MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmdv Structured version   Visualization version   GIF version

Theorem ulmdv 24977
Description: If 𝐹 is a sequence of differentiable functions on 𝑋 which converge pointwise to 𝐺, and the derivatives of 𝐹(𝑛) converge uniformly to 𝐻, then 𝐺 is differentiable with derivative 𝐻. (Contributed by Mario Carneiro, 27-Feb-2015.)
Hypotheses
Ref Expression
ulmdv.z 𝑍 = (ℤ𝑀)
ulmdv.s (𝜑𝑆 ∈ {ℝ, ℂ})
ulmdv.m (𝜑𝑀 ∈ ℤ)
ulmdv.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑋))
ulmdv.g (𝜑𝐺:𝑋⟶ℂ)
ulmdv.l ((𝜑𝑧𝑋) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
ulmdv.u (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻)
Assertion
Ref Expression
ulmdv (𝜑 → (𝑆 D 𝐺) = 𝐻)
Distinct variable groups:   𝑧,𝑘,𝐹   𝑧,𝐺   𝑧,𝐻   𝑘,𝑀   𝜑,𝑘,𝑧   𝑆,𝑘,𝑧   𝑘,𝑋,𝑧   𝑘,𝑍,𝑧
Allowed substitution hints:   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑧)

Proof of Theorem ulmdv
StepHypRef Expression
1 ulmdv.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvfg 24489 . . . . 5 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
31, 2syl 17 . . . 4 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
4 recnprss 24487 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
51, 4syl 17 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
6 ulmdv.g . . . . . . 7 (𝜑𝐺:𝑋⟶ℂ)
7 biidd 264 . . . . . . . 8 (𝑘 = 𝑀 → (𝑋𝑆𝑋𝑆))
8 ulmdv.z . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
9 ulmdv.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
10 ulmdv.f . . . . . . . . . . 11 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑋))
11 ulmdv.l . . . . . . . . . . 11 ((𝜑𝑧𝑋) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
12 ulmdv.u . . . . . . . . . . 11 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻)
138, 1, 9, 10, 6, 11, 12ulmdvlem2 24975 . . . . . . . . . 10 ((𝜑𝑘𝑍) → dom (𝑆 D (𝐹𝑘)) = 𝑋)
14 dvbsss 24485 . . . . . . . . . 10 dom (𝑆 D (𝐹𝑘)) ⊆ 𝑆
1513, 14eqsstrrdi 4010 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑋𝑆)
1615ralrimiva 3182 . . . . . . . 8 (𝜑 → ∀𝑘𝑍 𝑋𝑆)
17 uzid 12245 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
189, 17syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (ℤ𝑀))
1918, 8eleqtrrdi 2924 . . . . . . . 8 (𝜑𝑀𝑍)
207, 16, 19rspcdva 3617 . . . . . . 7 (𝜑𝑋𝑆)
215, 6, 20dvbss 24484 . . . . . 6 (𝜑 → dom (𝑆 D 𝐺) ⊆ 𝑋)
228, 1, 9, 10, 6, 11, 12ulmdvlem3 24976 . . . . . . 7 ((𝜑𝑧𝑋) → 𝑧(𝑆 D 𝐺)(𝐻𝑧))
23 vex 3489 . . . . . . . 8 𝑧 ∈ V
24 fvex 6669 . . . . . . . 8 (𝐻𝑧) ∈ V
2523, 24breldm 5763 . . . . . . 7 (𝑧(𝑆 D 𝐺)(𝐻𝑧) → 𝑧 ∈ dom (𝑆 D 𝐺))
2622, 25syl 17 . . . . . 6 ((𝜑𝑧𝑋) → 𝑧 ∈ dom (𝑆 D 𝐺))
2721, 26eqelssd 3976 . . . . 5 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
2827feq2d 6486 . . . 4 (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ))
293, 28mpbid 234 . . 3 (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ)
3029ffnd 6501 . 2 (𝜑 → (𝑆 D 𝐺) Fn 𝑋)
