![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ulmdv | Structured version Visualization version GIF version |
Description: If 𝐹 is a sequence of differentiable functions on 𝑋 which converge pointwise to 𝐺, and the derivatives of 𝐹(𝑛) converge uniformly to 𝐻, then 𝐺 is differentiable with derivative 𝐻. (Contributed by Mario Carneiro, 27-Feb-2015.) |
Ref | Expression |
---|---|
ulmdv.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
ulmdv.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
ulmdv.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
ulmdv.f | ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) |
ulmdv.g | ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
ulmdv.l | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) |
ulmdv.u | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) |
Ref | Expression |
---|---|
ulmdv | ⊢ (𝜑 → (𝑆 D 𝐺) = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulmdv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | dvfg 25961 | . . . . 5 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
4 | recnprss 25959 | . . . . . . . 8 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
5 | 1, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
6 | ulmdv.g | . . . . . . 7 ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) | |
7 | biidd 262 | . . . . . . . 8 ⊢ (𝑘 = 𝑀 → (𝑋 ⊆ 𝑆 ↔ 𝑋 ⊆ 𝑆)) | |
8 | ulmdv.z | . . . . . . . . . . 11 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
9 | ulmdv.m | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
10 | ulmdv.f | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) | |
11 | ulmdv.l | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) | |
12 | ulmdv.u | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) | |
13 | 8, 1, 9, 10, 6, 11, 12 | ulmdvlem2 26462 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) |
14 | dvbsss 25957 | . . . . . . . . . 10 ⊢ dom (𝑆 D (𝐹‘𝑘)) ⊆ 𝑆 | |
15 | 13, 14 | eqsstrrdi 4064 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑋 ⊆ 𝑆) |
16 | 15 | ralrimiva 3152 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 𝑋 ⊆ 𝑆) |
17 | uzid 12918 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
18 | 9, 17 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
19 | 18, 8 | eleqtrrdi 2855 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
20 | 7, 16, 19 | rspcdva 3636 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
21 | 5, 6, 20 | dvbss 25956 | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D 𝐺) ⊆ 𝑋) |
22 | 8, 1, 9, 10, 6, 11, 12 | ulmdvlem3 26463 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧(𝑆 D 𝐺)(𝐻‘𝑧)) |
23 | vex 3492 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
24 | fvex 6933 | . . . . . . . 8 ⊢ (𝐻‘𝑧) ∈ V | |
25 | 23, 24 | breldm 5933 | . . . . . . 7 ⊢ (𝑧(𝑆 D 𝐺)(𝐻‘𝑧) → 𝑧 ∈ dom (𝑆 D 𝐺)) |
26 | 22, 25 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ dom (𝑆 D 𝐺)) |
27 | 21, 26 | eqelssd 4030 | . . . . 5 ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) |
28 | 27 | feq2d 6733 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ)) |
29 | 3, 28 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ) |
30 | 29 | ffnd 6748 | . 2 ⊢ (𝜑 → (𝑆 D 𝐺) Fn 𝑋) |
31 | ulmcl 26442 | . . . 4 ⊢ ((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻 → 𝐻:𝑋⟶ℂ) | |
32 | 12, 31 | syl 17 | . . 3 ⊢ (𝜑 → 𝐻:𝑋⟶ℂ) |
33 | 32 | ffnd 6748 | . 2 ⊢ (𝜑 → 𝐻 Fn 𝑋) |
34 | 3 | ffund 6751 | . . . 4 ⊢ (𝜑 → Fun (𝑆 D 𝐺)) |
35 | 34 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → Fun (𝑆 D 𝐺)) |
36 | funbrfv 6971 | . . 3 ⊢ (Fun (𝑆 D 𝐺) → (𝑧(𝑆 D 𝐺)(𝐻‘𝑧) → ((𝑆 D 𝐺)‘𝑧) = (𝐻‘𝑧))) | |
37 | 35, 22, 36 | sylc 65 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((𝑆 D 𝐺)‘𝑧) = (𝐻‘𝑧)) |
38 | 30, 33, 37 | eqfnfvd 7067 | 1 ⊢ (𝜑 → (𝑆 D 𝐺) = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 {cpr 4650 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 Fun wfun 6567 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 ℂcc 11182 ℝcr 11183 ℤcz 12639 ℤ≥cuz 12903 ⇝ cli 15530 D cdv 25918 ⇝𝑢culm 26437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-cmp 23416 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-limc 25921 df-dv 25922 df-ulm 26438 |
This theorem is referenced by: pserdvlem2 26490 |
Copyright terms: Public domain | W3C validator |