Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdmsscn Structured version   Visualization version   GIF version

Theorem dvdmsscn 43367
Description: 𝑋 is a subset of . This statement is very often used when computing derivatives. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvdmsscn.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvdmsscn.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
Assertion
Ref Expression
dvdmsscn (𝜑𝑋 ⊆ ℂ)

Proof of Theorem dvdmsscn
StepHypRef Expression
1 restsspw 17059 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑆) ⊆ 𝒫 𝑆
2 dvdmsscn.x . . . 4 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
31, 2sselid 3915 . . 3 (𝜑𝑋 ∈ 𝒫 𝑆)
4 elpwi 4539 . . 3 (𝑋 ∈ 𝒫 𝑆𝑋𝑆)
53, 4syl 17 . 2 (𝜑𝑋𝑆)
6 dvdmsscn.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
7 recnprss 24973 . . 3 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
86, 7syl 17 . 2 (𝜑𝑆 ⊆ ℂ)
95, 8sstrd 3927 1 (𝜑𝑋 ⊆ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3883  𝒫 cpw 4530  {cpr 4560  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  t crest 17048  TopOpenctopn 17049  fldccnfld 20510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-rest 17050
This theorem is referenced by:  dvxpaek  43371  etransclem17  43682  etransclem18  43683  etransclem20  43685  etransclem21  43686  etransclem22  43687  etransclem29  43694  etransclem31  43696  etransclem34  43699  etransclem43  43708  etransclem46  43711
  Copyright terms: Public domain W3C validator