![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvmptcmul | Structured version Visualization version GIF version |
Description: Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
dvmptadd.s | β’ (π β π β {β, β}) |
dvmptadd.a | β’ ((π β§ π₯ β π) β π΄ β β) |
dvmptadd.b | β’ ((π β§ π₯ β π) β π΅ β π) |
dvmptadd.da | β’ (π β (π D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) |
dvmptcmul.c | β’ (π β πΆ β β) |
Ref | Expression |
---|---|
dvmptcmul | β’ (π β (π D (π₯ β π β¦ (πΆ Β· π΄))) = (π₯ β π β¦ (πΆ Β· π΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptadd.s | . . 3 β’ (π β π β {β, β}) | |
2 | dvmptcmul.c | . . . 4 β’ (π β πΆ β β) | |
3 | 2 | adantr 480 | . . 3 β’ ((π β§ π₯ β π) β πΆ β β) |
4 | 0cnd 11203 | . . 3 β’ ((π β§ π₯ β π) β 0 β β) | |
5 | 2 | adantr 480 | . . . 4 β’ ((π β§ π₯ β π) β πΆ β β) |
6 | 0cnd 11203 | . . . 4 β’ ((π β§ π₯ β π) β 0 β β) | |
7 | 1, 2 | dvmptc 25811 | . . . 4 β’ (π β (π D (π₯ β π β¦ πΆ)) = (π₯ β π β¦ 0)) |
8 | dvmptadd.da | . . . . . . 7 β’ (π β (π D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) | |
9 | 8 | dmeqd 5895 | . . . . . 6 β’ (π β dom (π D (π₯ β π β¦ π΄)) = dom (π₯ β π β¦ π΅)) |
10 | dvmptadd.b | . . . . . . . 8 β’ ((π β§ π₯ β π) β π΅ β π) | |
11 | 10 | ralrimiva 3138 | . . . . . . 7 β’ (π β βπ₯ β π π΅ β π) |
12 | dmmptg 6231 | . . . . . . 7 β’ (βπ₯ β π π΅ β π β dom (π₯ β π β¦ π΅) = π) | |
13 | 11, 12 | syl 17 | . . . . . 6 β’ (π β dom (π₯ β π β¦ π΅) = π) |
14 | 9, 13 | eqtrd 2764 | . . . . 5 β’ (π β dom (π D (π₯ β π β¦ π΄)) = π) |
15 | dvbsss 25752 | . . . . 5 β’ dom (π D (π₯ β π β¦ π΄)) β π | |
16 | 14, 15 | eqsstrrdi 4029 | . . . 4 β’ (π β π β π) |
17 | eqid 2724 | . . . 4 β’ ((TopOpenββfld) βΎt π) = ((TopOpenββfld) βΎt π) | |
18 | eqid 2724 | . . . 4 β’ (TopOpenββfld) = (TopOpenββfld) | |
19 | 18 | cnfldtopon 24620 | . . . . . . . 8 β’ (TopOpenββfld) β (TopOnββ) |
20 | recnprss 25754 | . . . . . . . . 9 β’ (π β {β, β} β π β β) | |
21 | 1, 20 | syl 17 | . . . . . . . 8 β’ (π β π β β) |
22 | resttopon 22986 | . . . . . . . 8 β’ (((TopOpenββfld) β (TopOnββ) β§ π β β) β ((TopOpenββfld) βΎt π) β (TopOnβπ)) | |
23 | 19, 21, 22 | sylancr 586 | . . . . . . 7 β’ (π β ((TopOpenββfld) βΎt π) β (TopOnβπ)) |
24 | topontop 22736 | . . . . . . 7 β’ (((TopOpenββfld) βΎt π) β (TopOnβπ) β ((TopOpenββfld) βΎt π) β Top) | |
25 | 23, 24 | syl 17 | . . . . . 6 β’ (π β ((TopOpenββfld) βΎt π) β Top) |
26 | toponuni 22737 | . . . . . . . 8 β’ (((TopOpenββfld) βΎt π) β (TopOnβπ) β π = βͺ ((TopOpenββfld) βΎt π)) | |
27 | 23, 26 | syl 17 | . . . . . . 7 β’ (π β π = βͺ ((TopOpenββfld) βΎt π)) |
28 | 16, 27 | sseqtrd 4014 | . . . . . 6 β’ (π β π β βͺ ((TopOpenββfld) βΎt π)) |
29 | eqid 2724 | . . . . . . 7 β’ βͺ ((TopOpenββfld) βΎt π) = βͺ ((TopOpenββfld) βΎt π) | |
30 | 29 | ntrss2 22882 | . . . . . 6 β’ ((((TopOpenββfld) βΎt π) β Top β§ π β βͺ ((TopOpenββfld) βΎt π)) β ((intβ((TopOpenββfld) βΎt π))βπ) β π) |
31 | 25, 28, 30 | syl2anc 583 | . . . . 5 β’ (π β ((intβ((TopOpenββfld) βΎt π))βπ) β π) |
32 | dvmptadd.a | . . . . . . . 8 β’ ((π β§ π₯ β π) β π΄ β β) | |
33 | 32 | fmpttd 7106 | . . . . . . 7 β’ (π β (π₯ β π β¦ π΄):πβΆβ) |
34 | 21, 33, 16, 17, 18 | dvbssntr 25750 | . . . . . 6 β’ (π β dom (π D (π₯ β π β¦ π΄)) β ((intβ((TopOpenββfld) βΎt π))βπ)) |
35 | 14, 34 | eqsstrrd 4013 | . . . . 5 β’ (π β π β ((intβ((TopOpenββfld) βΎt π))βπ)) |
36 | 31, 35 | eqssd 3991 | . . . 4 β’ (π β ((intβ((TopOpenββfld) βΎt π))βπ) = π) |
