![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvco | Structured version Visualization version GIF version |
Description: The chain rule for derivatives at a point. For the (more general) relation version, see dvcobr 25697. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
Ref | Expression |
---|---|
dvco.f | β’ (π β πΉ:πβΆβ) |
dvco.x | β’ (π β π β π) |
dvco.g | β’ (π β πΊ:πβΆπ) |
dvco.y | β’ (π β π β π) |
dvco.s | β’ (π β π β {β, β}) |
dvco.t | β’ (π β π β {β, β}) |
dvco.df | β’ (π β (πΊβπΆ) β dom (π D πΉ)) |
dvco.dg | β’ (π β πΆ β dom (π D πΊ)) |
Ref | Expression |
---|---|
dvco | β’ (π β ((π D (πΉ β πΊ))βπΆ) = (((π D πΉ)β(πΊβπΆ)) Β· ((π D πΊ)βπΆ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvco.t | . . 3 β’ (π β π β {β, β}) | |
2 | dvfg 25657 | . . 3 β’ (π β {β, β} β (π D (πΉ β πΊ)):dom (π D (πΉ β πΊ))βΆβ) | |
3 | ffun 6721 | . . 3 β’ ((π D (πΉ β πΊ)):dom (π D (πΉ β πΊ))βΆβ β Fun (π D (πΉ β πΊ))) | |
4 | 1, 2, 3 | 3syl 18 | . 2 β’ (π β Fun (π D (πΉ β πΊ))) |
5 | dvco.f | . . 3 β’ (π β πΉ:πβΆβ) | |
6 | dvco.x | . . 3 β’ (π β π β π) | |
7 | dvco.g | . . 3 β’ (π β πΊ:πβΆπ) | |
8 | dvco.y | . . 3 β’ (π β π β π) | |
9 | dvco.s | . . . 4 β’ (π β π β {β, β}) | |
10 | recnprss 25655 | . . . 4 β’ (π β {β, β} β π β β) | |
11 | 9, 10 | syl 17 | . . 3 β’ (π β π β β) |
12 | recnprss 25655 | . . . 4 β’ (π β {β, β} β π β β) | |
13 | 1, 12 | syl 17 | . . 3 β’ (π β π β β) |
14 | fvexd 6907 | . . 3 β’ (π β ((π D πΉ)β(πΊβπΆ)) β V) | |
15 | fvexd 6907 | . . 3 β’ (π β ((π D πΊ)βπΆ) β V) | |
16 | dvco.df | . . . 4 β’ (π β (πΊβπΆ) β dom (π D πΉ)) | |
17 | dvfg 25657 | . . . . 5 β’ (π β {β, β} β (π D πΉ):dom (π D πΉ)βΆβ) | |
18 | ffun 6721 | . . . . 5 β’ ((π D πΉ):dom (π D πΉ)βΆβ β Fun (π D πΉ)) | |
19 | funfvbrb 7053 | . . . . 5 β’ (Fun (π D πΉ) β ((πΊβπΆ) β dom (π D πΉ) β (πΊβπΆ)(π D πΉ)((π D πΉ)β(πΊβπΆ)))) | |
20 | 9, 17, 18, 19 | 4syl 19 | . . . 4 β’ (π β ((πΊβπΆ) β dom (π D πΉ) β (πΊβπΆ)(π D πΉ)((π D πΉ)β(πΊβπΆ)))) |
21 | 16, 20 | mpbid 231 | . . 3 β’ (π β (πΊβπΆ)(π D πΉ)((π D πΉ)β(πΊβπΆ))) |
22 | dvco.dg | . . . 4 β’ (π β πΆ β dom (π D πΊ)) | |
23 | dvfg 25657 | . . . . 5 β’ (π β {β, β} β (π D πΊ):dom (π D πΊ)βΆβ) | |
24 | ffun 6721 | . . . . 5 β’ ((π D πΊ):dom (π D πΊ)βΆβ β Fun (π D πΊ)) | |
25 | funfvbrb 7053 | . . . . 5 β’ (Fun (π D πΊ) β (πΆ β dom (π D πΊ) β πΆ(π D πΊ)((π D πΊ)βπΆ))) | |
26 | 1, 23, 24, 25 | 4syl 19 | . . . 4 β’ (π β (πΆ β dom (π D πΊ) β πΆ(π D πΊ)((π D πΊ)βπΆ))) |
