![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdmsscn | Structured version Visualization version GIF version |
Description: 𝑋 is a subset of ℂ. This statement is very often used when computing derivatives. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
dvdmsscn.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvdmsscn.x | ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) |
Ref | Expression |
---|---|
dvdmsscn | ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restsspw 17491 | . . . 4 ⊢ ((TopOpen‘ℂfld) ↾t 𝑆) ⊆ 𝒫 𝑆 | |
2 | dvdmsscn.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) | |
3 | 1, 2 | sselid 4006 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝒫 𝑆) |
4 | elpwi 4629 | . . 3 ⊢ (𝑋 ∈ 𝒫 𝑆 → 𝑋 ⊆ 𝑆) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
6 | dvdmsscn.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
7 | recnprss 25959 | . . 3 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
9 | 5, 8 | sstrd 4019 | 1 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3976 𝒫 cpw 4622 {cpr 4650 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 ↾t crest 17480 TopOpenctopn 17481 ℂfldccnfld 21387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-rest 17482 |
This theorem is referenced by: dvxpaek 45861 etransclem17 46172 etransclem18 46173 etransclem20 46175 etransclem21 46176 etransclem22 46177 etransclem29 46184 etransclem31 46186 etransclem34 46189 etransclem43 46198 etransclem46 46201 |
Copyright terms: Public domain | W3C validator |