MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptcmul Structured version   Visualization version   GIF version

Theorem dvmptcmul 25898
Description: Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptadd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptadd.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptadd.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptadd.da (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptcmul.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
dvmptcmul (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐶 · 𝐴))) = (𝑥𝑋 ↦ (𝐶 · 𝐵)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑋   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem dvmptcmul
StepHypRef Expression
1 dvmptadd.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvmptcmul.c . . . 4 (𝜑𝐶 ∈ ℂ)
32adantr 480 . . 3 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
4 0cnd 11114 . . 3 ((𝜑𝑥𝑋) → 0 ∈ ℂ)
52adantr 480 . . . 4 ((𝜑𝑥𝑆) → 𝐶 ∈ ℂ)
6 0cnd 11114 . . . 4 ((𝜑𝑥𝑆) → 0 ∈ ℂ)
71, 2dvmptc 25892 . . . 4 (𝜑 → (𝑆 D (𝑥𝑆𝐶)) = (𝑥𝑆 ↦ 0))
8 dvmptadd.da . . . . . . 7 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
98dmeqd 5851 . . . . . 6 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = dom (𝑥𝑋𝐵))
10 dvmptadd.b . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐵𝑉)
1110ralrimiva 3125 . . . . . . 7 (𝜑 → ∀𝑥𝑋 𝐵𝑉)
12 dmmptg 6196 . . . . . . 7 (∀𝑥𝑋 𝐵𝑉 → dom (𝑥𝑋𝐵) = 𝑋)
1311, 12syl 17 . . . . . 6 (𝜑 → dom (𝑥𝑋𝐵) = 𝑋)
149, 13eqtrd 2768 . . . . 5 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = 𝑋)
15 dvbsss 25833 . . . . 5 dom (𝑆 D (𝑥𝑋𝐴)) ⊆ 𝑆
1614, 15eqsstrrdi 3976 . . . 4 (𝜑𝑋𝑆)
17 eqid 2733 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
18 eqid 2733 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1918cnfldtopon 24700 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
20 recnprss 25835 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
211, 20syl 17 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
22 resttopon 23079 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
2319, 21, 22sylancr 587 . . . . . . 7 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
24 topontop 22831 . . . . . . 7 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
2523, 24syl 17 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
26 toponuni 22832 . . . . . . . 8 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
2723, 26syl 17 . . . . . . 7 (𝜑𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
2816, 27sseqtrd 3967 . . . . . 6 (𝜑𝑋 ((TopOpen‘ℂfld) ↾t 𝑆))
29 eqid 2733 . . . . . . 7 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
3029ntrss2 22975 . . . . . 6 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝑋 ((TopOpen‘ℂfld) ↾t 𝑆)) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋)
3125, 28, 30syl2anc 584 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋)
32 dvmptadd.a . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
3332fmpttd 7056 . . . . . . 7 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
3421, 33, 16, 17, 18dvbssntr 25831 . . . . . 6 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
3514, 34eqsstrrd 3966 . . . . 5 (𝜑𝑋 ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
3631, 35eqssd 3948 . . . 4 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) = 𝑋)
371, 5, 6, 7, 16, 17, 18, 36dvmptres2 25896 . . 3 (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋 ↦ 0))
381, 3, 4, 37, 32, 10, 8dvmptmul 25895 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐶 · 𝐴))) = (𝑥𝑋 ↦ ((0 · 𝐴) + (𝐵 · 𝐶))))
3932mul02d 11320 . . . . 5 ((𝜑𝑥𝑋) → (0 · 𝐴) = 0)
4039oveq1d 7369 . . . 4 ((𝜑𝑥𝑋) → ((0 · 𝐴) + (𝐵 · 𝐶)) = (0 + (𝐵 · 𝐶)))
411, 32, 10, 8dvmptcl 25893 . . . . . 6 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
4241, 3mulcld 11141 . . . . 5 ((𝜑𝑥𝑋) → (𝐵 · 𝐶) ∈ ℂ)
4342addlidd 11323 . . . 4 ((𝜑𝑥𝑋) → (0 + (𝐵 · 𝐶)) = (𝐵 · 𝐶))
4441, 3mulcomd 11142 . . . 4 ((𝜑𝑥𝑋) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
4540, 43, 443eqtrd 2772 . . 3 ((𝜑𝑥𝑋) → ((0 · 𝐴) + (𝐵 · 𝐶)) = (𝐶 · 𝐵))
4645mpteq2dva 5188 . 2 (𝜑 → (𝑥𝑋 ↦ ((0 · 𝐴) + (𝐵 · 𝐶))) = (𝑥𝑋 ↦ (𝐶 · 𝐵)))
4738, 46eqtrd 2768 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐶 · 𝐴))) = (𝑥𝑋 ↦ (𝐶 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  wss 3898  {cpr 4579   cuni 4860  cmpt 5176  dom cdm 5621  cfv 6488  (class class class)co 7354  cc 11013  cr 11014  0cc0 11015   + caddc 11018   · cmul 11020  t crest 17328  TopOpenctopn 17329  fldccnfld 21295  Topctop 22811  TopOnctopon 22828  intcnt 22935   D cdv 25794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093  ax-addf 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-map 8760  df-pm 8761  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-fi 9304  df-sup 9335  df-inf 9336  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-q 12851  df-rp 12895  df-xneg 13015  df-xadd 13016  df-xmul 13017  df-icc 13256  df-fz 13412  df-fzo 13559  df-seq 13913  df-exp 13973  df-hash 14242  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-starv 17180  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-unif 17188  df-hom 17189  df-cco 17190  df-rest 17330  df-topn 17331  df-0g 17349  df-gsum 17350  df-topgen 17351  df-pt 17352  df-prds 17355  df-xrs 17410  df-qtop 17415  df-imas 17416  df-xps 17418  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-mulg 18985  df-cntz 19233  df-cmn 19698  df-psmet 21287  df-xmet 21288  df-met 21289  df-bl 21290  df-mopn 21291  df-fbas 21292  df-fg 21293  df-cnfld 21296  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22864  df-cld 22937  df-ntr 22938  df-cls 22939  df-nei 23016  df-lp 23054  df-perf 23055  df-cn 23145  df-cnp 23146  df-haus 23233  df-tx 23480  df-hmeo 23673  df-fil 23764  df-fm 23856  df-flim 23857  df-flf 23858  df-xms 24238  df-ms 24239  df-tms 24240  df-cncf 24801  df-limc 25797  df-dv 25798
This theorem is referenced by:  dvmptdivc  25899  dvmptneg  25900  dvmptre  25903  dvmptim  25904  dvsincos  25915  cmvth  25925  cmvthOLD  25926  dvlipcn  25929  dvivthlem1  25943  dvfsumle  25956  dvfsumleOLD  25957  dvfsumabs  25959  dvfsumlem2  25963  dvfsumlem2OLD  25964  dvply1  26221  dvtaylp  26308  pserdvlem2  26368  pige3ALT  26459  dvcxp1  26679  dvcxp2  26680  dvcncxp1  26682  dvatan  26875  divsqrtsumlem  26920  lgamgulmlem2  26970  logexprlim  27166  log2sumbnd  27485  itgexpif  34642  dvasin  37767  areacirclem1  37771  lcmineqlem12  42156  aks4d1p1p6  42189  lhe4.4ex1a  44449  expgrowthi  44453  expgrowth  44455  fourierdlem39  46271
  Copyright terms: Public domain W3C validator