27 | 22, 26 | mpbid 231 | . . 3 β’ (π β πΆ(π D πΊ)((π D πΊ)βπΆ)) |
28 | eqid 2730 | . . 3 β’ (TopOpenββfld) = (TopOpenββfld) | |
29 | 5, 6, 7, 8, 11, 13, 14, 15, 21, 27, 28 | dvcobr 25697 | . 2 β’ (π β πΆ(π D (πΉ β πΊ))(((π D πΉ)β(πΊβπΆ)) Β· ((π D πΊ)βπΆ))) |
30 | funbrfv 6943 | . 2 β’ (Fun (π D (πΉ β πΊ)) β (πΆ(π D (πΉ β πΊ))(((π D πΉ)β(πΊβπΆ)) Β· ((π D πΊ)βπΆ)) β ((π D (πΉ β πΊ))βπΆ) = (((π D πΉ)β(πΊβπΆ)) Β· ((π D πΊ)βπΆ)))) | |
31 | 4, 29, 30 | sylc 65 | 1 β’ (π β ((π D (πΉ β πΊ))βπΆ) = (((π D πΉ)β(πΊβπΆ)) Β· ((π D πΊ)βπΆ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1539 β wcel 2104 Vcvv 3472 β wss 3949 {cpr 4631 class class class wbr 5149 dom cdm 5677 β ccom 5681 Fun wfun 6538 βΆwf 6540 βcfv 6544 (class class class)co 7413 βcc 11112 βcr 11113 Β· cmul 11119 TopOpenctopn 17373 βfldccnfld 21146 D cdv 25614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 ax-addf 11193 ax-mulf 11194 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8151 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-er 8707 df-map 8826 df-pm 8827 df-ixp 8896 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fsupp 9366 df-fi 9410 df-sup 9441 df-inf 9442 df-oi 9509 df-card 9938 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-6 12285 df-7 12286 df-8 12287 df-9 12288 df-n0 12479 df-z 12565 df-dec 12684 df-uz 12829 df-q 12939 df-rp 12981 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-icc 13337 df-fz 13491 df-fzo 13634 df-seq 13973 df-exp 14034 df-hash 14297 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-starv 17218 df-sca 17219 df-vsca 17220 df-ip 17221 df-tset 17222 df-ple 17223 df-ds 17225 df-unif 17226 df-hom 17227 df-cco 17228 df-rest 17374 df-topn 17375 df-0g 17393 df-gsum 17394 df-topgen 17395 df-pt 17396 df-prds 17399 df-xrs 17454 df-qtop 17459 df-imas 17460 df-xps 17462 df-mre 17536 df-mrc 17537 df-acs 17539 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18708 df-mulg 18989 df-cntz 19224 df-cmn 19693 df-psmet 21138 df-xmet 21139 df-met 21140 df-bl 21141 df-mopn 21142 df-fbas 21143 df-fg 21144 df-cnfld 21147 df-top 22618 df-topon 22635 df-topsp 22657 df-bases 22671 df-cld 22745 df-ntr 22746 df-cls 22747 df-nei 22824 df-lp 22862 df-perf 22863 df-cn 22953 df-cnp 22954 df-haus 23041 df-tx 23288 df-hmeo 23481 df-fil 23572 df-fm 23664 df-flim 23665 df-flf 23666 df-xms 24048 df-ms 24049 df-tms 24050 df-cncf 24620 df-limc 25617 df-dv 25618 |
This theorem is referenced by: dvcof 25699 |
Copyright terms: Public domain | W3C validator |