MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsxmetlem Structured version   Visualization version   GIF version

Theorem xpsxmetlem 24335
Description: Lemma for xpsxmet 24336. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
xpsds.t 𝑇 = (𝑅 ×s 𝑆)
xpsds.x 𝑋 = (Base‘𝑅)
xpsds.y 𝑌 = (Base‘𝑆)
xpsds.1 (𝜑𝑅𝑉)
xpsds.2 (𝜑𝑆𝑊)
xpsds.p 𝑃 = (dist‘𝑇)
xpsds.m 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
xpsds.n 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌))
xpsds.3 (𝜑𝑀 ∈ (∞Met‘𝑋))
xpsds.4 (𝜑𝑁 ∈ (∞Met‘𝑌))
Assertion
Ref Expression
xpsxmetlem (𝜑 → (dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ∈ (∞Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})))
Distinct variable groups:   𝑥,𝑦   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝑊
Allowed substitution hints:   𝜑(𝑦)   𝑃(𝑥,𝑦)   𝑅(𝑦)   𝑆(𝑦)   𝑇(𝑥,𝑦)   𝑀(𝑦)   𝑁(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑦)

Proof of Theorem xpsxmetlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . 3 ((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = ((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))
2 eqid 2734 . . 3 (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
3 eqid 2734 . . 3 (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))
4 eqid 2734 . . 3 ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
5 eqid 2734 . . 3 (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
6 fvexd 6901 . . 3 (𝜑 → (Scalar‘𝑅) ∈ V)
7 2on 8502 . . . 4 2o ∈ On
87a1i 11 . . 3 (𝜑 → 2o ∈ On)
9 fvexd 6901 . . 3 ((𝜑𝑘 ∈ 2o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) ∈ V)
10 elpri 4629 . . . . 5 (𝑘 ∈ {∅, 1o} → (𝑘 = ∅ ∨ 𝑘 = 1o))
11 df2o3 8496 . . . . 5 2o = {∅, 1o}
1210, 11eleq2s 2851 . . . 4 (𝑘 ∈ 2o → (𝑘 = ∅ ∨ 𝑘 = 1o))
13 xpsds.3 . . . . . . 7 (𝜑𝑀 ∈ (∞Met‘𝑋))
1413adantr 480 . . . . . 6 ((𝜑𝑘 = ∅) → 𝑀 ∈ (∞Met‘𝑋))
15 fveq2 6886 . . . . . . . . . 10 (𝑘 = ∅ → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅))
16 xpsds.1 . . . . . . . . . . 11 (𝜑𝑅𝑉)
17 fvpr0o 17576 . . . . . . . . . . 11 (𝑅𝑉 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
1816, 17syl 17 . . . . . . . . . 10 (𝜑 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
1915, 18sylan9eqr 2791 . . . . . . . . 9 ((𝜑𝑘 = ∅) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = 𝑅)
2019fveq2d 6890 . . . . . . . 8 ((𝜑𝑘 = ∅) → (dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (dist‘𝑅))
2119fveq2d 6890 . . . . . . . . . 10 ((𝜑𝑘 = ∅) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (Base‘𝑅))
22 xpsds.x . . . . . . . . . 10 𝑋 = (Base‘𝑅)
2321, 22eqtr4di 2787 . . . . . . . . 9 ((𝜑𝑘 = ∅) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = 𝑋)
2423sqxpeqd 5697 . . . . . . . 8 ((𝜑𝑘 = ∅) → ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = (𝑋 × 𝑋))
2520, 24reseq12d 5978 . . . . . . 7 ((𝜑𝑘 = ∅) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = ((dist‘𝑅) ↾ (𝑋 × 𝑋)))
26 xpsds.m . . . . . . 7 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
2725, 26eqtr4di 2787 . . . . . 6 ((𝜑𝑘 = ∅) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = 𝑀)
2823fveq2d 6890 . . . . . 6 ((𝜑𝑘 = ∅) → (∞Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = (∞Met‘𝑋))
2914, 27, 283eltr4d 2848 . . . . 5 ((𝜑𝑘 = ∅) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (∞Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
30 xpsds.4 . . . . . . 7 (𝜑𝑁 ∈ (∞Met‘𝑌))
3130adantr 480 . . . . . 6 ((𝜑𝑘 = 1o) → 𝑁 ∈ (∞Met‘𝑌))
32 fveq2 6886 . . . . . . . . . 10 (𝑘 = 1o → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o))
33 xpsds.2 . . . . . . . . . . 11 (𝜑𝑆𝑊)
34 fvpr1o 17577 . . . . . . . . . . 11 (𝑆𝑊 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
3533, 34syl 17 . . . . . . . . . 10 (𝜑 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
3632, 35sylan9eqr 2791 . . . . . . . . 9 ((𝜑𝑘 = 1o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = 𝑆)
