| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvmptcmul | Structured version Visualization version GIF version | ||
| Description: Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvmptadd.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvmptadd.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| dvmptadd.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
| dvmptadd.da | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| dvmptcmul.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| dvmptcmul | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐶 · 𝐴))) = (𝑥 ∈ 𝑋 ↦ (𝐶 · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptadd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | dvmptcmul.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) |
| 4 | 0cnd 11105 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 0 ∈ ℂ) | |
| 5 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐶 ∈ ℂ) |
| 6 | 0cnd 11105 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 0 ∈ ℂ) | |
| 7 | 1, 2 | dvmptc 25890 | . . . 4 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑆 ↦ 𝐶)) = (𝑥 ∈ 𝑆 ↦ 0)) |
| 8 | dvmptadd.da | . . . . . . 7 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
| 9 | 8 | dmeqd 5845 | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = dom (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| 10 | dvmptadd.b | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
| 11 | 10 | ralrimiva 3124 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉) |
| 12 | dmmptg 6189 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) | |
| 13 | 11, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) |
| 14 | 9, 13 | eqtrd 2766 | . . . . 5 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = 𝑋) |
| 15 | dvbsss 25831 | . . . . 5 ⊢ dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ⊆ 𝑆 | |
| 16 | 14, 15 | eqsstrrdi 3980 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 17 | eqid 2731 | . . . 4 ⊢ ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆) | |
| 18 | eqid 2731 | . . . 4 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 19 | 18 | cnfldtopon 24698 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 20 | recnprss 25833 | . . . . . . . . 9 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 21 | 1, 20 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 22 | resttopon 23077 | . . . . . . . 8 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
| 23 | 19, 21, 22 | sylancr 587 | . . . . . . 7 ⊢ (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) |
| 24 | topontop 22829 | . . . . . . 7 ⊢ (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top) | |
| 25 | 23, 24 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top) |
| 26 | toponuni 22830 | . . . . . . . 8 ⊢ (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ∪ ((TopOpen‘ℂfld) ↾t 𝑆)) | |
| 27 | 23, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 = ∪ ((TopOpen‘ℂfld) ↾t 𝑆)) |
| 28 | 16, 27 | sseqtrd 3971 | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ ∪ ((TopOpen‘ℂfld) ↾t 𝑆)) |
| 29 | eqid 2731 | . . . . . . 7 ⊢ ∪ ((TopOpen‘ℂfld) ↾t 𝑆) = ∪ ((TopOpen‘ℂfld) ↾t 𝑆) | |
| 30 | 29 | ntrss2 22973 | . . . . . 6 ⊢ ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝑋 ⊆ ∪ ((TopOpen‘ℂfld) ↾t 𝑆)) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋) |
| 31 | 25, 28, 30 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋) |
| 32 | dvmptadd.a | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
| 33 | 32 | fmpttd 7048 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
| 34 | 21, 33, 16, 17, 18 | dvbssntr 25829 | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) |
| 35 | 14, 34 | eqsstrrd 3970 | . . . . 5 ⊢ (𝜑 → 𝑋 ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) |
| 36 | 31, 35 | eqssd 3952 | . . . 4 ⊢ (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) = 𝑋) |
| 37 | 1, 5, 6, 7, 16, 17, 18, 36 | dvmptres2 25894 | . . 3 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 0)) |
| 38 | 1, 3, 4, 37, 32, 10, 8 | dvmptmul 25893 | . 2 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐶 · 𝐴))) = (𝑥 ∈ 𝑋 ↦ ((0 · 𝐴) + (𝐵 · 𝐶)))) |
| 39 | 32 | mul02d 11311 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (0 · 𝐴) = 0) |
| 40 | 39 | oveq1d 7361 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((0 · 𝐴) + (𝐵 · 𝐶)) = (0 + (𝐵 · 𝐶))) |
| 41 | 1, 32, 10, 8 | dvmptcl 25891 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
| 42 | 41, 3 | mulcld 11132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 · 𝐶) ∈ ℂ) |
| 43 | 42 | addlidd 11314 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (0 + (𝐵 · 𝐶)) = (𝐵 · 𝐶)) |
| 44 | 41, 3 | mulcomd 11133 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 · 𝐶) = (𝐶 · 𝐵)) |
| 45 | 40, 43, 44 | 3eqtrd 2770 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((0 · 𝐴) + (𝐵 · 𝐶)) = (𝐶 · 𝐵)) |
| 46 | 45 | mpteq2dva 5184 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((0 · 𝐴) + (𝐵 · 𝐶))) = (𝑥 ∈ 𝑋 ↦ (𝐶 · 𝐵))) |
| 47 | 38, 46 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐶 · 𝐴))) = (𝑥 ∈ 𝑋 ↦ (𝐶 · 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3902 {cpr 4578 ∪ cuni 4859 ↦ cmpt 5172 dom cdm 5616 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 + caddc 11009 · cmul 11011 ↾t crest 17324 TopOpenctopn 17325 ℂfldccnfld 21292 Topctop 22809 TopOnctopon 22826 intcnt 22933 D cdv 25792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-icc 13252 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19230 df-cmn 19695 df-psmet 21284 df-xmet 21285 df-met 21286 df-bl 21287 df-mopn 21288 df-fbas 21289 df-fg 21290 df-cnfld 21293 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-lp 23052 df-perf 23053 df-cn 23143 df-cnp 23144 df-haus 23231 df-tx 23478 df-hmeo 23671 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-xms 24236 df-ms 24237 df-tms 24238 df-cncf 24799 df-limc 25795 df-dv 25796 |
| This theorem is referenced by: dvmptdivc 25897 dvmptneg 25898 dvmptre 25901 dvmptim 25902 dvsincos 25913 cmvth 25923 cmvthOLD 25924 dvlipcn 25927 dvivthlem1 25941 dvfsumle 25954 dvfsumleOLD 25955 dvfsumabs 25957 dvfsumlem2 25961 dvfsumlem2OLD 25962 dvply1 26219 dvtaylp 26306 pserdvlem2 26366 pige3ALT 26457 dvcxp1 26677 dvcxp2 26678 dvcncxp1 26680 dvatan 26873 divsqrtsumlem 26918 lgamgulmlem2 26968 logexprlim 27164 log2sumbnd 27483 itgexpif 34617 dvasin 37750 areacirclem1 37754 lcmineqlem12 42079 aks4d1p1p6 42112 lhe4.4ex1a 44368 expgrowthi 44372 expgrowth 44374 fourierdlem39 46190 |
| Copyright terms: Public domain | W3C validator |