| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2736 | . . 3
⊢
((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦
({〈∅, 𝑅〉,
〈1o, 𝑆〉}‘𝑘))) = ((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦
({〈∅, 𝑅〉,
〈1o, 𝑆〉}‘𝑘))) | 
| 2 |  | eqid 2736 | . . 3
⊢
(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦
({〈∅, 𝑅〉,
〈1o, 𝑆〉}‘𝑘)))) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦
({〈∅, 𝑅〉,
〈1o, 𝑆〉}‘𝑘)))) | 
| 3 |  | eqid 2736 | . . 3
⊢
(Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) = (Base‘({〈∅, 𝑅〉, 〈1o,
𝑆〉}‘𝑘)) | 
| 4 |  | eqid 2736 | . . 3
⊢
((dist‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) ↾ ((Base‘({〈∅,
𝑅〉,
〈1o, 𝑆〉}‘𝑘)) × (Base‘({〈∅, 𝑅〉, 〈1o,
𝑆〉}‘𝑘)))) =
((dist‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) ↾ ((Base‘({〈∅,
𝑅〉,
〈1o, 𝑆〉}‘𝑘)) × (Base‘({〈∅, 𝑅〉, 〈1o,
𝑆〉}‘𝑘)))) | 
| 5 |  | eqid 2736 | . . 3
⊢
(dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦
({〈∅, 𝑅〉,
〈1o, 𝑆〉}‘𝑘)))) = (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦
({〈∅, 𝑅〉,
〈1o, 𝑆〉}‘𝑘)))) | 
| 6 |  | fvexd 6920 | . . 3
⊢ (𝜑 → (Scalar‘𝑅) ∈ V) | 
| 7 |  | 2on 8521 | . . . 4
⊢
2o ∈ On | 
| 8 | 7 | a1i 11 | . . 3
⊢ (𝜑 → 2o ∈
On) | 
| 9 |  | fvexd 6920 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 2o) →
({〈∅, 𝑅〉,
〈1o, 𝑆〉}‘𝑘) ∈ V) | 
| 10 |  | elpri 4648 | . . . . 5
⊢ (𝑘 ∈ {∅, 1o}
→ (𝑘 = ∅ ∨
𝑘 =
1o)) | 
| 11 |  | df2o3 8515 | . . . . 5
⊢
2o = {∅, 1o} | 
| 12 | 10, 11 | eleq2s 2858 | . . . 4
⊢ (𝑘 ∈ 2o →
(𝑘 = ∅ ∨ 𝑘 =
1o)) | 
| 13 |  | xpsds.3 | . . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) | 
| 14 | 13 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 = ∅) → 𝑀 ∈ (∞Met‘𝑋)) | 
| 15 |  | fveq2 6905 | . . . . . . . . . 10
⊢ (𝑘 = ∅ →
({〈∅, 𝑅〉,
〈1o, 𝑆〉}‘𝑘) = ({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘∅)) | 
| 16 |  | xpsds.1 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ 𝑉) | 
| 17 |  | fvpr0o 17605 | . . . . . . . . . . 11
⊢ (𝑅 ∈ 𝑉 → ({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘∅) = 𝑅) | 
| 18 | 16, 17 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → ({〈∅, 𝑅〉, 〈1o,
𝑆〉}‘∅) =
𝑅) | 
| 19 | 15, 18 | sylan9eqr 2798 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 = ∅) → ({〈∅, 𝑅〉, 〈1o,
𝑆〉}‘𝑘) = 𝑅) | 
| 20 | 19 | fveq2d 6909 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 = ∅) →
(dist‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) = (dist‘𝑅)) | 
| 21 | 19 | fveq2d 6909 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 = ∅) →
(Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) = (Base‘𝑅)) | 
| 22 |  | xpsds.x | . . . . . . . . . 10
⊢ 𝑋 = (Base‘𝑅) | 
| 23 | 21, 22 | eqtr4di 2794 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 = ∅) →
(Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) = 𝑋) | 
| 24 | 23 | sqxpeqd 5716 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 = ∅) →
((Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) × (Base‘({〈∅, 𝑅〉, 〈1o,
𝑆〉}‘𝑘))) = (𝑋 × 𝑋)) | 
| 25 | 20, 24 | reseq12d 5997 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 = ∅) →
((dist‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) ↾ ((Base‘({〈∅,
𝑅〉,
