| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvmptcmul | Structured version Visualization version GIF version | ||
| Description: Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvmptadd.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvmptadd.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| dvmptadd.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
| dvmptadd.da | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| dvmptcmul.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| dvmptcmul | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐶 · 𝐴))) = (𝑥 ∈ 𝑋 ↦ (𝐶 · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptadd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | dvmptcmul.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) |
| 4 | 0cnd 11167 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 0 ∈ ℂ) | |
| 5 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐶 ∈ ℂ) |
| 6 | 0cnd 11167 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 0 ∈ ℂ) | |
| 7 | 1, 2 | dvmptc 25862 | . . . 4 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑆 ↦ 𝐶)) = (𝑥 ∈ 𝑆 ↦ 0)) |
| 8 | dvmptadd.da | . . . . . . 7 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
| 9 | 8 | dmeqd 5869 | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = dom (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| 10 | dvmptadd.b | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
| 11 | 10 | ralrimiva 3125 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉) |
| 12 | dmmptg 6215 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) | |
| 13 | 11, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) |
| 14 | 9, 13 | eqtrd 2764 | . . . . 5 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = 𝑋) |
| 15 | dvbsss 25803 | . . . . 5 ⊢ dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ⊆ 𝑆 | |
| 16 | 14, 15 | eqsstrrdi 3992 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 17 | eqid 2729 | . . . 4 ⊢ ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆) | |
| 18 | eqid 2729 | . . . 4 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 19 | 18 | cnfldtopon 24670 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 20 | recnprss 25805 | . . . . . . . . 9 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 21 | 1, 20 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 22 | resttopon 23048 | . . . . . . . 8 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
| 23 | 19, 21, 22 | sylancr 587 | . . . . . . 7 ⊢ (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) |
| 24 | topontop 22800 | . . . . . . 7 ⊢ (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top) | |
| 25 | 23, 24 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top) |
| 26 | toponuni 22801 | . . . . . . . 8 ⊢ (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ∪ ((TopOpen‘ℂfld) ↾t 𝑆)) | |
| 27 | 23, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 = ∪ ((TopOpen‘ℂfld) ↾t 𝑆)) |
| 28 | 16, 27 | sseqtrd 3983 | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ ∪ ((TopOpen‘ℂfld) ↾t 𝑆)) |
| 29 | eqid 2729 | . . . . . . 7 ⊢ ∪ ((TopOpen‘ℂfld) ↾t 𝑆) = ∪ ((TopOpen‘ℂfld) ↾t 𝑆) | |
| 30 | 29 | ntrss2 22944 | . . . . . 6 ⊢ ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝑋 ⊆ ∪ ((TopOpen‘ℂfld) ↾t 𝑆)) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋) |
| 31 | 25, 28, 30 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋) |
| 32 | dvmptadd.a | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
| 33 | 32 | fmpttd 7087 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
| 34 | 21, 33, 16, 17, 18 | dvbssntr 25801 | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) |
| 35 | 14, 34 | eqsstrrd 3982 | . . . . 5 ⊢ (𝜑 → 𝑋 ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) |
| 36 | 31, 35 | eqssd 3964 | . . . 4 ⊢ (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) = 𝑋) |
| 37 | 1, 5, 6, 7, 16, 17, 18, 36 | dvmptres2 25866 | . . 3 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 0)) |
| 38 | 1, 3, 4, 37, 32, 10, 8 | dvmptmul 25865 | . 2 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐶 · 𝐴))) = (𝑥 ∈ 𝑋 ↦ ((0 · 𝐴) + (𝐵 · 𝐶)))) |
| 39 | 32 | mul02d 11372 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (0 · 𝐴) = 0) |
| 40 | 39 | oveq1d 7402 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((0 · 𝐴) + (𝐵 · 𝐶)) = (0 + (𝐵 · 𝐶))) |
| 41 | 1, 32, 10, 8 | dvmptcl 25863 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
| 42 | 41, 3 | mulcld 11194 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 · 𝐶) ∈ ℂ) |
| 43 | 42 | addlidd 11375 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (0 + (𝐵 · 𝐶)) = (𝐵 · 𝐶)) |
| 44 | 41, 3 | mulcomd 11195 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 · 𝐶) = (𝐶 · 𝐵)) |
| 45 | 40, 43, 44 | 3eqtrd 2768 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((0 · 𝐴) + (𝐵 · 𝐶)) = (𝐶 · 𝐵)) |
| 46 | 45 | mpteq2dva 5200 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((0 · 𝐴) + (𝐵 · 𝐶))) = (𝑥 ∈ 𝑋 ↦ (𝐶 · 𝐵))) |
| 47 | 38, 46 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐶 · 𝐴))) = (𝑥 ∈ 𝑋 ↦ (𝐶 · 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 {cpr 4591 ∪ cuni 4871 ↦ cmpt 5188 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 + caddc 11071 · cmul 11073 ↾t crest 17383 TopOpenctopn 17384 ℂfldccnfld 21264 Topctop 22780 TopOnctopon 22797 intcnt 22904 D cdv 25764 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-icc 13313 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-cn 23114 df-cnp 23115 df-haus 23202 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-tms 24210 df-cncf 24771 df-limc 25767 df-dv 25768 |
| This theorem is referenced by: dvmptdivc 25869 dvmptneg 25870 dvmptre 25873 dvmptim 25874 dvsincos 25885 cmvth 25895 cmvthOLD 25896 dvlipcn 25899 dvivthlem1 25913 dvfsumle 25926 dvfsumleOLD 25927 dvfsumabs 25929 dvfsumlem2 25933 dvfsumlem2OLD 25934 dvply1 26191 dvtaylp 26278 pserdvlem2 26338 pige3ALT 26429 dvcxp1 26649 dvcxp2 26650 dvcncxp1 26652 dvatan 26845 divsqrtsumlem 26890 lgamgulmlem2 26940 logexprlim 27136 log2sumbnd 27455 itgexpif 34597 dvasin 37698 areacirclem1 37702 lcmineqlem12 42028 aks4d1p1p6 42061 lhe4.4ex1a 44318 expgrowthi 44322 expgrowth 44324 fourierdlem39 46144 |
| Copyright terms: Public domain | W3C validator |