MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsmet Structured version   Visualization version   GIF version

Theorem xpsmet 24321
Description: The direct product of two metric spaces. Definition 14-1.5 of [Gleason] p. 225. (Contributed by NM, 20-Jun-2007.) (Revised by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
xpsds.t 𝑇 = (𝑅 ×s 𝑆)
xpsds.x 𝑋 = (Base‘𝑅)
xpsds.y 𝑌 = (Base‘𝑆)
xpsds.1 (𝜑𝑅𝑉)
xpsds.2 (𝜑𝑆𝑊)
xpsds.p 𝑃 = (dist‘𝑇)
xpsds.m 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
xpsds.n 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌))
xpsmet.3 (𝜑𝑀 ∈ (Met‘𝑋))
xpsmet.4 (𝜑𝑁 ∈ (Met‘𝑌))
Assertion
Ref Expression
xpsmet (𝜑𝑃 ∈ (Met‘(𝑋 × 𝑌)))

Proof of Theorem xpsmet
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsds.t . . 3 𝑇 = (𝑅 ×s 𝑆)
2 xpsds.x . . 3 𝑋 = (Base‘𝑅)
3 xpsds.y . . 3 𝑌 = (Base‘𝑆)
4 xpsds.1 . . 3 (𝜑𝑅𝑉)
5 xpsds.2 . . 3 (𝜑𝑆𝑊)
6 eqid 2735 . . 3 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
7 eqid 2735 . . 3 (Scalar‘𝑅) = (Scalar‘𝑅)
8 eqid 2735 . . 3 ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
91, 2, 3, 4, 5, 6, 7, 8xpsval 17584 . 2 (𝜑𝑇 = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
101, 2, 3, 4, 5, 6, 7, 8xpsrnbas 17585 . 2 (𝜑 → ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
116xpsff1o2 17583 . . 3 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
12 f1ocnv 6830 . . 3 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌))
1311, 12mp1i 13 . 2 (𝜑(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌))
14 ovexd 7440 . 2 (𝜑 → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ V)
15 eqid 2735 . 2 ((dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ↾ (ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) × ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))) = ((dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ↾ (ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) × ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})))
16 xpsds.p . 2 𝑃 = (dist‘𝑇)
17 eqid 2735 . . . . 5 ((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = ((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))
18 eqid 2735 . . . . 5 (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
19 eqid 2735 . . . . 5 (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))
20 eqid 2735 . . . . 5 ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
21 eqid 2735 . . . . 5 (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
22 fvexd 6891 . . . . 5 (𝜑 → (Scalar‘𝑅) ∈ V)
23 2onn 8654 . . . . . 6 2o ∈ ω
24 nnfi 9181 . . . . . 6 (2o ∈ ω → 2o ∈ Fin)
2523, 24mp1i 13 . . . . 5 (𝜑 → 2o ∈ Fin)
26 fvexd 6891 . . . . 5 ((𝜑𝑘 ∈ 2o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) ∈ V)
27 elpri 4625 . . . . . . 7 (𝑘 ∈ {∅, 1o} → (𝑘 = ∅ ∨ 𝑘 = 1o))
28 df2o3 8488 . . . . . . 7 2o = {∅, 1o}
2927, 28eleq2s 2852 . . . . . 6 (𝑘 ∈ 2o → (𝑘 = ∅ ∨ 𝑘 = 1o))
30 xpsmet.3 . . . . . . . . 9 (𝜑𝑀 ∈ (Met‘𝑋))
3130adantr 480 . . . . . . . 8 ((𝜑𝑘 = ∅) → 𝑀 ∈ (Met‘𝑋))
32 fveq2 6876 . . . . . . . . . . . 12 (𝑘 = ∅ → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅))
33 fvpr0o 17573 . . . . . . . . . . . . 13 (𝑅𝑉 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
344, 33syl 17 . . . . . . . . . . . 12 (𝜑 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
3532, 34sylan9eqr 2792 . . . . . . . . . . 11 ((𝜑𝑘 = ∅) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = 𝑅)
3635fveq2d 6880 . . . . . . . . . 10 ((𝜑𝑘 = ∅) → (dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (dist‘𝑅))
3735fveq2d 6880 . . . . . . . . . . . 12 ((𝜑𝑘 = ∅) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (Base‘𝑅))
3837, 2eqtr4di 2788 . . . . . . . . . . 11 ((𝜑𝑘 = ∅) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = 𝑋)
3938sqxpeqd 5686 . . . . . . . . . 10 ((𝜑𝑘 = ∅) → ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = (𝑋 × 𝑋))
4036, 39reseq12d 5967 . . . . . . . . 9 ((𝜑𝑘 = ∅) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = ((dist‘𝑅) ↾ (𝑋 × 𝑋)))
41 xpsds.m . . . . . . . . 9 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
4240, 41eqtr4di 2788 . . . . . . . 8 ((𝜑𝑘 = ∅) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = 𝑀)
4338fveq2d 6880 . . . . . . . 8 ((𝜑𝑘 = ∅) → (Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = (Met‘𝑋))
4431, 42, 433eltr4d 2849 . . . . . . 7 ((𝜑𝑘 = ∅) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
45 xpsmet.4 . . . . . . . . 9 (𝜑𝑁 ∈ (Met‘𝑌))
4645adantr 480 . . . . . . . 8 ((𝜑𝑘 = 1o) → 𝑁 ∈ (Met‘𝑌))
47 fveq2 6876 . . . . . . . . . . . 12 (𝑘 = 1o → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o))