〈1o, 𝑆〉}‘𝑘)) × (Base‘({〈∅, 𝑅〉, 〈1o,
𝑆〉}‘𝑘)))) = ((dist‘𝑅) ↾ (𝑋 × 𝑋))) | 
| 26 |  | xpsds.m | . . . . . . 7
⊢ 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋)) | 
| 27 | 25, 26 | eqtr4di 2794 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 = ∅) →
((dist‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) ↾ ((Base‘({〈∅,
𝑅〉,
〈1o, 𝑆〉}‘𝑘)) × (Base‘({〈∅, 𝑅〉, 〈1o,
𝑆〉}‘𝑘)))) = 𝑀) | 
| 28 | 23 | fveq2d 6909 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 = ∅) →
(∞Met‘(Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘))) = (∞Met‘𝑋)) | 
| 29 | 14, 27, 28 | 3eltr4d 2855 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 = ∅) →
((dist‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) ↾ ((Base‘({〈∅,
𝑅〉,
〈1o, 𝑆〉}‘𝑘)) × (Base‘({〈∅, 𝑅〉, 〈1o,
𝑆〉}‘𝑘)))) ∈
(∞Met‘(Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)))) | 
| 30 |  | xpsds.4 | . . . . . . 7
⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) | 
| 31 | 30 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 = 1o) → 𝑁 ∈ (∞Met‘𝑌)) | 
| 32 |  | fveq2 6905 | . . . . . . . . . 10
⊢ (𝑘 = 1o →
({〈∅, 𝑅〉,
〈1o, 𝑆〉}‘𝑘) = ({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘1o)) | 
| 33 |  | xpsds.2 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈ 𝑊) | 
| 34 |  | fvpr1o 17606 | . . . . . . . . . . 11
⊢ (𝑆 ∈ 𝑊 → ({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘1o) =
𝑆) | 
| 35 | 33, 34 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → ({〈∅, 𝑅〉, 〈1o,
𝑆〉}‘1o) = 𝑆) | 
| 36 | 32, 35 | sylan9eqr 2798 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 = 1o) → ({〈∅,
𝑅〉,
〈1o, 𝑆〉}‘𝑘) = 𝑆) | 
| 37 | 36 | fveq2d 6909 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 = 1o) →
(dist‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) = (dist‘𝑆)) | 
| 38 | 36 | fveq2d 6909 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 = 1o) →
(Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) = (Base‘𝑆)) | 
| 39 |  | xpsds.y | . . . . . . . . . 10
⊢ 𝑌 = (Base‘𝑆) | 
| 40 | 38, 39 | eqtr4di 2794 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 = 1o) →
(Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) = 𝑌) | 
| 41 | 40 | sqxpeqd 5716 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 = 1o) →
((Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) × (Base‘({〈∅, 𝑅〉, 〈1o,
𝑆〉}‘𝑘))) = (𝑌 × 𝑌)) | 
| 42 | 37, 41 | reseq12d 5997 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 = 1o) →
((dist‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) ↾ ((Base‘({〈∅,
𝑅〉,
〈1o, 𝑆〉}‘𝑘)) × (Base‘({〈∅, 𝑅〉, 〈1o,
𝑆〉}‘𝑘)))) = ((dist‘𝑆) ↾ (𝑌 × 𝑌))) | 
| 43 |  | xpsds.n | . . . . . . 7
⊢ 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌)) | 
| 44 | 42, 43 | eqtr4di 2794 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 = 1o) →
((dist‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) ↾ ((Base‘({〈∅,
𝑅〉,
〈1o, 𝑆〉}‘𝑘)) × (Base‘({〈∅, 𝑅〉, 〈1o,
𝑆〉}‘𝑘)))) = 𝑁) | 
| 45 | 40 | fveq2d 6909 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 = 1o) →
(∞Met‘(Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘))) = (∞Met‘𝑌)) | 
