MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsxmetlem Structured version   Visualization version   GIF version

Theorem xpsxmetlem 24323
Description: Lemma for xpsxmet 24324. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
xpsds.t 𝑇 = (𝑅 ×s 𝑆)
xpsds.x 𝑋 = (Base‘𝑅)
xpsds.y 𝑌 = (Base‘𝑆)
xpsds.1 (𝜑𝑅𝑉)
xpsds.2 (𝜑𝑆𝑊)
xpsds.p 𝑃 = (dist‘𝑇)
xpsds.m 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
xpsds.n 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌))
xpsds.3 (𝜑𝑀 ∈ (∞Met‘𝑋))
xpsds.4 (𝜑𝑁 ∈ (∞Met‘𝑌))
Assertion
Ref Expression
xpsxmetlem (𝜑 → (dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ∈ (∞Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})))
Distinct variable groups:   𝑥,𝑦   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝑊
Allowed substitution hints:   𝜑(𝑦)   𝑃(𝑥,𝑦)   𝑅(𝑦)   𝑆(𝑦)   𝑇(𝑥,𝑦)   𝑀(𝑦)   𝑁(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑦)

Proof of Theorem xpsxmetlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 ((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = ((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))
2 eqid 2736 . . 3 (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
3 eqid 2736 . . 3 (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))
4 eqid 2736 . . 3 ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
5 eqid 2736 . . 3 (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
6 fvexd 6896 . . 3 (𝜑 → (Scalar‘𝑅) ∈ V)
7 2on 8499 . . . 4 2o ∈ On
87a1i 11 . . 3 (𝜑 → 2o ∈ On)
9 fvexd 6896 . . 3 ((𝜑𝑘 ∈ 2o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) ∈ V)
10 elpri 4630 . . . . 5 (𝑘 ∈ {∅, 1o} → (𝑘 = ∅ ∨ 𝑘 = 1o))
11 df2o3 8493 . . . . 5 2o = {∅, 1o}
1210, 11eleq2s 2853 . . . 4 (𝑘 ∈ 2o → (𝑘 = ∅ ∨ 𝑘 = 1o))
13 xpsds.3 . . . . . . 7 (𝜑𝑀 ∈ (∞Met‘𝑋))
1413adantr 480 . . . . . 6 ((𝜑𝑘 = ∅) → 𝑀 ∈ (∞Met‘𝑋))
15 fveq2 6881 . . . . . . . . . 10 (𝑘 = ∅ → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅))
16 xpsds.1 . . . . . . . . . . 11 (𝜑𝑅𝑉)
17 fvpr0o 17578 . . . . . . . . . . 11 (𝑅𝑉 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
1816, 17syl 17 . . . . . . . . . 10 (𝜑 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
1915, 18sylan9eqr 2793 . . . . . . . . 9 ((𝜑𝑘 = ∅) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = 𝑅)
2019fveq2d 6885 . . . . . . . 8 ((𝜑𝑘 = ∅) → (dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (dist‘𝑅))
2119fveq2d 6885 . . . . . . . . . 10 ((𝜑𝑘 = ∅) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (Base‘𝑅))
22 xpsds.x . . . . . . . . . 10 𝑋 = (Base‘𝑅)
2321, 22eqtr4di 2789 . . . . . . . . 9 ((𝜑𝑘 = ∅) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = 𝑋)
2423sqxpeqd 5691 . . . . . . . 8 ((𝜑𝑘 = ∅) → ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = (𝑋 × 𝑋))
2520, 24reseq12d 5972 . . . . . . 7 ((𝜑𝑘 = ∅) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = ((dist‘𝑅) ↾ (𝑋 × 𝑋)))
26 xpsds.m . . . . . . 7 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
2725, 26eqtr4di 2789 . . . . . 6 ((𝜑𝑘 = ∅) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = 𝑀)
2823fveq2d 6885 . . . . . 6 ((𝜑𝑘 = ∅) → (∞Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = (∞Met‘𝑋))
2914, 27, 283eltr4d 2850 . . . . 5 ((𝜑𝑘 = ∅) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (∞Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
30 xpsds.4 . . . . . . 7 (𝜑𝑁 ∈ (∞Met‘𝑌))
3130adantr 480 . . . . . 6 ((𝜑𝑘 = 1o) → 𝑁 ∈ (∞Met‘𝑌))
32 fveq2 6881 . . . . . . . . . 10 (𝑘 = 1o → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o))
33 xpsds.2 . . . . . . . . . . 11 (𝜑𝑆𝑊)
34 fvpr1o 17579 . . . . . . . . . . 11 (𝑆𝑊 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
3533, 34syl 17 . . . . . . . . . 10 (𝜑 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
