| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdmsscn | Structured version Visualization version GIF version | ||
| Description: 𝑋 is a subset of ℂ. This statement is very often used when computing derivatives. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| dvdmsscn.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvdmsscn.x | ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) |
| Ref | Expression |
|---|---|
| dvdmsscn | ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restsspw 17370 | . . . 4 ⊢ ((TopOpen‘ℂfld) ↾t 𝑆) ⊆ 𝒫 𝑆 | |
| 2 | dvdmsscn.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) | |
| 3 | 1, 2 | sselid 3941 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝒫 𝑆) |
| 4 | elpwi 4566 | . . 3 ⊢ (𝑋 ∈ 𝒫 𝑆 → 𝑋 ⊆ 𝑆) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 6 | dvdmsscn.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 7 | recnprss 25838 | . . 3 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 9 | 5, 8 | sstrd 3954 | 1 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3911 𝒫 cpw 4559 {cpr 4587 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝcr 11043 ↾t crest 17359 TopOpenctopn 17360 ℂfldccnfld 21296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-rest 17361 |
| This theorem is referenced by: dvxpaek 45931 etransclem17 46242 etransclem18 46243 etransclem20 46245 etransclem21 46246 etransclem22 46247 etransclem29 46254 etransclem31 46256 etransclem34 46259 etransclem43 46268 etransclem46 46271 |
| Copyright terms: Public domain | W3C validator |