Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdmsscn | Structured version Visualization version GIF version |
Description: 𝑋 is a subset of ℂ. This statement is very often used when computing derivatives. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
dvdmsscn.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvdmsscn.x | ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) |
Ref | Expression |
---|---|
dvdmsscn | ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restsspw 17059 | . . . 4 ⊢ ((TopOpen‘ℂfld) ↾t 𝑆) ⊆ 𝒫 𝑆 | |
2 | dvdmsscn.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) | |
3 | 1, 2 | sselid 3915 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝒫 𝑆) |
4 | elpwi 4539 | . . 3 ⊢ (𝑋 ∈ 𝒫 𝑆 → 𝑋 ⊆ 𝑆) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
6 | dvdmsscn.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
7 | recnprss 24973 | . . 3 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
9 | 5, 8 | sstrd 3927 | 1 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 {cpr 4560 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 ↾t crest 17048 TopOpenctopn 17049 ℂfldccnfld 20510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-rest 17050 |
This theorem is referenced by: dvxpaek 43371 etransclem17 43682 etransclem18 43683 etransclem20 43685 etransclem21 43686 etransclem22 43687 etransclem29 43694 etransclem31 43696 etransclem34 43699 etransclem43 43708 etransclem46 43711 |
Copyright terms: Public domain | W3C validator |