MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsxmetlem Structured version   Visualization version   GIF version

Theorem xpsxmetlem 24105
Description: Lemma for xpsxmet 24106. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
xpsds.t 𝑇 = (𝑅 Γ—s 𝑆)
xpsds.x 𝑋 = (Baseβ€˜π‘…)
xpsds.y π‘Œ = (Baseβ€˜π‘†)
xpsds.1 (πœ‘ β†’ 𝑅 ∈ 𝑉)
xpsds.2 (πœ‘ β†’ 𝑆 ∈ π‘Š)
xpsds.p 𝑃 = (distβ€˜π‘‡)
xpsds.m 𝑀 = ((distβ€˜π‘…) β†Ύ (𝑋 Γ— 𝑋))
xpsds.n 𝑁 = ((distβ€˜π‘†) β†Ύ (π‘Œ Γ— π‘Œ))
xpsds.3 (πœ‘ β†’ 𝑀 ∈ (∞Metβ€˜π‘‹))
xpsds.4 (πœ‘ β†’ 𝑁 ∈ (∞Metβ€˜π‘Œ))
Assertion
Ref Expression
xpsxmetlem (πœ‘ β†’ (distβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) ∈ (∞Metβ€˜ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})))
Distinct variable groups:   π‘₯,𝑦   π‘₯,𝑀   π‘₯,𝑁   πœ‘,π‘₯   π‘₯,𝑅   π‘₯,𝑆   π‘₯,𝑋,𝑦   π‘₯,π‘Œ,𝑦   π‘₯,π‘Š
Allowed substitution hints:   πœ‘(𝑦)   𝑃(π‘₯,𝑦)   𝑅(𝑦)   𝑆(𝑦)   𝑇(π‘₯,𝑦)   𝑀(𝑦)   𝑁(𝑦)   𝑉(π‘₯,𝑦)   π‘Š(𝑦)

Proof of Theorem xpsxmetlem
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 ((Scalarβ€˜π‘…)Xs(π‘˜ ∈ 2o ↦ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))) = ((Scalarβ€˜π‘…)Xs(π‘˜ ∈ 2o ↦ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)))
2 eqid 2730 . . 3 (Baseβ€˜((Scalarβ€˜π‘…)Xs(π‘˜ ∈ 2o ↦ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)))) = (Baseβ€˜((Scalarβ€˜π‘…)Xs(π‘˜ ∈ 2o ↦ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))))
3 eqid 2730 . . 3 (Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) = (Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))
4 eqid 2730 . . 3 ((distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) β†Ύ ((Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) Γ— (Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)))) = ((distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) β†Ύ ((Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) Γ— (Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))))
5 eqid 2730 . . 3 (distβ€˜((Scalarβ€˜π‘…)Xs(π‘˜ ∈ 2o ↦ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)))) = (distβ€˜((Scalarβ€˜π‘…)Xs(π‘˜ ∈ 2o ↦ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))))
6 fvexd 6905 . . 3 (πœ‘ β†’ (Scalarβ€˜π‘…) ∈ V)
7 2on 8482 . . . 4 2o ∈ On
87a1i 11 . . 3 (πœ‘ β†’ 2o ∈ On)
9 fvexd 6905 . . 3 ((πœ‘ ∧ π‘˜ ∈ 2o) β†’ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜) ∈ V)
10 elpri 4649 . . . . 5 (π‘˜ ∈ {βˆ…, 1o} β†’ (π‘˜ = βˆ… ∨ π‘˜ = 1o))
11 df2o3 8476 . . . . 5 2o = {βˆ…, 1o}
1210, 11eleq2s 2849 . . . 4 (π‘˜ ∈ 2o β†’ (π‘˜ = βˆ… ∨ π‘˜ = 1o))
13 xpsds.3 . . . . . . 7 (πœ‘ β†’ 𝑀 ∈ (∞Metβ€˜π‘‹))
1413adantr 479 . . . . . 6 ((πœ‘ ∧ π‘˜ = βˆ…) β†’ 𝑀 ∈ (∞Metβ€˜π‘‹))
15 fveq2 6890 . . . . . . . . . 10 (π‘˜ = βˆ… β†’ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜) = ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜βˆ…))
16 xpsds.1 . . . . . . . . . . 11 (πœ‘ β†’ 𝑅 ∈ 𝑉)
17 fvpr0o 17509 . . . . . . . . . . 11 (𝑅 ∈ 𝑉 β†’ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜βˆ…) = 𝑅)
1816, 17syl 17 . . . . . . . . . 10 (πœ‘ β†’ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜βˆ…) = 𝑅)
1915, 18sylan9eqr 2792 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ = βˆ…) β†’ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜) = 𝑅)
2019fveq2d 6894 . . . . . . . 8 ((πœ‘ ∧ π‘˜ = βˆ…) β†’ (distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) = (distβ€˜π‘…))
2119fveq2d 6894 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ = βˆ…) β†’ (Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) = (Baseβ€˜π‘…))
22 xpsds.x . . . . . . . . . 10 𝑋 = (Baseβ€˜π‘…)
2321, 22eqtr4di 2788 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ = βˆ…) β†’ (Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) = 𝑋)
