MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsmet Structured version   Visualization version   GIF version

Theorem xpsmet 24408
Description: The direct product of two metric spaces. Definition 14-1.5 of [Gleason] p. 225. (Contributed by NM, 20-Jun-2007.) (Revised by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
xpsds.t 𝑇 = (𝑅 ×s 𝑆)
xpsds.x 𝑋 = (Base‘𝑅)
xpsds.y 𝑌 = (Base‘𝑆)
xpsds.1 (𝜑𝑅𝑉)
xpsds.2 (𝜑𝑆𝑊)
xpsds.p 𝑃 = (dist‘𝑇)
xpsds.m 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
xpsds.n 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌))
xpsmet.3 (𝜑𝑀 ∈ (Met‘𝑋))
xpsmet.4 (𝜑𝑁 ∈ (Met‘𝑌))
Assertion
Ref Expression
xpsmet (𝜑𝑃 ∈ (Met‘(𝑋 × 𝑌)))

Proof of Theorem xpsmet
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsds.t . . 3 𝑇 = (𝑅 ×s 𝑆)
2 xpsds.x . . 3 𝑋 = (Base‘𝑅)
3 xpsds.y . . 3 𝑌 = (Base‘𝑆)
4 xpsds.1 . . 3 (𝜑𝑅𝑉)
5 xpsds.2 . . 3 (𝜑𝑆𝑊)
6 eqid 2735 . . 3 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
7 eqid 2735 . . 3 (Scalar‘𝑅) = (Scalar‘𝑅)
8 eqid 2735 . . 3 ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
91, 2, 3, 4, 5, 6, 7, 8xpsval 17617 . 2 (𝜑𝑇 = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
101, 2, 3, 4, 5, 6, 7, 8xpsrnbas 17618 . 2 (𝜑 → ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
116xpsff1o2 17616 . . 3 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
12 f1ocnv 6861 . . 3 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌))
1311, 12mp1i 13 . 2 (𝜑(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌))
14 ovexd 7466 . 2 (𝜑 → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ V)
15 eqid 2735 . 2 ((dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ↾ (ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) × ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))) = ((dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ↾ (ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) × ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})))
16 xpsds.p . 2 𝑃 = (dist‘𝑇)
17 eqid 2735 . . . . 5 ((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = ((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))
18 eqid 2735 . . . . 5 (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
19 eqid 2735 . . . . 5 (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))
20 eqid 2735 . . . . 5 ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
21 eqid 2735 . . . . 5 (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
22 fvexd 6922 . . . . 5 (𝜑 → (Scalar‘𝑅) ∈ V)
23 2onn 8679 . . . . . 6 2o ∈ ω
24 nnfi 9206 . . . . . 6 (2o ∈ ω → 2o ∈ Fin)
2523, 24mp1i 13 . . . . 5 (𝜑 → 2o ∈ Fin)
26 fvexd 6922 . . . . 5 ((𝜑𝑘 ∈ 2o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) ∈ V)
27 elpri 4654 . . . . . . 7 (𝑘 ∈ {∅, 1o} → (𝑘 = ∅ ∨ 𝑘 = 1o))
28 df2o3 8513 . . . . . . 7 2o = {∅, 1o}
2927, 28eleq2s 2857 . . . . . 6 (𝑘 ∈ 2o → (𝑘 = ∅ ∨ 𝑘 = 1o))
30 xpsmet.3 . . . . . . . . 9 (𝜑𝑀 ∈ (Met‘𝑋))
3130adantr 480 . . . . . . . 8 ((𝜑𝑘 = ∅) → 𝑀 ∈ (Met‘𝑋))
32 fveq2 6907 . . . . . . . . . . . 12 (𝑘 = ∅ → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅))
33 fvpr0o 17606 . . . . . . . . . . . . 13 (𝑅𝑉 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
344, 33syl 17 . . . . . . . . . . . 12 (𝜑 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
3532, 34sylan9eqr 2797 . . . . . . . . . . 11 ((𝜑𝑘 = ∅) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = 𝑅)
3635fveq2d 6911 . . . . . . . . . 10 ((𝜑𝑘 = ∅) → (dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (dist‘𝑅))
3735fveq2d 6911 . . . . . . . . . . . 12 ((𝜑𝑘 = ∅) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (Base‘𝑅))
3837, 2eqtr4di 2793 . . . . . . . . . . 11 ((𝜑𝑘 = ∅) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = 𝑋)
3938sqxpeqd 5721 . . . . . . . . . 10 ((𝜑𝑘 = ∅) → ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = (𝑋 × 𝑋))
4036, 39reseq12d 6001 . . . . . . . . 9 ((𝜑𝑘 = ∅) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = ((dist‘𝑅) ↾ (𝑋 × 𝑋)))
41 xpsds.m . . . . . . . . 9 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
4240, 41eqtr4di 2793 . . . . . . . 8 ((𝜑𝑘 = ∅) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = 𝑀)
4338fveq2d 6911 . . . . . . . 8 ((𝜑𝑘 = ∅) → (Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = (Met‘𝑋))
4431, 42, 433eltr4d 2854 . . . . . . 7 ((𝜑𝑘 = ∅) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
45 xpsmet.4 . . . . . . . . 9 (𝜑𝑁 ∈ (Met‘𝑌))
4645adantr 480 . . . . . . . 8 ((𝜑𝑘 = 1o) → 𝑁 ∈ (Met‘𝑌))
