| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvmptcmul | Structured version Visualization version GIF version | ||
| Description: Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvmptadd.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvmptadd.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| dvmptadd.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
| dvmptadd.da | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| dvmptcmul.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| dvmptcmul | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐶 · 𝐴))) = (𝑥 ∈ 𝑋 ↦ (𝐶 · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptadd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | dvmptcmul.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) |
| 4 | 0cnd 11114 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 0 ∈ ℂ) | |
| 5 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐶 ∈ ℂ) |
| 6 | 0cnd 11114 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 0 ∈ ℂ) | |
| 7 | 1, 2 | dvmptc 25892 | . . . 4 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑆 ↦ 𝐶)) = (𝑥 ∈ 𝑆 ↦ 0)) |
| 8 | dvmptadd.da | . . . . . . 7 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
| 9 | 8 | dmeqd 5851 | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = dom (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| 10 | dvmptadd.b | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
| 11 | 10 | ralrimiva 3125 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉) |
| 12 | dmmptg 6196 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) | |
| 13 | 11, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) |
| 14 | 9, 13 | eqtrd 2768 | . . . . 5 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = 𝑋) |
| 15 | dvbsss 25833 | . . . . 5 ⊢ dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ⊆ 𝑆 | |
| 16 | 14, 15 | eqsstrrdi 3976 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 17 | eqid 2733 | . . . 4 ⊢ ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆) | |
| 18 | eqid 2733 | . . . 4 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 19 | 18 | cnfldtopon 24700 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 20 | recnprss 25835 | . . . . . . . . 9 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 21 | 1, 20 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 22 | resttopon 23079 | . . . . . . . 8 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
| 23 | 19, 21, 22 | sylancr 587 | . . . . . . 7 ⊢ (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) |
| 24 | topontop 22831 | . . . . . . 7 ⊢ (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top) | |
| 25 | 23, 24 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top) |
| 26 | toponuni 22832 | . . . . . . . 8 ⊢ (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ∪ ((TopOpen‘ℂfld) ↾t 𝑆)) | |
| 27 | 23, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 = ∪ ((TopOpen‘ℂfld) ↾t 𝑆)) |
| 28 | 16, 27 | sseqtrd 3967 | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ ∪ ((TopOpen‘ℂfld) ↾t 𝑆)) |
| 29 | eqid 2733 | . . . . . . 7 ⊢ ∪ ((TopOpen‘ℂfld) ↾t 𝑆) = ∪ ((TopOpen‘ℂfld) ↾t 𝑆) | |
| 30 | 29 | ntrss2 22975 | . . . . . 6 ⊢ ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝑋 ⊆ ∪ ((TopOpen‘ℂfld) ↾t 𝑆)) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋) |
| 31 | 25, 28, 30 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋) |
| 32 | dvmptadd.a | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
| 33 | 32 | fmpttd 7056 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
| 34 | 21, 33, 16, 17, 18 | dvbssntr 25831 | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) |
| 35 | 14, 34 | eqsstrrd 3966 | . . . . 5 ⊢ (𝜑 → 𝑋 ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) |
| 36 | 31, 35 | eqssd 3948 | . . . 4 ⊢ (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) = 𝑋) |
| 37 | 1, 5, 6, 7, 16, 17, 18, 36 | dvmptres2 25896 | . . 3 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 0)) |
| 38 | 1, 3, 4, 37, 32, 10, 8 | dvmptmul 25895 | . 2 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐶 · 𝐴))) = (𝑥 ∈ 𝑋 ↦ ((0 · 𝐴) + (𝐵 · 𝐶)))) |
| 39 | 32 | mul02d 11320 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (0 · 𝐴) = 0) |
| 40 | 39 | oveq1d 7369 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((0 · 𝐴) + (𝐵 · 𝐶)) = (0 + (𝐵 · 𝐶))) |
| 41 | 1, 32, 10, 8 | dvmptcl 25893 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
| 42 | 41, 3 | mulcld 11141 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 · 𝐶) ∈ ℂ) |
| 43 | 42 | addlidd 11323 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (0 + (𝐵 · 𝐶)) = (𝐵 · 𝐶)) |
| 44 | 41, 3 | mulcomd 11142 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 · 𝐶) = (𝐶 · 𝐵)) |
| 45 | 40, 43, 44 | 3eqtrd 2772 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((0 · 𝐴) + (𝐵 · 𝐶)) = (𝐶 · 𝐵)) |
| 46 | 45 | mpteq2dva 5188 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((0 · 𝐴) + (𝐵 · 𝐶))) = (𝑥 ∈ 𝑋 ↦ (𝐶 · 𝐵))) |
| 47 | 38, 46 | eqtrd 2768 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐶 · 𝐴))) = (𝑥 ∈ 𝑋 ↦ (𝐶 · 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 {cpr 4579 ∪ cuni 4860 ↦ cmpt 5176 dom cdm 5621 ‘cfv 6488 (class class class)co 7354 ℂcc 11013 ℝcr 11014 0cc0 11015 + caddc 11018 · cmul 11020 ↾t crest 17328 TopOpenctopn 17329 ℂfldccnfld 21295 Topctop 22811 TopOnctopon 22828 intcnt 22935 D cdv 25794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 ax-addf 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-pm 8761 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-fi 9304 df-sup 9335 df-inf 9336 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-q 12851 df-rp 12895 df-xneg 13015 df-xadd 13016 df-xmul 13017 df-icc 13256 df-fz 13412 df-fzo 13559 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-starv 17180 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-unif 17188 df-hom 17189 df-cco 17190 df-rest 17330 df-topn 17331 df-0g 17349 df-gsum 17350 df-topgen 17351 df-pt 17352 df-prds 17355 df-xrs 17410 df-qtop 17415 df-imas 17416 df-xps 17418 df-mre 17492 df-mrc 17493 df-acs 17495 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-submnd 18696 df-mulg 18985 df-cntz 19233 df-cmn 19698 df-psmet 21287 df-xmet 21288 df-met 21289 df-bl 21290 df-mopn 21291 df-fbas 21292 df-fg 21293 df-cnfld 21296 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22864 df-cld 22937 df-ntr 22938 df-cls 22939 df-nei 23016 df-lp 23054 df-perf 23055 df-cn 23145 df-cnp 23146 df-haus 23233 df-tx 23480 df-hmeo 23673 df-fil 23764 df-fm 23856 df-flim 23857 df-flf 23858 df-xms 24238 df-ms 24239 df-tms 24240 df-cncf 24801 df-limc 25797 df-dv 25798 |
| This theorem is referenced by: dvmptdivc 25899 dvmptneg 25900 dvmptre 25903 dvmptim 25904 dvsincos 25915 cmvth 25925 cmvthOLD 25926 dvlipcn 25929 dvivthlem1 25943 dvfsumle 25956 dvfsumleOLD 25957 dvfsumabs 25959 dvfsumlem2 25963 dvfsumlem2OLD 25964 dvply1 26221 dvtaylp 26308 pserdvlem2 26368 pige3ALT 26459 dvcxp1 26679 dvcxp2 26680 dvcncxp1 26682 dvatan 26875 divsqrtsumlem 26920 lgamgulmlem2 26970 logexprlim 27166 log2sumbnd 27485 itgexpif 34642 dvasin 37767 areacirclem1 37771 lcmineqlem12 42156 aks4d1p1p6 42189 lhe4.4ex1a 44449 expgrowthi 44453 expgrowth 44455 fourierdlem39 46271 |
| Copyright terms: Public domain | W3C validator |