Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvco | Structured version Visualization version GIF version |
Description: The chain rule for derivatives at a point. For the (more general) relation version, see dvcobr 24870. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
Ref | Expression |
---|---|
dvco.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
dvco.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
dvco.g | ⊢ (𝜑 → 𝐺:𝑌⟶𝑋) |
dvco.y | ⊢ (𝜑 → 𝑌 ⊆ 𝑇) |
dvco.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvco.t | ⊢ (𝜑 → 𝑇 ∈ {ℝ, ℂ}) |
dvco.df | ⊢ (𝜑 → (𝐺‘𝐶) ∈ dom (𝑆 D 𝐹)) |
dvco.dg | ⊢ (𝜑 → 𝐶 ∈ dom (𝑇 D 𝐺)) |
Ref | Expression |
---|---|
dvco | ⊢ (𝜑 → ((𝑇 D (𝐹 ∘ 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘(𝐺‘𝐶)) · ((𝑇 D 𝐺)‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvco.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ {ℝ, ℂ}) | |
2 | dvfg 24830 | . . 3 ⊢ (𝑇 ∈ {ℝ, ℂ} → (𝑇 D (𝐹 ∘ 𝐺)):dom (𝑇 D (𝐹 ∘ 𝐺))⟶ℂ) | |
3 | ffun 6567 | . . 3 ⊢ ((𝑇 D (𝐹 ∘ 𝐺)):dom (𝑇 D (𝐹 ∘ 𝐺))⟶ℂ → Fun (𝑇 D (𝐹 ∘ 𝐺))) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → Fun (𝑇 D (𝐹 ∘ 𝐺))) |
5 | dvco.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
6 | dvco.x | . . 3 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
7 | dvco.g | . . 3 ⊢ (𝜑 → 𝐺:𝑌⟶𝑋) | |
8 | dvco.y | . . 3 ⊢ (𝜑 → 𝑌 ⊆ 𝑇) | |
9 | dvco.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
10 | recnprss 24828 | . . . 4 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
12 | recnprss 24828 | . . . 4 ⊢ (𝑇 ∈ {ℝ, ℂ} → 𝑇 ⊆ ℂ) | |
13 | 1, 12 | syl 17 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ ℂ) |
14 | fvexd 6751 | . . 3 ⊢ (𝜑 → ((𝑆 D 𝐹)‘(𝐺‘𝐶)) ∈ V) | |
15 | fvexd 6751 | . . 3 ⊢ (𝜑 → ((𝑇 D 𝐺)‘𝐶) ∈ V) | |
16 | dvco.df | . . . 4 ⊢ (𝜑 → (𝐺‘𝐶) ∈ dom (𝑆 D 𝐹)) | |
17 | dvfg 24830 | . . . . 5 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | |
18 | ffun 6567 | . . . . 5 ⊢ ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹)) | |
19 | funfvbrb 6890 | . . . . 5 ⊢ (Fun (𝑆 D 𝐹) → ((𝐺‘𝐶) ∈ dom (𝑆 D 𝐹) ↔ (𝐺‘𝐶)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺‘𝐶)))) | |
20 | 9, 17, 18, 19 | 4syl 19 | . . . 4 ⊢ (𝜑 → ((𝐺‘𝐶) ∈ dom (𝑆 D 𝐹) ↔ (𝐺‘𝐶)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺‘𝐶)))) |
21 | 16, 20 | mpbid 235 | . . 3 ⊢ (𝜑 → (𝐺‘𝐶)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺‘𝐶))) |
22 | dvco.dg | . . . 4 ⊢ (𝜑 → 𝐶 ∈ dom (𝑇 D 𝐺)) | |
23 | dvfg 24830 | . . . . 5 ⊢ (𝑇 ∈ {ℝ, ℂ} → (𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ) | |
24 | ffun 6567 | . . . . 5 ⊢ ((𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ → Fun (𝑇 D 𝐺)) | |
25 | funfvbrb 6890 | . . . . 5 ⊢ (Fun (𝑇 D 𝐺) → (𝐶 ∈ dom (𝑇 D 𝐺) ↔ 𝐶(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝐶))) | |
26 | 1, 23, 24, 25 | 4syl 19 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ dom (𝑇 D 𝐺) ↔ 𝐶(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝐶))) |
27 | 22, 26 | mpbid 235 | . . 3 ⊢ (𝜑 → 𝐶(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝐶)) |
