Step | Hyp | Ref
| Expression |
1 | | eqid 2778 |
. . 3
⊢
((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ (◡({𝑅} +𝑐 {𝑆})‘𝑘))) = ((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ (◡({𝑅} +𝑐 {𝑆})‘𝑘))) |
2 | | eqid 2778 |
. . 3
⊢
(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ (◡({𝑅} +𝑐 {𝑆})‘𝑘)))) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ (◡({𝑅} +𝑐 {𝑆})‘𝑘)))) |
3 | | eqid 2778 |
. . 3
⊢
(Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) = (Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) |
4 | | eqid 2778 |
. . 3
⊢
((dist‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)))) = ((dist‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)))) |
5 | | eqid 2778 |
. . 3
⊢
(dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ (◡({𝑅} +𝑐 {𝑆})‘𝑘)))) = (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ (◡({𝑅} +𝑐 {𝑆})‘𝑘)))) |
6 | | fvexd 6516 |
. . 3
⊢ (𝜑 → (Scalar‘𝑅) ∈ V) |
7 | | 2on 7916 |
. . . 4
⊢
2o ∈ On |
8 | 7 | a1i 11 |
. . 3
⊢ (𝜑 → 2o ∈
On) |
9 | | fvexd 6516 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 2o) → (◡({𝑅} +𝑐 {𝑆})‘𝑘) ∈ V) |
10 | | elpri 4464 |
. . . . 5
⊢ (𝑘 ∈ {∅, 1o}
→ (𝑘 = ∅ ∨
𝑘 =
1o)) |
11 | | df2o3 7921 |
. . . . 5
⊢
2o = {∅, 1o} |
12 | 10, 11 | eleq2s 2884 |
. . . 4
⊢ (𝑘 ∈ 2o →
(𝑘 = ∅ ∨ 𝑘 =
1o)) |
13 | | xpsds.3 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) |
14 | 13 | adantr 473 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = ∅) → 𝑀 ∈ (∞Met‘𝑋)) |
15 | | fveq2 6501 |
. . . . . . . . . 10
⊢ (𝑘 = ∅ → (◡({𝑅} +𝑐 {𝑆})‘𝑘) = (◡({𝑅} +𝑐 {𝑆})‘∅)) |
16 | | xpsds.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ 𝑉) |
17 | | xpsc0 16692 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ 𝑉 → (◡({𝑅} +𝑐 {𝑆})‘∅) = 𝑅) |
18 | 16, 17 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (◡({𝑅} +𝑐 {𝑆})‘∅) = 𝑅) |
19 | 15, 18 | sylan9eqr 2836 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 = ∅) → (◡({𝑅} +𝑐 {𝑆})‘𝑘) = 𝑅) |
20 | 19 | fveq2d 6505 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 = ∅) → (dist‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) = (dist‘𝑅)) |
21 | 19 | fveq2d 6505 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 = ∅) → (Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) = (Base‘𝑅)) |
22 | | xpsds.x |
. . . . . . . . . 10
⊢ 𝑋 = (Base‘𝑅) |
23 | 21, 22 | syl6eqr 2832 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 = ∅) → (Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) = 𝑋) |
24 | 23 | sqxpeqd 5440 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 = ∅) → ((Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘))) = (𝑋 × 𝑋)) |
25 | 20, 24 | reseq12d 5697 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 = ∅) → ((dist‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)))) = ((dist‘𝑅) ↾ (𝑋 × 𝑋))) |
26 | | xpsds.m |
. . . . . . 7
⊢ 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋)) |
27 | 25, 26 | syl6eqr 2832 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = ∅) → ((dist‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)))) = 𝑀) |
28 | 23 | fveq2d 6505 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = ∅) →
(∞Met‘(Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘))) = (∞Met‘𝑋)) |
29 | 14, 27, 28 | 3eltr4d 2881 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 = ∅) → ((dist‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)))) ∈
(∞Met‘(Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)))) |
30 | | xpsds.4 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) |
31 | 30 | adantr 473 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = 1o) → 𝑁 ∈ (∞Met‘𝑌)) |
32 | | fveq2 6501 |
. . . . . . . . . 10
⊢ (𝑘 = 1o → (◡({𝑅} +𝑐 {𝑆})‘𝑘) = (◡({𝑅} +𝑐 {𝑆})‘1o)) |
33 | | xpsds.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈ 𝑊) |
34 | | xpsc1 16693 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ 𝑊 → (◡({𝑅} +𝑐 {𝑆})‘1o) = 𝑆) |
35 | 33, 34 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (◡({𝑅} +𝑐 {𝑆})‘1o) = 𝑆) |
36 | 32, 35 | sylan9eqr 2836 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 = 1o) → (◡({𝑅} +𝑐 {𝑆})‘𝑘) = 𝑆) |