3632, 35sylan9eqr 2793 . . . . . . . . 9 ((𝜑𝑘 = 1o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = 𝑆)
3736fveq2d 6885 . . . . . . . 8 ((𝜑𝑘 = 1o) → (dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (dist‘𝑆))
3836fveq2d 6885 . . . . . . . . . 10 ((𝜑𝑘 = 1o) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (Base‘𝑆))
39 xpsds.y . . . . . . . . . 10 𝑌 = (Base‘𝑆)
4038, 39eqtr4di 2789 . . . . . . . . 9 ((𝜑𝑘 = 1o) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = 𝑌)
4140sqxpeqd 5691 . . . . . . . 8 ((𝜑𝑘 = 1o) → ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = (𝑌 × 𝑌))
4237, 41reseq12d 5972 . . . . . . 7 ((𝜑𝑘 = 1o) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = ((dist‘𝑆) ↾ (𝑌 × 𝑌)))
43 xpsds.n . . . . . . 7 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌))
4442, 43eqtr4di 2789 . . . . . 6 ((𝜑𝑘 = 1o) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = 𝑁)
4540fveq2d 6885 . . . . . 6 ((𝜑𝑘 = 1o) → (∞Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = (∞Met‘𝑌))
4631, 44, 453eltr4d 2850 . . . . 5 ((𝜑𝑘 = 1o) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (∞Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
4729, 46jaodan 959 . . . 4 ((𝜑 ∧ (𝑘 = ∅ ∨ 𝑘 = 1o)) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (∞Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
4812, 47sylan2 593 . . 3 ((𝜑𝑘 ∈ 2o) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (∞Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
491, 2, 3, 4, 5, 6, 8, 9, 48prdsxmet 24313 . 2 (𝜑 → (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (∞Met‘(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))))
50 fnpr2o 17576 . . . . . 6 ((𝑅𝑉𝑆𝑊) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
5116, 33, 50syl2anc 584 . . . . 5 (𝜑 → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
52 dffn5 6942 . . . . 5 ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ↔ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} = (𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))
5351, 52sylib 218 . . . 4 (𝜑 → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} = (𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))
5453oveq2d 7426 . . 3 (𝜑 → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
5554fveq2d 6885 . 2 (𝜑 → (dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))))
56 xpsds.t . . . . 5 𝑇 = (𝑅 ×s 𝑆)
57 eqid 2736 . . . . 5 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
58 eqid 2736 . . . . 5 (Scalar‘𝑅) = (Scalar‘𝑅)
59 eqid 2736 . . . . 5 ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
6056, 22, 39, 16, 33, 57, 58, 59xpsrnbas 17590 . . . 4 (𝜑 → ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
6154fveq2d 6885 . . . 4 (𝜑 → (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))))
6260, 61eqtrd 2771 . . 3 (𝜑 → ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))))
6362fveq2d 6885 . 2 (𝜑 → (∞Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})) = (∞Met‘(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))))
6449, 55, 633eltr4d 2850 1 (𝜑 → (dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ∈ (∞Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3464  c0 4313  {cpr 4608  cop 4612  cmpt 5206   × cxp 5657  ran crn 5660  cres 5661  Oncon0 6357   Fn wfn 6531  cfv 6536  (class class class)co 7410  cmpo 7412  1oc1o 8478  2oc2o 8479  Basecbs 17233  Scalarcsca 17279  distcds 17285  Xscprds 17464   ×s cxps 17525  ∞Metcxmet 21305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-icc 13374  df-fz 13530  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-hom 17300  df-cco 17301  df-prds 17466  df-xmet 21313
This theorem is referenced by:  xpsxmet  24324  xpsdsval  24325
  Copyright terms: Public domain W3C validator