28 | eqid 2738 | . . 3 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
29 | 5, 6, 7, 8, 11, 13, 14, 15, 21, 27, 28 | dvcobr 24870 | . 2 ⊢ (𝜑 → 𝐶(𝑇 D (𝐹 ∘ 𝐺))(((𝑆 D 𝐹)‘(𝐺‘𝐶)) · ((𝑇 D 𝐺)‘𝐶))) |
30 | funbrfv 6782 | . 2 ⊢ (Fun (𝑇 D (𝐹 ∘ 𝐺)) → (𝐶(𝑇 D (𝐹 ∘ 𝐺))(((𝑆 D 𝐹)‘(𝐺‘𝐶)) · ((𝑇 D 𝐺)‘𝐶)) → ((𝑇 D (𝐹 ∘ 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘(𝐺‘𝐶)) · ((𝑇 D 𝐺)‘𝐶)))) | |
31 | 4, 29, 30 | sylc 65 | 1 ⊢ (𝜑 → ((𝑇 D (𝐹 ∘ 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘(𝐺‘𝐶)) · ((𝑇 D 𝐺)‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2111 Vcvv 3421 ⊆ wss 3881 {cpr 4558 class class class wbr 5068 dom cdm 5566 ∘ ccom 5570 Fun wfun 6392 ⟶wf 6394 ‘cfv 6398 (class class class)co 7232 ℂcc 10752 ℝcr 10753 · cmul 10759 TopOpenctopn 16954 ℂfldccnfld 20391 D cdv 24787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 ax-pre-sup 10832 ax-addf 10833 ax-mulf 10834 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-int 4875 df-iun 4921 df-iin 4922 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-se 5525 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-isom 6407 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-of 7488 df-om 7664 df-1st 7780 df-2nd 7781 df-supp 7925 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-1o 8223 df-2o 8224 df-er 8412 df-map 8531 df-pm 8532 df-ixp 8600 df-en 8648 df-dom 8649 df-sdom 8650 df-fin 8651 df-fsupp 9011 df-fi 9052 df-sup 9083 df-inf 9084 df-oi 9151 df-card 9580 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-div 11515 df-nn 11856 df-2 11918 df-3 11919 df-4 11920 df-5 11921 df-6 11922 df-7 11923 df-8 11924 df-9 11925 df-n0 12116 df-z 12202 df-dec 12319 df-uz 12464 df-q 12570 df-rp 12612 df-xneg 12729 df-xadd 12730 df-xmul 12731 df-icc 12967 df-fz 13121 df-fzo 13264 df-seq 13602 df-exp 13663 df-hash 13925 df-cj 14690 df-re 14691 df-im 14692 df-sqrt 14826 df-abs 14827 df-struct 16728 df-sets 16745 df-slot 16763 df-ndx 16773 df-base 16789 df-ress 16813 df-plusg 16843 df-mulr 16844 df-starv 16845 df-sca 16846 df-vsca 16847 df-ip 16848 df-tset 16849 df-ple 16850 df-ds 16852 df-unif 16853 df-hom 16854 df-cco 16855 df-rest 16955 df-topn 16956 df-0g 16974 df-gsum 16975 df-topgen 16976 df-pt 16977 df-prds 16980 df-xrs 17035 df-qtop 17040 df-imas 17041 df-xps 17043 df-mre 17117 df-mrc 17118 df-acs 17120 df-mgm 18142 df-sgrp 18191 df-mnd 18202 df-submnd 18247 df-mulg 18517 df-cntz 18739 df-cmn 19200 df-psmet 20383 df-xmet 20384 df-met 20385 df-bl 20386 df-mopn 20387 df-fbas 20388 df-fg 20389 df-cnfld 20392 df-top 21818 df-topon 21835 df-topsp 21857 df-bases 21870 df-cld 21943 df-ntr 21944 df-cls 21945 df-nei 22022 df-lp 22060 df-perf 22061 df-cn 22151 df-cnp 22152 df-haus 22239 df-tx 22486 df-hmeo 22679 df-fil 22770 df-fm 22862 df-flim 22863 df-flf 22864 df-xms 23245 df-ms 23246 df-tms 23247 df-cncf 23802 df-limc 24790 df-dv 24791 |
This theorem is referenced by: dvcof 24872 |
Copyright terms: Public domain | W3C validator |