| 46 | 31, 44, 45 | 3eltr4d 2855 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 = 1o) →
((dist‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) ↾ ((Base‘({〈∅,
𝑅〉,
〈1o, 𝑆〉}‘𝑘)) × (Base‘({〈∅, 𝑅〉, 〈1o,
𝑆〉}‘𝑘)))) ∈
(∞Met‘(Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)))) | 
| 47 | 29, 46 | jaodan 959 | . . . 4
⊢ ((𝜑 ∧ (𝑘 = ∅ ∨ 𝑘 = 1o)) →
((dist‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) ↾ ((Base‘({〈∅,
𝑅〉,
〈1o, 𝑆〉}‘𝑘)) × (Base‘({〈∅, 𝑅〉, 〈1o,
𝑆〉}‘𝑘)))) ∈
(∞Met‘(Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)))) | 
| 48 | 12, 47 | sylan2 593 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 2o) →
((dist‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) ↾ ((Base‘({〈∅,
𝑅〉,
〈1o, 𝑆〉}‘𝑘)) × (Base‘({〈∅, 𝑅〉, 〈1o,
𝑆〉}‘𝑘)))) ∈
(∞Met‘(Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)))) | 
| 49 | 1, 2, 3, 4, 5, 6, 8, 9, 48 | prdsxmet 24380 | . 2
⊢ (𝜑 →
(dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦
({〈∅, 𝑅〉,
〈1o, 𝑆〉}‘𝑘)))) ∈
(∞Met‘(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦
({〈∅, 𝑅〉,
〈1o, 𝑆〉}‘𝑘)))))) | 
| 50 |  | fnpr2o 17603 | . . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → {〈∅, 𝑅〉, 〈1o, 𝑆〉} Fn
2o) | 
| 51 | 16, 33, 50 | syl2anc 584 | . . . . 5
⊢ (𝜑 → {〈∅, 𝑅〉, 〈1o,
𝑆〉} Fn
2o) | 
| 52 |  | dffn5 6966 | . . . . 5
⊢
({〈∅, 𝑅〉, 〈1o, 𝑆〉} Fn 2o ↔
{〈∅, 𝑅〉,
〈1o, 𝑆〉} = (𝑘 ∈ 2o ↦
({〈∅, 𝑅〉,
〈1o, 𝑆〉}‘𝑘))) | 
| 53 | 51, 52 | sylib 218 | . . . 4
⊢ (𝜑 → {〈∅, 𝑅〉, 〈1o,
𝑆〉} = (𝑘 ∈ 2o ↦
({〈∅, 𝑅〉,
〈1o, 𝑆〉}‘𝑘))) | 
| 54 | 53 | oveq2d 7448 | . . 3
⊢ (𝜑 → ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) = ((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦
({〈∅, 𝑅〉,
〈1o, 𝑆〉}‘𝑘)))) | 
| 55 | 54 | fveq2d 6909 | . 2
⊢ (𝜑 →
(dist‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) =
(dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦
({〈∅, 𝑅〉,
〈1o, 𝑆〉}‘𝑘))))) | 
| 56 |  | xpsds.t | . . . . 5
⊢ 𝑇 = (𝑅 ×s 𝑆) | 
| 57 |  | eqid 2736 | . . . . 5
⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | 
| 58 |  | eqid 2736 | . . . . 5
⊢
(Scalar‘𝑅) =
(Scalar‘𝑅) | 
| 59 |  | eqid 2736 | . . . . 5
⊢
((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) = ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) | 
| 60 | 56, 22, 39, 16, 33, 57, 58, 59 | xpsrnbas 17617 | . . . 4
⊢ (𝜑 → ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) =
(Base‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))) | 
| 61 | 54 | fveq2d 6909 | . . . 4
⊢ (𝜑 →
(Base‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) =
(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦
({〈∅, 𝑅〉,
〈1o, 𝑆〉}‘𝑘))))) | 
| 62 | 60, 61 | eqtrd 2776 | . . 3
⊢ (𝜑 → ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) =
(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦
({〈∅, 𝑅〉,
〈1o, 𝑆〉}‘𝑘))))) | 
| 63 | 62 | fveq2d 6909 | . 2
⊢ (𝜑 → (∞Met‘ran
(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})) =
(∞Met‘(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦
({〈∅, 𝑅〉,
〈1o, 𝑆〉}‘𝑘)))))) | 
| 64 | 49, 55, 63 | 3eltr4d 2855 | 1
⊢ (𝜑 →
(dist‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) ∈
(∞Met‘ran (𝑥
∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}))) |