3736fveq2d 6890 . . . . . . . 8 ((𝜑𝑘 = 1o) → (dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (dist‘𝑆))
3836fveq2d 6890 . . . . . . . . . 10 ((𝜑𝑘 = 1o) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (Base‘𝑆))
39 xpsds.y . . . . . . . . . 10 𝑌 = (Base‘𝑆)
4038, 39eqtr4di 2787 . . . . . . . . 9 ((𝜑𝑘 = 1o) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = 𝑌)
4140sqxpeqd 5697 . . . . . . . 8 ((𝜑𝑘 = 1o) → ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = (𝑌 × 𝑌))
4237, 41reseq12d 5978 . . . . . . 7 ((𝜑𝑘 = 1o) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = ((dist‘𝑆) ↾ (𝑌 × 𝑌)))
43 xpsds.n . . . . . . 7 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌))
4442, 43eqtr4di 2787 . . . . . 6 ((𝜑𝑘 = 1o) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = 𝑁)
4540fveq2d 6890 . . . . . 6 ((𝜑𝑘 = 1o) → (∞Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = (∞Met‘𝑌))
4631, 44, 453eltr4d 2848 . . . . 5 ((𝜑𝑘 = 1o) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (∞Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
4729, 46jaodan 959 . . . 4 ((𝜑 ∧ (𝑘 = ∅ ∨ 𝑘 = 1o)) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (∞Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
4812, 47sylan2 593 . . 3 ((𝜑𝑘 ∈ 2o) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (∞Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
491, 2, 3, 4, 5, 6, 8, 9, 48prdsxmet 24325 . 2 (𝜑 → (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (∞Met‘(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))))
50 fnpr2o 17574 . . . . . 6 ((𝑅𝑉𝑆𝑊) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
5116, 33, 50syl2anc 584 . . . . 5 (𝜑 → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
52 dffn5 6947 . . . . 5 ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ↔ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} = (𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))
5351, 52sylib 218 . . . 4 (𝜑 → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} = (𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))
5453oveq2d 7429 . . 3 (𝜑 → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
5554fveq2d 6890 . 2 (𝜑 → (dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))))
56 xpsds.t . . . . 5 𝑇 = (𝑅 ×s 𝑆)
57 eqid 2734 . . . . 5 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
58 eqid 2734 . . . . 5 (Scalar‘𝑅) = (Scalar‘𝑅)
59 eqid 2734 . . . . 5 ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
6056, 22, 39, 16, 33, 57, 58, 59xpsrnbas 17588 . . . 4 (𝜑 → ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
6154fveq2d 6890 . . . 4 (𝜑 → (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))))
6260, 61eqtrd 2769 . . 3 (𝜑 → ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))))
6362fveq2d 6890 . 2 (𝜑 → (∞Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})) = (∞Met‘(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))))
6449, 55, 633eltr4d 2848 1 (𝜑 → (dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ∈ (∞Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1539  wcel 2107  Vcvv 3463  c0 4313  {cpr 4608  cop 4612  cmpt 5205   × cxp 5663  ran crn 5666  cres 5667  Oncon0 6363   Fn wfn 6536  cfv 6541  (class class class)co 7413  cmpo 7415  1oc1o 8481  2oc2o 8482  Basecbs 17230  Scalarcsca 17277  distcds 17283  Xscprds 17462   ×s cxps 17523  ∞Metcxmet 21312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-icc 13376  df-fz 13530  df-struct 17167  df-slot 17202  df-ndx 17214  df-base 17231  df-plusg 17287  df-mulr 17288  df-sca 17290  df-vsca 17291  df-ip 17292  df-tset 17293  df-ple 17294  df-ds 17296  df-hom 17298  df-cco 17299  df-prds 17464  df-xmet 21320
This theorem is referenced by:  xpsxmet  24336  xpsdsval  24337
  Copyright terms: Public domain W3C validator