2423sqxpeqd 5707 . . . . . . . 8 ((πœ‘ ∧ π‘˜ = βˆ…) β†’ ((Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) Γ— (Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))) = (𝑋 Γ— 𝑋))
2520, 24reseq12d 5981 . . . . . . 7 ((πœ‘ ∧ π‘˜ = βˆ…) β†’ ((distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) β†Ύ ((Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) Γ— (Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)))) = ((distβ€˜π‘…) β†Ύ (𝑋 Γ— 𝑋)))
26 xpsds.m . . . . . . 7 𝑀 = ((distβ€˜π‘…) β†Ύ (𝑋 Γ— 𝑋))
2725, 26eqtr4di 2788 . . . . . 6 ((πœ‘ ∧ π‘˜ = βˆ…) β†’ ((distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) β†Ύ ((Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) Γ— (Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)))) = 𝑀)
2823fveq2d 6894 . . . . . 6 ((πœ‘ ∧ π‘˜ = βˆ…) β†’ (∞Metβ€˜(Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))) = (∞Metβ€˜π‘‹))
2914, 27, 283eltr4d 2846 . . . . 5 ((πœ‘ ∧ π‘˜ = βˆ…) β†’ ((distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) β†Ύ ((Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) Γ— (Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)))) ∈ (∞Metβ€˜(Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))))
30 xpsds.4 . . . . . . 7 (πœ‘ β†’ 𝑁 ∈ (∞Metβ€˜π‘Œ))
3130adantr 479 . . . . . 6 ((πœ‘ ∧ π‘˜ = 1o) β†’ 𝑁 ∈ (∞Metβ€˜π‘Œ))
32 fveq2 6890 . . . . . . . . . 10 (π‘˜ = 1o β†’ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜) = ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜1o))
33 xpsds.2 . . . . . . . . . . 11 (πœ‘ β†’ 𝑆 ∈ π‘Š)
34 fvpr1o 17510 . . . . . . . . . . 11 (𝑆 ∈ π‘Š β†’ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜1o) = 𝑆)
3533, 34syl 17 . . . . . . . . . 10 (πœ‘ β†’ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜1o) = 𝑆)
3632, 35sylan9eqr 2792 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ = 1o) β†’ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜) = 𝑆)
3736fveq2d 6894 . . . . . . . 8 ((πœ‘ ∧ π‘˜ = 1o) β†’ (distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) = (distβ€˜π‘†))
3836fveq2d 6894 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ = 1o) β†’ (Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) = (Baseβ€˜π‘†))
39 xpsds.y . . . . . . . . . 10 π‘Œ = (Baseβ€˜π‘†)
4038, 39eqtr4di 2788 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ = 1o) β†’ (Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) = π‘Œ)
4140sqxpeqd 5707 . . . . . . . 8 ((πœ‘ ∧ π‘˜ = 1o) β†’ ((Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) Γ— (Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))) = (π‘Œ Γ— π‘Œ))
4237, 41reseq12d 5981 . . . . . . 7 ((πœ‘ ∧ π‘˜ = 1o) β†’ ((distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) β†Ύ ((Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) Γ— (Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)))) = ((distβ€˜π‘†) β†Ύ (π‘Œ Γ— π‘Œ)))
43 xpsds.n . . . . . . 7 𝑁 = ((distβ€˜π‘†) β†Ύ (π‘Œ Γ— π‘Œ))
4442, 43eqtr4di 2788 . . . . . 6 ((πœ‘ ∧ π‘˜ = 1o) β†’ ((distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) β†Ύ ((Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) Γ— (Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)))) = 𝑁)
4540fveq2d 6894 . . . . . 6 ((πœ‘ ∧ π‘˜ = 1o) β†’ (∞Metβ€˜(Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))) = (∞Metβ€˜π‘Œ))
4631, 44, 453eltr4d 2846 . . . . 5 ((πœ‘ ∧ π‘˜ = 1o) β†’ ((distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) β†Ύ ((Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) Γ— (Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)))) ∈ (∞Metβ€˜(Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))))
4729, 46jaodan 954 . . . 4 ((πœ‘ ∧ (π‘˜ = βˆ… ∨ π‘˜ = 1o)) β†’ ((distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) β†Ύ ((Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) Γ— (Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)))) ∈ (∞Metβ€˜(Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))))
