Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdmsscn Structured version   Visualization version   GIF version

Theorem dvdmsscn 44425
Description: 𝑋 is a subset of . This statement is very often used when computing derivatives. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvdmsscn.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvdmsscn.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
Assertion
Ref Expression
dvdmsscn (𝜑𝑋 ⊆ ℂ)

Proof of Theorem dvdmsscn
StepHypRef Expression
1 restsspw 17359 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑆) ⊆ 𝒫 𝑆
2 dvdmsscn.x . . . 4 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
31, 2sselid 3976 . . 3 (𝜑𝑋 ∈ 𝒫 𝑆)
4 elpwi 4603 . . 3 (𝑋 ∈ 𝒫 𝑆𝑋𝑆)
53, 4syl 17 . 2 (𝜑𝑋𝑆)
6 dvdmsscn.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
7 recnprss 25350 . . 3 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
86, 7syl 17 . 2 (𝜑𝑆 ⊆ ℂ)
95, 8sstrd 3988 1 (𝜑𝑋 ⊆ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wss 3944  𝒫 cpw 4596  {cpr 4624  cfv 6532  (class class class)co 7393  cc 11090  cr 11091  t crest 17348  TopOpenctopn 17349  fldccnfld 20878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7708  ax-resscn 11149
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-ov 7396  df-oprab 7397  df-mpo 7398  df-1st 7957  df-2nd 7958  df-rest 17350
This theorem is referenced by:  dvxpaek  44429  etransclem17  44740  etransclem18  44741  etransclem20  44743  etransclem21  44744  etransclem22  44745  etransclem29  44752  etransclem31  44754  etransclem34  44757  etransclem43  44766  etransclem46  44769
  Copyright terms: Public domain W3C validator