37 | 36 | fveq2d 6505 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 = 1o) → (dist‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) = (dist‘𝑆)) |
38 | 36 | fveq2d 6505 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 = 1o) → (Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) = (Base‘𝑆)) |
39 | | xpsds.y |
. . . . . . . . . 10
⊢ 𝑌 = (Base‘𝑆) |
40 | 38, 39 | syl6eqr 2832 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 = 1o) → (Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) = 𝑌) |
41 | 40 | sqxpeqd 5440 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 = 1o) → ((Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘))) = (𝑌 × 𝑌)) |
42 | 37, 41 | reseq12d 5697 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 = 1o) → ((dist‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)))) = ((dist‘𝑆) ↾ (𝑌 × 𝑌))) |
43 | | xpsds.n |
. . . . . . 7
⊢ 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌)) |
44 | 42, 43 | syl6eqr 2832 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = 1o) → ((dist‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)))) = 𝑁) |
45 | 40 | fveq2d 6505 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = 1o) →
(∞Met‘(Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘))) = (∞Met‘𝑌)) |
46 | 31, 44, 45 | 3eltr4d 2881 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 = 1o) → ((dist‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)))) ∈
(∞Met‘(Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)))) |
47 | 29, 46 | jaodan 940 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 = ∅ ∨ 𝑘 = 1o)) → ((dist‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)))) ∈
(∞Met‘(Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)))) |
48 | 12, 47 | sylan2 583 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 2o) →
((dist‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)))) ∈
(∞Met‘(Base‘(◡({𝑅} +𝑐 {𝑆})‘𝑘)))) |
49 | 1, 2, 3, 4, 5, 6, 8, 9, 48 | prdsxmet 22685 |
. 2
⊢ (𝜑 →
(dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ (◡({𝑅} +𝑐 {𝑆})‘𝑘)))) ∈
(∞Met‘(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ (◡({𝑅} +𝑐 {𝑆})‘𝑘)))))) |
50 | | xpscfn 16691 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ◡({𝑅} +𝑐 {𝑆}) Fn 2o) |
51 | 16, 33, 50 | syl2anc 576 |
. . . . 5
⊢ (𝜑 → ◡({𝑅} +𝑐 {𝑆}) Fn 2o) |
52 | | dffn5 6556 |
. . . . 5
⊢ (◡({𝑅} +𝑐 {𝑆}) Fn 2o ↔ ◡({𝑅} +𝑐 {𝑆}) = (𝑘 ∈ 2o ↦ (◡({𝑅} +𝑐 {𝑆})‘𝑘))) |
53 | 51, 52 | sylib 210 |
. . . 4
⊢ (𝜑 → ◡({𝑅} +𝑐 {𝑆}) = (𝑘 ∈ 2o ↦ (◡({𝑅} +𝑐 {𝑆})‘𝑘))) |
54 | 53 | oveq2d 6994 |
. . 3
⊢ (𝜑 → ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})) = ((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ (◡({𝑅} +𝑐 {𝑆})‘𝑘)))) |
55 | 54 | fveq2d 6505 |
. 2
⊢ (𝜑 →
(dist‘((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆}))) = (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ (◡({𝑅} +𝑐 {𝑆})‘𝑘))))) |
56 | | xpsds.t |
. . . . 5
⊢ 𝑇 = (𝑅 ×s 𝑆) |
57 | | eqid 2778 |
. . . . 5
⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) |
58 | | eqid 2778 |
. . . . 5
⊢
(Scalar‘𝑅) =
(Scalar‘𝑅) |
59 | | eqid 2778 |
. . . . 5
⊢
((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})) = ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})) |
60 | 56, 22, 39, 16, 33, 57, 58, 59 | xpslem 16705 |
. . . 4
⊢ (𝜑 → ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) = (Base‘((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})))) |
61 | 54 | fveq2d 6505 |
. . . 4
⊢ (𝜑 →
(Base‘((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆}))) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ (◡({𝑅} +𝑐 {𝑆})‘𝑘))))) |
62 | 60, 61 | eqtrd 2814 |
. . 3
⊢ (𝜑 → ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ (◡({𝑅} +𝑐 {𝑆})‘𝑘))))) |
63 | 62 | fveq2d 6505 |
. 2
⊢ (𝜑 → (∞Met‘ran
(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦}))) =
(∞Met‘(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ (◡({𝑅} +𝑐 {𝑆})‘𝑘)))))) |
64 | 49, 55, 63 | 3eltr4d 2881 |
1
⊢ (𝜑 →
(dist‘((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆}))) ∈ (∞Met‘ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})))) |