4812, 47sylan2 591 . . 3 ((πœ‘ ∧ π‘˜ ∈ 2o) β†’ ((distβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) β†Ύ ((Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)) Γ— (Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)))) ∈ (∞Metβ€˜(Baseβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))))
491, 2, 3, 4, 5, 6, 8, 9, 48prdsxmet 24095 . 2 (πœ‘ β†’ (distβ€˜((Scalarβ€˜π‘…)Xs(π‘˜ ∈ 2o ↦ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)))) ∈ (∞Metβ€˜(Baseβ€˜((Scalarβ€˜π‘…)Xs(π‘˜ ∈ 2o ↦ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))))))
50 fnpr2o 17507 . . . . . 6 ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ π‘Š) β†’ {βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©} Fn 2o)
5116, 33, 50syl2anc 582 . . . . 5 (πœ‘ β†’ {βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©} Fn 2o)
52 dffn5 6949 . . . . 5 ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©} Fn 2o ↔ {βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©} = (π‘˜ ∈ 2o ↦ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)))
5351, 52sylib 217 . . . 4 (πœ‘ β†’ {βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©} = (π‘˜ ∈ 2o ↦ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)))
5453oveq2d 7427 . . 3 (πœ‘ β†’ ((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}) = ((Scalarβ€˜π‘…)Xs(π‘˜ ∈ 2o ↦ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))))
5554fveq2d 6894 . 2 (πœ‘ β†’ (distβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) = (distβ€˜((Scalarβ€˜π‘…)Xs(π‘˜ ∈ 2o ↦ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)))))
56 xpsds.t . . . . 5 𝑇 = (𝑅 Γ—s 𝑆)
57 eqid 2730 . . . . 5 (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) = (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})
58 eqid 2730 . . . . 5 (Scalarβ€˜π‘…) = (Scalarβ€˜π‘…)
59 eqid 2730 . . . . 5 ((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}) = ((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})
6056, 22, 39, 16, 33, 57, 58, 59xpsrnbas 17521 . . . 4 (πœ‘ β†’ ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) = (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})))
6154fveq2d 6894 . . . 4 (πœ‘ β†’ (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) = (Baseβ€˜((Scalarβ€˜π‘…)Xs(π‘˜ ∈ 2o ↦ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)))))
6260, 61eqtrd 2770 . . 3 (πœ‘ β†’ ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) = (Baseβ€˜((Scalarβ€˜π‘…)Xs(π‘˜ ∈ 2o ↦ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜)))))
6362fveq2d 6894 . 2 (πœ‘ β†’ (∞Metβ€˜ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})) = (∞Metβ€˜(Baseβ€˜((Scalarβ€˜π‘…)Xs(π‘˜ ∈ 2o ↦ ({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))))))
6449, 55, 633eltr4d 2846 1 (πœ‘ β†’ (distβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) ∈ (∞Metβ€˜ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∨ wo 843   = wceq 1539   ∈ wcel 2104  Vcvv 3472  βˆ…c0 4321  {cpr 4629  βŸ¨cop 4633   ↦ cmpt 5230   Γ— cxp 5673  ran crn 5676   β†Ύ cres 5677  Oncon0 6363   Fn wfn 6537  β€˜cfv 6542  (class class class)co 7411   ∈ cmpo 7413  1oc1o 8461  2oc2o 8462  Basecbs 17148  Scalarcsca 17204  distcds 17210  Xscprds 17395   Γ—s cxps 17456  βˆžMetcxmet 21129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-icc 13335  df-fz 13489  df-struct 17084  df-slot 17119  df-ndx 17131  df-base 17149  df-plusg 17214  df-mulr 17215  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-hom 17225  df-cco 17226  df-prds 17397  df-xmet 21137
This theorem is referenced by:  xpsxmet  24106  xpsdsval  24107
  Copyright terms: Public domain W3C validator