| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdmsscn | Structured version Visualization version GIF version | ||
| Description: 𝑋 is a subset of ℂ. This statement is very often used when computing derivatives. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| dvdmsscn.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvdmsscn.x | ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) |
| Ref | Expression |
|---|---|
| dvdmsscn | ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restsspw 17394 | . . . 4 ⊢ ((TopOpen‘ℂfld) ↾t 𝑆) ⊆ 𝒫 𝑆 | |
| 2 | dvdmsscn.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) | |
| 3 | 1, 2 | sselid 3944 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝒫 𝑆) |
| 4 | elpwi 4570 | . . 3 ⊢ (𝑋 ∈ 𝒫 𝑆 → 𝑋 ⊆ 𝑆) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 6 | dvdmsscn.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 7 | recnprss 25805 | . . 3 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 9 | 5, 8 | sstrd 3957 | 1 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3914 𝒫 cpw 4563 {cpr 4591 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 ↾t crest 17383 TopOpenctopn 17384 ℂfldccnfld 21264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-rest 17385 |
| This theorem is referenced by: dvxpaek 45938 etransclem17 46249 etransclem18 46250 etransclem20 46252 etransclem21 46253 etransclem22 46254 etransclem29 46261 etransclem31 46263 etransclem34 46266 etransclem43 46275 etransclem46 46278 |
| Copyright terms: Public domain | W3C validator |