47 fveq2 6907 . . . . . . . . . . . 12 (𝑘 = 1o → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o))
48 fvpr1o 17607 . . . . . . . . . . . . 13 (𝑆𝑊 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
495, 48syl 17 . . . . . . . . . . . 12 (𝜑 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
5047, 49sylan9eqr 2797 . . . . . . . . . . 11 ((𝜑𝑘 = 1o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = 𝑆)
5150fveq2d 6911 . . . . . . . . . 10 ((𝜑𝑘 = 1o) → (dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (dist‘𝑆))
5250fveq2d 6911 . . . . . . . . . . . 12 ((𝜑𝑘 = 1o) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (Base‘𝑆))
5352, 3eqtr4di 2793 . . . . . . . . . . 11 ((𝜑𝑘 = 1o) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = 𝑌)
5453sqxpeqd 5721 . . . . . . . . . 10 ((𝜑𝑘 = 1o) → ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = (𝑌 × 𝑌))
5551, 54reseq12d 6001 . . . . . . . . 9 ((𝜑𝑘 = 1o) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = ((dist‘𝑆) ↾ (𝑌 × 𝑌)))
56 xpsds.n . . . . . . . . 9 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌))
5755, 56eqtr4di 2793 . . . . . . . 8 ((𝜑𝑘 = 1o) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = 𝑁)
5853fveq2d 6911 . . . . . . . 8 ((𝜑𝑘 = 1o) → (Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = (Met‘𝑌))
5946, 57, 583eltr4d 2854 . . . . . . 7 ((𝜑𝑘 = 1o) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
6044, 59jaodan 959 . . . . . 6 ((𝜑 ∧ (𝑘 = ∅ ∨ 𝑘 = 1o)) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
6129, 60sylan2 593 . . . . 5 ((𝜑𝑘 ∈ 2o) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
6217, 18, 19, 20, 21, 22, 25, 26, 61prdsmet 24396 . . . 4 (𝜑 → (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (Met‘(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))))
63 fnpr2o 17604 . . . . . . . 8 ((𝑅𝑉𝑆𝑊) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
644, 5, 63syl2anc 584 . . . . . . 7 (𝜑 → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
65 dffn5 6967 . . . . . . 7 ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ↔ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} = (𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))
6664, 65sylib 218 . . . . . 6 (𝜑 → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} = (𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))
6766oveq2d 7447 . . . . 5 (𝜑 → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
6867fveq2d 6911 . . . 4 (𝜑 → (dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))))
6967fveq2d 6911 . . . . . 6 (𝜑 → (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))))
7010, 69eqtrd 2775 . . . . 5 (𝜑 → ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))))
7170fveq2d 6911 . . . 4 (𝜑 → (Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})) = (Met‘(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))))
7262, 68, 713eltr4d 2854 . . 3 (𝜑 → (dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ∈ (Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})))
73 ssid 4018 . . 3 ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ⊆ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
74 metres2 24389 . . 3 (((dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ∈ (Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})) ∧ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ⊆ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})) → ((dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ↾ (ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) × ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))) ∈ (Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})))
7572, 73, 74sylancl 586 . 2 (𝜑 → ((dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ↾ (ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) × ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))) ∈ (Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})))
769, 10, 13, 14, 15, 16, 75imasf1omet 24402 1 (𝜑𝑃 ∈ (Met‘(𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963  c0 4339  {cpr 4633  cop 4637  cmpt 5231   × cxp 5687  ccnv 5688  ran crn 5690  cres 5691   Fn wfn 6558  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  cmpo 7433  ωcom 7887  1oc1o 8498  2oc2o 8499  Fincfn 8984  Basecbs 17245  Scalarcsca 17301  distcds 17307  Xscprds 17492   ×s cxps 17553  Metcmet 21368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-xrs 17549  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-xmet 21375  df-met 21376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator