐾 → (𝐾 + 1) = (𝑚 + 1))
181180adantl 485 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → (𝐾 + 1) = (𝑚 + 1))
182178, 181breqtrd 5056 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → 𝐾 < (𝑚 + 1))
183182iftrued 4433 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1))))) = 0)
184183eqcomd 2804 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → 0 = if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1))))))
185184mpteq2dv 5126 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → (𝑥𝑋 ↦ 0) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
186144, 177, 1853eqtrd 2837 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
187186adantlr 714 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚𝐾) ∧ 𝑚 = 𝐾) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
188 simpll 766 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚𝐾) ∧ ¬ 𝑚 = 𝐾) → (𝜑𝑚 ∈ ℕ0))
189188, 100, 1143syl 18 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚𝐾) ∧ ¬ 𝑚 = 𝐾) → 𝑚 ∈ ℝ)
19076ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚𝐾) ∧ ¬ 𝑚 = 𝐾) → 𝐾 ∈ ℝ)
191 simplr 768 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚𝐾) ∧ ¬ 𝑚 = 𝐾) → 𝑚𝐾)
192 neqne 2995 . . . . . . . . . . 11 𝑚 = 𝐾𝑚𝐾)
193192necomd 3042 . . . . . . . . . 10 𝑚 = 𝐾𝐾𝑚)
194193adantl 485 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚𝐾) ∧ ¬ 𝑚 = 𝐾) → 𝐾𝑚)
195189, 190, 191, 194leneltd 10783 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚𝐾) ∧ ¬ 𝑚 = 𝐾) → 𝑚 < 𝐾)
196114ad2antlr 726 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 𝑚 ∈ ℝ)
19776ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 𝐾 ∈ ℝ)
198 simpr 488 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 𝑚 < 𝐾)
199196, 197, 198ltled 10777 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 𝑚𝐾)
200196, 197lenltd 10775 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑚𝐾 ↔ ¬ 𝐾 < 𝑚))
201199, 200mpbid 235 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ¬ 𝐾 < 𝑚)
202201iffalsed 4436 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))) = (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))
203202mpteq2dv 5126 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))) = (𝑥𝑋 ↦ (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))
204203oveq2d 7151 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑆 D (𝑥𝑋 ↦ (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))))
20545adantr 484 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 𝑆 ∈ {ℝ, ℂ})
206205adantr 484 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 𝑆 ∈ {ℝ, ℂ})
20787ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (!‘𝐾) ∈ ℂ)
208100adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 𝑚 ∈ ℕ0)
20964ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 𝐾 ∈ ℕ0)
210 nn0sub 11935 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑚𝐾 ↔ (𝐾𝑚) ∈ ℕ0))
211208, 209, 210syl2anc 587 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑚𝐾 ↔ (𝐾𝑚) ∈ ℕ0))
212199, 211mpbid 235 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝐾𝑚) ∈ ℕ0)
213 faccl 13639 . . . . . . . . . . . . . 14 ((𝐾𝑚) ∈ ℕ0 → (!‘(𝐾𝑚)) ∈ ℕ)
214212, 213syl 17 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (!‘(𝐾𝑚)) ∈ ℕ)
215214nncnd 11641 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (!‘(𝐾𝑚)) ∈ ℂ)
216214nnne0d 11675 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (!‘(𝐾𝑚)) ≠ 0)
217207, 215, 216divcld 11405 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((!‘𝐾) / (!‘(𝐾𝑚))) ∈ ℂ)
218217adantr 484 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ((!‘𝐾) / (!‘(𝐾𝑚))) ∈ ℂ)
21975ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → 0 ∈ ℝ)
22050adantr 484 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ0) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
221220adantr 484 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
222206, 221, 217dvmptconst 42557 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑆 D (𝑥𝑋 ↦ ((!‘𝐾) / (!‘(𝐾𝑚))))) = (𝑥𝑋 ↦ 0))
22363adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑥𝑋) → (𝑥 + 𝐴) ∈ ℂ)
224223adantlr 714 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (𝑥 + 𝐴) ∈ ℂ)
225212adantr 484 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (𝐾𝑚) ∈ ℕ0)
226224, 225expcld 13506 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ((𝑥 + 𝐴)↑(𝐾𝑚)) ∈ ℂ)
227225nn0cnd 11945 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (𝐾𝑚) ∈ ℂ)
228212nn0zd 12073 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝐾𝑚) ∈ ℤ)
229196, 197posdifd 11216 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑚 < 𝐾 ↔ 0 < (𝐾𝑚)))
230198, 229mpbid 235 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 0 < (𝐾𝑚))
231228, 230jca 515 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((𝐾𝑚) ∈ ℤ ∧ 0 < (𝐾𝑚)))
232 elnnz 11979 . . . . . . . . . . . . . . 15 ((𝐾𝑚) ∈ ℕ ↔ ((𝐾𝑚) ∈ ℤ ∧ 0 < (𝐾𝑚)))
233231, 232sylibr 237 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝐾𝑚) ∈ ℕ)
234 nnm1nn0 11926 . . . . . . . . . . . . . 14 ((𝐾𝑚) ∈ ℕ → ((𝐾𝑚) − 1) ∈ ℕ0)
235233, 234syl 17 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((𝐾𝑚) − 1) ∈ ℕ0)
236235adantr 484 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ((𝐾𝑚) − 1) ∈ ℕ0)
237224, 236expcld 13506 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ((𝑥 + 𝐴)↑((𝐾𝑚) − 1)) ∈ ℂ)
238227, 237mulcld 10650 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) ∈ ℂ)
23961ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 𝐴 ∈ ℂ)
240206, 221, 239, 233dvxpaek 42582 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑆 D (𝑥𝑋 ↦ ((𝑥 + 𝐴)↑(𝐾𝑚)))) = (𝑥𝑋 ↦ ((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1)))))
241206, 218, 219, 222, 226, 238, 240dvmptmul 24564 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑆 D (𝑥𝑋 ↦ (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))) = (𝑥𝑋 ↦ ((0 · ((𝑥 + 𝐴)↑(𝐾𝑚))) + (((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) · ((!‘𝐾) / (!‘(𝐾𝑚)))))))
242226mul02d 10827 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (0 · ((𝑥 + 𝐴)↑(𝐾𝑚))) = 0)
243242oveq1d 7150 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ((0 · ((𝑥 + 𝐴)↑(𝐾𝑚))) + (((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) · ((!‘𝐾) / (!‘(𝐾𝑚))))) = (0 + (((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) · ((!‘𝐾) / (!‘(𝐾𝑚))))))
244238, 218mulcld 10650 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) · ((!‘𝐾) / (!‘(𝐾𝑚)))) ∈ ℂ)
245244addid2d 10830 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (0 + (((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) · ((!‘𝐾) / (!‘(𝐾𝑚))))) = (((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) · ((!‘𝐾) / (!‘(𝐾𝑚)))))
246120adantr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 𝑚 ∈ ℤ)
247119adantr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 𝐾 ∈ ℤ)
248 zltp1le 12020 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 < 𝐾 ↔ (𝑚 + 1) ≤ 𝐾))
249246, 247, 248syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑚 < 𝐾 ↔ (𝑚 + 1) ≤ 𝐾))
250198, 249mpbid 235 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑚 + 1) ≤ 𝐾)
251 peano2re 10802 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
252196, 251syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑚 + 1) ∈ ℝ)
253252, 197lenltd 10775 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((𝑚 + 1) ≤ 𝐾 ↔ ¬ 𝐾 < (𝑚 + 1)))
254250, 253mpbid 235 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ¬ 𝐾 < (𝑚 + 1))
255254adantr 484 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ¬ 𝐾 < (𝑚 + 1))
256255iffalsed 4436 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1))))) = (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))
257218, 227, 237mulassd 10653 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ((((!‘𝐾) / (!‘(𝐾𝑚))) · (𝐾𝑚)) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) = (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1)))))
258257eqcomd 2804 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1)))) = ((((!‘𝐾) / (!‘(𝐾𝑚))) · (𝐾𝑚)) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))))
259233nncnd 11641 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝐾𝑚) ∈ ℂ)
260207, 215, 259, 216div32d 11428 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (((!‘𝐾) / (!‘(𝐾𝑚))) · (𝐾𝑚)) = ((!‘𝐾) · ((𝐾𝑚) / (!‘(𝐾𝑚)))))
261 facnn2 13638 . . . . . . . . . . . . . . . . . . . 20 ((𝐾𝑚) ∈ ℕ → (!‘(𝐾𝑚)) = ((!‘((𝐾𝑚) − 1)) · (𝐾𝑚)))
262233, 261syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (!‘(𝐾𝑚)) = ((!‘((𝐾𝑚) − 1)) · (𝐾𝑚)))
263262oveq2d 7151 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((𝐾𝑚) / (!‘(𝐾𝑚))) = ((𝐾𝑚) / ((!‘((𝐾𝑚) − 1)) · (𝐾𝑚))))
264 faccl 13639 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾𝑚) − 1) ∈ ℕ0 → (!‘((𝐾𝑚) − 1)) ∈ ℕ)
265234, 264syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾𝑚) ∈ ℕ → (!‘((𝐾𝑚) − 1)) ∈ ℕ)
266265nncnd 11641 . . . . . . . . . . . . . . . . . . . 20 ((𝐾𝑚) ∈ ℕ → (!‘((𝐾𝑚) − 1)) ∈ ℂ)
267233, 266syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (!‘((𝐾𝑚) − 1)) ∈ ℂ)
268235, 264syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (!‘((𝐾𝑚) − 1)) ∈ ℕ)
269 nnne0 11659 . . . . . . . . . . . . . . . . . . . 20 ((!‘((𝐾𝑚) − 1)) ∈ ℕ → (!‘((𝐾𝑚) − 1)) ≠ 0)
270268, 269syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (!‘((𝐾𝑚) − 1)) ≠ 0)
271 nnne0 11659 . . . . . . . . . . . . . . . . . . . 20 ((𝐾𝑚) ∈ ℕ → (𝐾𝑚) ≠ 0)
272233, 271syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝐾𝑚) ≠ 0)
273267, 259, 270, 272divcan8d 41944 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((𝐾𝑚) / ((!‘((𝐾𝑚) − 1)) · (𝐾𝑚))) = (1 / (!‘((𝐾𝑚) − 1))))
274263, 273eqtrd 2833 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((𝐾𝑚) / (!‘(𝐾𝑚))) = (1 / (!‘((𝐾𝑚) − 1))))
275274oveq2d 7151 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((!‘𝐾) · ((𝐾𝑚) / (!‘(𝐾𝑚)))) = ((!‘𝐾) · (1 / (!‘((𝐾𝑚) − 1)))))
276 eqidd 2799 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((!‘𝐾) · (1 / (!‘((𝐾𝑚) − 1)))) = ((!‘𝐾) · (1 / (!‘((𝐾𝑚) − 1)))))
277260, 275, 2763eqtrd 2837 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (((!‘𝐾) / (!‘(𝐾𝑚))) · (𝐾𝑚)) = ((!‘𝐾) · (1 / (!‘((𝐾𝑚) − 1)))))
278277adantr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (((!‘𝐾) / (!‘(𝐾𝑚))) · (𝐾𝑚)) = ((!‘𝐾) · (1 / (!‘((𝐾𝑚) − 1)))))
27981adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ0) → 𝐾 ∈ ℂ)
280100nn0cnd 11945 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
281 1cnd 10625 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ0) → 1 ∈ ℂ)
282279, 280, 281subsub4d 11017 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ0) → ((𝐾𝑚) − 1) = (𝐾 − (𝑚 + 1)))
283282oveq2d 7151 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ0) → ((𝑥 + 𝐴)↑((𝐾𝑚) − 1)) = ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1))))
284283ad2antrr 725 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ((𝑥 + 𝐴)↑((𝐾𝑚) − 1)) = ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1))))
285278, 284oveq12d 7153 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ((((!‘𝐾) / (!‘(𝐾𝑚))) · (𝐾𝑚)) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) = (((!‘𝐾) · (1 / (!‘((𝐾𝑚) − 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))
286282adantr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((𝐾𝑚) − 1) = (𝐾 − (𝑚 + 1)))
287286eqcomd 2804 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝐾 − (𝑚 + 1)) = ((𝐾𝑚) − 1))
288287fveq2d 6649 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (!‘(𝐾 − (𝑚 + 1))) = (!‘((𝐾𝑚) − 1)))
289288oveq2d 7151 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) = ((!‘𝐾) / (!‘((𝐾𝑚) − 1))))
290207, 267, 270divrecd 11408 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((!‘𝐾) / (!‘((𝐾𝑚) − 1))) = ((!‘𝐾) · (1 / (!‘((𝐾𝑚) − 1)))))
291289, 290eqtr2d 2834 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((!‘𝐾) · (1 / (!‘((𝐾𝑚) − 1)))) = ((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))))
292291adantr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ((!‘𝐾) · (1 / (!‘((𝐾𝑚) − 1)))) = ((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))))
293292oveq1d 7150 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (((!‘𝐾) · (1 / (!‘((𝐾𝑚) − 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))) = (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))
294258, 285, 2933eqtrrd 2838 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))) = (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1)))))
295218, 238mulcomd 10651 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1)))) = (((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) · ((!‘𝐾) / (!‘(𝐾𝑚)))))
296256, 294, 2953eqtrrd 2838 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) · ((!‘𝐾) / (!‘(𝐾𝑚)))) = if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1))))))
297243, 245, 2963eqtrd 2837 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ((0 · ((𝑥 + 𝐴)↑(𝐾𝑚))) + (((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) · ((!‘𝐾) / (!‘(𝐾𝑚))))) = if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1))))))
298297mpteq2dva 5125 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑥𝑋 ↦ ((0 · ((𝑥 + 𝐴)↑(𝐾𝑚))) + (((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) · ((!‘𝐾) / (!‘(𝐾𝑚)))))) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
299204, 241, 2983eqtrd 2837 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
300188, 195, 299syl2anc 587 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚𝐾) ∧ ¬ 𝑚 = 𝐾) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
301187, 300pm2.61dan 812 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚𝐾) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
302129, 134, 301syl2anc 587 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝐾 < 𝑚) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
303128, 302pm2.61dan 812 . . . 4 ((𝜑𝑚 ∈ ℕ0) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
304303adantr 484 . . 3 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑆 D𝑛 𝐹)‘𝑚) = (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
305103, 105, 3043eqtrd 2837 . 2 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑆 D𝑛 𝐹)‘𝑚) = (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) → ((𝑆 D𝑛 𝐹)‘(𝑚 + 1)) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
30611, 22, 33, 44, 97, 305nn0indd 12067 1 ((𝜑𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ if(𝐾 < 𝑁, 0, (((!‘𝐾) / (!‘(𝐾𝑁))) · ((𝑥 + 𝐴)↑(𝐾𝑁))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  wss 3881  ifcif 4425  𝒫 cpw 4497  {cpr 4527   class class class wbr 5030  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  pm cpm 8390  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  0cn0 11885  cz 11969  cexp 13425  !cfa 13629  t crest 16686  TopOpenctopn 16687  fldccnfld 20091   D cdv 24466   D𝑛 cdvn 24467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-fac 13630  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-dvn 24471
This theorem is referenced by:  etransclem17  42893
  Copyright terms: Public domain W3C validator