| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdmsscn | Structured version Visualization version GIF version | ||
| Description: 𝑋 is a subset of ℂ. This statement is very often used when computing derivatives. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| dvdmsscn.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvdmsscn.x | ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) |
| Ref | Expression |
|---|---|
| dvdmsscn | ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restsspw 17335 | . . . 4 ⊢ ((TopOpen‘ℂfld) ↾t 𝑆) ⊆ 𝒫 𝑆 | |
| 2 | dvdmsscn.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) | |
| 3 | 1, 2 | sselid 3927 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝒫 𝑆) |
| 4 | elpwi 4554 | . . 3 ⊢ (𝑋 ∈ 𝒫 𝑆 → 𝑋 ⊆ 𝑆) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 6 | dvdmsscn.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 7 | recnprss 25832 | . . 3 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 9 | 5, 8 | sstrd 3940 | 1 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3897 𝒫 cpw 4547 {cpr 4575 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 ↾t crest 17324 TopOpenctopn 17325 ℂfldccnfld 21291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-rest 17326 |
| This theorem is referenced by: dvxpaek 46048 etransclem17 46359 etransclem18 46360 etransclem20 46362 etransclem21 46363 etransclem22 46364 etransclem29 46371 etransclem31 46373 etransclem34 46376 etransclem43 46385 etransclem46 46388 |
| Copyright terms: Public domain | W3C validator |