| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ulmdv | Structured version Visualization version GIF version | ||
| Description: If 𝐹 is a sequence of differentiable functions on 𝑋 which converge pointwise to 𝐺, and the derivatives of 𝐹(𝑛) converge uniformly to 𝐻, then 𝐺 is differentiable with derivative 𝐻. (Contributed by Mario Carneiro, 27-Feb-2015.) |
| Ref | Expression |
|---|---|
| ulmdv.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| ulmdv.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| ulmdv.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| ulmdv.f | ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) |
| ulmdv.g | ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
| ulmdv.l | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) |
| ulmdv.u | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) |
| Ref | Expression |
|---|---|
| ulmdv | ⊢ (𝜑 → (𝑆 D 𝐺) = 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmdv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | dvfg 25834 | . . . . 5 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
| 4 | recnprss 25832 | . . . . . . . 8 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 5 | 1, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 6 | ulmdv.g | . . . . . . 7 ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) | |
| 7 | biidd 262 | . . . . . . . 8 ⊢ (𝑘 = 𝑀 → (𝑋 ⊆ 𝑆 ↔ 𝑋 ⊆ 𝑆)) | |
| 8 | ulmdv.z | . . . . . . . . . . 11 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 9 | ulmdv.m | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 10 | ulmdv.f | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) | |
| 11 | ulmdv.l | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) | |
| 12 | ulmdv.u | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) | |
| 13 | 8, 1, 9, 10, 6, 11, 12 | ulmdvlem2 26337 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) |
| 14 | dvbsss 25830 | . . . . . . . . . 10 ⊢ dom (𝑆 D (𝐹‘𝑘)) ⊆ 𝑆 | |
| 15 | 13, 14 | eqsstrrdi 3975 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑋 ⊆ 𝑆) |
| 16 | 15 | ralrimiva 3124 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 𝑋 ⊆ 𝑆) |
| 17 | uzid 12747 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 18 | 9, 17 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 19 | 18, 8 | eleqtrrdi 2842 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 20 | 7, 16, 19 | rspcdva 3573 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 21 | 5, 6, 20 | dvbss 25829 | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D 𝐺) ⊆ 𝑋) |
| 22 | 8, 1, 9, 10, 6, 11, 12 | ulmdvlem3 26338 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧(𝑆 D 𝐺)(𝐻‘𝑧)) |
| 23 | vex 3440 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
| 24 | fvex 6835 | . . . . . . . 8 ⊢ (𝐻‘𝑧) ∈ V | |
| 25 | 23, 24 | breldm 5847 | . . . . . . 7 ⊢ (𝑧(𝑆 D 𝐺)(𝐻‘𝑧) → 𝑧 ∈ dom (𝑆 D 𝐺)) |
| 26 | 22, 25 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ dom (𝑆 D 𝐺)) |
| 27 | 21, 26 | eqelssd 3951 | . . . . 5 ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) |
| 28 | 27 | feq2d 6635 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ)) |
| 29 | 3, 28 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ) |
| 30 | 29 | ffnd 6652 | . 2 ⊢ (𝜑 → (𝑆 D 𝐺) Fn 𝑋) |
| 31 | ulmcl 26317 | . . . 4 ⊢ ((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻 → 𝐻:𝑋⟶ℂ) | |
| 32 | 12, 31 | syl 17 | . . 3 ⊢ (𝜑 → 𝐻:𝑋⟶ℂ) |
| 33 | 32 | ffnd 6652 | . 2 ⊢ (𝜑 → 𝐻 Fn 𝑋) |
| 34 | 3 | ffund 6655 | . . . 4 ⊢ (𝜑 → Fun (𝑆 D 𝐺)) |
| 35 | 34 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → Fun (𝑆 D 𝐺)) |
| 36 | funbrfv 6870 | . . 3 ⊢ (Fun (𝑆 D 𝐺) → (𝑧(𝑆 D 𝐺)(𝐻‘𝑧) → ((𝑆 D 𝐺)‘𝑧) = (𝐻‘𝑧))) | |
| 37 | 35, 22, 36 | sylc 65 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((𝑆 D 𝐺)‘𝑧) = (𝐻‘𝑧)) |
| 38 | 30, 33, 37 | eqfnfvd 6967 | 1 ⊢ (𝜑 → (𝑆 D 𝐺) = 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 {cpr 4575 class class class wbr 5089 ↦ cmpt 5170 dom cdm 5614 Fun wfun 6475 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 ℂcc 11004 ℝcr 11005 ℤcz 12468 ℤ≥cuz 12732 ⇝ cli 15391 D cdv 25791 ⇝𝑢culm 26312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cn 23142 df-cnp 23143 df-haus 23230 df-cmp 23302 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-xms 24235 df-ms 24236 df-tms 24237 df-cncf 24798 df-limc 25794 df-dv 25795 df-ulm 26313 |
| This theorem is referenced by: pserdvlem2 26365 |
| Copyright terms: Public domain | W3C validator |