48 fvpr1o 17574 . . . . . . . . . . . . 13 (𝑆𝑊 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
495, 48syl 17 . . . . . . . . . . . 12 (𝜑 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
5047, 49sylan9eqr 2792 . . . . . . . . . . 11 ((𝜑𝑘 = 1o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = 𝑆)
5150fveq2d 6880 . . . . . . . . . 10 ((𝜑𝑘 = 1o) → (dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (dist‘𝑆))
5250fveq2d 6880 . . . . . . . . . . . 12 ((𝜑𝑘 = 1o) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (Base‘𝑆))
5352, 3eqtr4di 2788 . . . . . . . . . . 11 ((𝜑𝑘 = 1o) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = 𝑌)
5453sqxpeqd 5686 . . . . . . . . . 10 ((𝜑𝑘 = 1o) → ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = (𝑌 × 𝑌))
5551, 54reseq12d 5967 . . . . . . . . 9 ((𝜑𝑘 = 1o) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = ((dist‘𝑆) ↾ (𝑌 × 𝑌)))
56 xpsds.n . . . . . . . . 9 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌))
5755, 56eqtr4di 2788 . . . . . . . 8 ((𝜑𝑘 = 1o) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = 𝑁)
5853fveq2d 6880 . . . . . . . 8 ((𝜑𝑘 = 1o) → (Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = (Met‘𝑌))
5946, 57, 583eltr4d 2849 . . . . . . 7 ((𝜑𝑘 = 1o) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
6044, 59jaodan 959 . . . . . 6 ((𝜑 ∧ (𝑘 = ∅ ∨ 𝑘 = 1o)) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
6129, 60sylan2 593 . . . . 5 ((𝜑𝑘 ∈ 2o) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
6217, 18, 19, 20, 21, 22, 25, 26, 61prdsmet 24309 . . . 4 (𝜑 → (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (Met‘(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))))
63 fnpr2o 17571 . . . . . . . 8 ((𝑅𝑉𝑆𝑊) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
644, 5, 63syl2anc 584 . . . . . . 7 (𝜑 → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
65 dffn5 6937 . . . . . . 7 ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ↔ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} = (𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))
6664, 65sylib 218 . . . . . 6 (𝜑 → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} = (𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))
6766oveq2d 7421 . . . . 5 (𝜑 → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
6867fveq2d 6880 . . . 4 (𝜑 → (dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))))
6967fveq2d 6880 . . . . . 6 (𝜑 → (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))))
7010, 69eqtrd 2770 . . . . 5 (𝜑 → ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))))
7170fveq2d 6880 . . . 4 (𝜑 → (Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})) = (Met‘(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))))
7262, 68, 713eltr4d 2849 . . 3 (𝜑 → (dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ∈ (Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})))
73 ssid 3981 . . 3 ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ⊆ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
74 metres2 24302 . . 3 (((dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ∈ (Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})) ∧ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ⊆ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})) → ((dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ↾ (ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) × ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))) ∈ (Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})))
7572, 73, 74sylancl 586 . 2 (𝜑 → ((dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ↾ (ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) × ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))) ∈ (Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})))
769, 10, 13, 14, 15, 16, 75imasf1omet 24315 1 (𝜑𝑃 ∈ (Met‘(𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  Vcvv 3459  wss 3926  c0 4308  {cpr 4603  cop 4607  cmpt 5201   × cxp 5652  ccnv 5653  ran crn 5655  cres 5656   Fn wfn 6526  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  cmpo 7407  ωcom 7861  1oc1o 8473  2oc2o 8474  Fincfn 8959  Basecbs 17228  Scalarcsca 17274  distcds 17280  Xscprds 17459   ×s cxps 17520  Metcmet 21301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-icc 13369  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-xrs 17516  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-xmet 21308  df-met 21309
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator