Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ulmdv | Structured version Visualization version GIF version |
Description: If 𝐹 is a sequence of differentiable functions on 𝑋 which converge pointwise to 𝐺, and the derivatives of 𝐹(𝑛) converge uniformly to 𝐻, then 𝐺 is differentiable with derivative 𝐻. (Contributed by Mario Carneiro, 27-Feb-2015.) |
Ref | Expression |
---|---|
ulmdv.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
ulmdv.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
ulmdv.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
ulmdv.f | ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) |
ulmdv.g | ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
ulmdv.l | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) |
ulmdv.u | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) |
Ref | Expression |
---|---|
ulmdv | ⊢ (𝜑 → (𝑆 D 𝐺) = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulmdv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | dvfg 24975 | . . . . 5 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
4 | recnprss 24973 | . . . . . . . 8 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
5 | 1, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
6 | ulmdv.g | . . . . . . 7 ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) | |
7 | biidd 261 | . . . . . . . 8 ⊢ (𝑘 = 𝑀 → (𝑋 ⊆ 𝑆 ↔ 𝑋 ⊆ 𝑆)) | |
8 | ulmdv.z | . . . . . . . . . . 11 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
9 | ulmdv.m | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
10 | ulmdv.f | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) | |
11 | ulmdv.l | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) | |
12 | ulmdv.u | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) | |
13 | 8, 1, 9, 10, 6, 11, 12 | ulmdvlem2 25465 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) |
14 | dvbsss 24971 | . . . . . . . . . 10 ⊢ dom (𝑆 D (𝐹‘𝑘)) ⊆ 𝑆 | |
15 | 13, 14 | eqsstrrdi 3972 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑋 ⊆ 𝑆) |
16 | 15 | ralrimiva 3107 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 𝑋 ⊆ 𝑆) |
17 | uzid 12526 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
18 | 9, 17 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
19 | 18, 8 | eleqtrrdi 2850 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
20 | 7, 16, 19 | rspcdva 3554 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
21 | 5, 6, 20 | dvbss 24970 | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D 𝐺) ⊆ 𝑋) |
22 | 8, 1, 9, 10, 6, 11, 12 | ulmdvlem3 25466 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧(𝑆 D 𝐺)(𝐻‘𝑧)) |
23 | vex 3426 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
24 | fvex 6769 | . . . . . . . 8 ⊢ (𝐻‘𝑧) ∈ V | |
25 | 23, 24 | breldm 5806 | . . . . . . 7 ⊢ (𝑧(𝑆 D 𝐺)(𝐻‘𝑧) → 𝑧 ∈ dom (𝑆 D 𝐺)) |
26 | 22, 25 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ dom (𝑆 D 𝐺)) |
27 | 21, 26 | eqelssd 3938 | . . . . 5 ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) |
28 | 27 | feq2d 6570 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ)) |
29 | 3, 28 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ) |
30 | 29 | ffnd 6585 | . 2 ⊢ (𝜑 → (𝑆 D 𝐺) Fn 𝑋) |
31 | ulmcl 25445 | . . . 4 ⊢ ((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻 → 𝐻:𝑋⟶ℂ) | |
32 | 12, 31 | syl 17 | . . 3 ⊢ (𝜑 → 𝐻:𝑋⟶ℂ) |
33 | 32 | ffnd 6585 | . 2 ⊢ (𝜑 → 𝐻 Fn 𝑋) |
34 | 3 | ffund 6588 | . . . 4 ⊢ (𝜑 → Fun (𝑆 D 𝐺)) |
35 | 34 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → Fun (𝑆 D 𝐺)) |
36 | funbrfv 6802 | . . 3 ⊢ (Fun (𝑆 D 𝐺) → (𝑧(𝑆 D 𝐺)(𝐻‘𝑧) → ((𝑆 D 𝐺)‘𝑧) = (𝐻‘𝑧))) | |
37 | 35, 22, 36 | sylc 65 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((𝑆 D 𝐺)‘𝑧) = (𝐻‘𝑧)) |
38 | 30, 33, 37 | eqfnfvd 6894 | 1 ⊢ (𝜑 → (𝑆 D 𝐺) = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 {cpr 4560 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 Fun wfun 6412 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 ℂcc 10800 ℝcr 10801 ℤcz 12249 ℤ≥cuz 12511 ⇝ cli 15121 D cdv 24932 ⇝𝑢culm 25440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-cmp 22446 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 df-ulm 25441 |
This theorem is referenced by: pserdvlem2 25492 |
Copyright terms: Public domain | W3C validator |