31 ulmcl 24955 . . . 4 ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻𝐻:𝑋⟶ℂ)
3212, 31syl 17 . . 3 (𝜑𝐻:𝑋⟶ℂ)
3332ffnd 6501 . 2 (𝜑𝐻 Fn 𝑋)
343ffund 6504 . . . 4 (𝜑 → Fun (𝑆 D 𝐺))
3534adantr 483 . . 3 ((𝜑𝑧𝑋) → Fun (𝑆 D 𝐺))
36 funbrfv 6702 . . 3 (Fun (𝑆 D 𝐺) → (𝑧(𝑆 D 𝐺)(𝐻𝑧) → ((𝑆 D 𝐺)‘𝑧) = (𝐻𝑧)))
3735, 22, 36sylc 65 . 2 ((𝜑𝑧𝑋) → ((𝑆 D 𝐺)‘𝑧) = (𝐻𝑧))
3830, 33, 37eqfnfvd 6791 1 (𝜑 → (𝑆 D 𝐺) = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wss 3924  {cpr 4555   class class class wbr 5052  cmpt 5132  dom cdm 5541  Fun wfun 6335  wf 6337  cfv 6341  (class class class)co 7142  m cmap 8392  cc 10521  cr 10522  cz 11968  cuz 12230  cli 14826   D cdv 24446  𝑢culm 24950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600  ax-pre-sup 10601  ax-addf 10602  ax-mulf 10603
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-se 5501  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-of 7395  df-om 7567  df-1st 7675  df-2nd 7676  df-supp 7817  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-2o 8089  df-oadd 8092  df-er 8275  df-map 8394  df-pm 8395  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8820  df-fi 8861  df-sup 8892  df-inf 8893  df-oi 8960  df-card 9354  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-div 11284  df-nn 11625  df-2 11687  df-3 11688  df-4 11689  df-5 11690  df-6 11691  df-7 11692  df-8 11693  df-9 11694  df-n0 11885  df-z 11969  df-dec 12086  df-uz 12231  df-q 12336  df-rp 12377  df-xneg 12494  df-xadd 12495  df-xmul 12496  df-ioo 12729  df-ico 12731  df-icc 12732  df-fz 12883  df-fzo 13024  df-fl 13152  df-seq 13360  df-exp 13420  df-hash 13681  df-cj 14443  df-re 14444  df-im 14445  df-sqrt 14579  df-abs 14580  df-limsup 14813  df-clim 14830  df-rlim 14831  df-struct 16468  df-ndx 16469  df-slot 16470  df-base 16472  df-sets 16473  df-ress 16474  df-plusg 16561  df-mulr 16562  df-starv 16563  df-sca 16564  df-vsca 16565  df-ip 16566  df-tset 16567  df-ple 16568  df-ds 16570  df-unif 16571  df-hom 16572  df-cco 16573  df-rest 16679  df-topn 16680  df-0g 16698  df-gsum 16699  df-topgen 16700  df-pt 16701  df-prds 16704  df-xrs 16758  df-qtop 16763  df-imas 16764  df-xps 16766  df-mre 16840  df-mrc 16841  df-acs 16843  df-mgm 17835  df-sgrp 17884  df-mnd 17895  df-submnd 17940  df-mulg 18208  df-cntz 18430  df-cmn 18891  df-psmet 20520  df-xmet 20521  df-met 20522  df-bl 20523  df-mopn 20524  df-fbas 20525  df-fg 20526  df-cnfld 20529  df-top 21485  df-topon 21502  df-topsp 21524  df-bases 21537  df-cld 21610  df-ntr 21611  df-cls 21612  df-nei 21689  df-lp 21727  df-perf 21728  df-cn 21818  df-cnp 21819  df-haus 21906  df-cmp 21978  df-tx 22153  df-hmeo 22346  df-fil 22437  df-fm 22529  df-flim 22530  df-flf 22531  df-xms 22913  df-ms 22914  df-tms 22915  df-cncf 23469  df-limc 24449  df-dv 24450  df-ulm 24951
This theorem is referenced by:  pserdvlem2  25002
  Copyright terms: Public domain W3C validator