37 | 1, 5, 6, 7, 16, 17, 18, 36 | dvmptres2 25815 | . . 3 β’ (π β (π D (π₯ β π β¦ πΆ)) = (π₯ β π β¦ 0)) |
38 | 1, 3, 4, 37, 32, 10, 8 | dvmptmul 25814 | . 2 β’ (π β (π D (π₯ β π β¦ (πΆ Β· π΄))) = (π₯ β π β¦ ((0 Β· π΄) + (π΅ Β· πΆ)))) |
39 | 32 | mul02d 11408 | . . . . 5 β’ ((π β§ π₯ β π) β (0 Β· π΄) = 0) |
40 | 39 | oveq1d 7416 | . . . 4 β’ ((π β§ π₯ β π) β ((0 Β· π΄) + (π΅ Β· πΆ)) = (0 + (π΅ Β· πΆ))) |
41 | 1, 32, 10, 8 | dvmptcl 25812 | . . . . . 6 β’ ((π β§ π₯ β π) β π΅ β β) |
42 | 41, 3 | mulcld 11230 | . . . . 5 β’ ((π β§ π₯ β π) β (π΅ Β· πΆ) β β) |
43 | 42 | addlidd 11411 | . . . 4 β’ ((π β§ π₯ β π) β (0 + (π΅ Β· πΆ)) = (π΅ Β· πΆ)) |
44 | 41, 3 | mulcomd 11231 | . . . 4 β’ ((π β§ π₯ β π) β (π΅ Β· πΆ) = (πΆ Β· π΅)) |
45 | 40, 43, 44 | 3eqtrd 2768 | . . 3 β’ ((π β§ π₯ β π) β ((0 Β· π΄) + (π΅ Β· πΆ)) = (πΆ Β· π΅)) |
46 | 45 | mpteq2dva 5238 | . 2 β’ (π β (π₯ β π β¦ ((0 Β· π΄) + (π΅ Β· πΆ))) = (π₯ β π β¦ (πΆ Β· π΅))) |
47 | 38, 46 | eqtrd 2764 | 1 β’ (π β (π D (π₯ β π β¦ (πΆ Β· π΄))) = (π₯ β π β¦ (πΆ Β· π΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 βwral 3053 β wss 3940 {cpr 4622 βͺ cuni 4899 β¦ cmpt 5221 dom cdm 5666 βcfv 6533 (class class class)co 7401 βcc 11103 βcr 11104 0cc0 11105 + caddc 11108 Β· cmul 11110 βΎt crest 17364 TopOpenctopn 17365 βfldccnfld 21227 Topctop 22716 TopOnctopon 22733 intcnt 22842 D cdv 25713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 ax-addf 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-er 8698 df-map 8817 df-pm 8818 df-ixp 8887 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-fsupp 9357 df-fi 9401 df-sup 9432 df-inf 9433 df-oi 9500 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-icc 13327 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-struct 17078 df-sets 17095 df-slot 17113 df-ndx 17125 df-base 17143 df-ress 17172 df-plusg 17208 df-mulr 17209 df-starv 17210 df-sca 17211 df-vsca 17212 df-ip 17213 df-tset 17214 df-ple 17215 df-ds 17217 df-unif 17218 df-hom 17219 df-cco 17220 df-rest 17366 df-topn 17367 df-0g 17385 df-gsum 17386 df-topgen 17387 df-pt 17388 df-prds 17391 df-xrs 17446 df-qtop 17451 df-imas 17452 df-xps 17454 df-mre 17528 df-mrc 17529 df-acs 17531 df-mgm 18562 df-sgrp 18641 df-mnd 18657 df-submnd 18703 df-mulg 18985 df-cntz 19222 df-cmn 19691 df-psmet 21219 df-xmet 21220 df-met 21221 df-bl 21222 df-mopn 21223 df-fbas 21224 df-fg 21225 df-cnfld 21228 df-top 22717 df-topon 22734 df-topsp 22756 df-bases 22770 df-cld 22844 df-ntr 22845 df-cls 22846 df-nei 22923 df-lp 22961 df-perf 22962 df-cn 23052 df-cnp 23053 df-haus 23140 df-tx 23387 df-hmeo 23580 df-fil 23671 df-fm 23763 df-flim 23764 df-flf 23765 df-xms 24147 df-ms 24148 df-tms 24149 df-cncf 24719 df-limc 25716 df-dv 25717 |
This theorem is referenced by: dvmptdivc 25818 dvmptneg 25819 dvmptre 25822 dvmptim 25823 dvsincos 25834 cmvth 25844 cmvthOLD 25845 dvlipcn 25848 dvivthlem1 25862 dvfsumle 25875 dvfsumleOLD 25876 dvfsumabs 25878 dvfsumlem2 25882 dvfsumlem2OLD 25883 dvply1 26137 dvtaylp 26222 pserdvlem2 26281 pige3ALT 26370 dvcxp1 26589 dvcxp2 26590 dvcncxp1 26592 dvatan 26782 divsqrtsumlem 26827 lgamgulmlem2 26877 logexprlim 27073 log2sumbnd 27392 itgexpif 34073 dvasin 37028 areacirclem1 37032 lcmineqlem12 41364 aks4d1p1p6 41397 lhe4.4ex1a 43543 expgrowthi 43547 expgrowth 43549 fourierdlem39 45313 |
Copyright terms: Public domain | W3C validator |