| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvmptresicc | Structured version Visualization version GIF version | ||
| Description: Derivative of a function restricted to a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| dvmptresicc.f | ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝐴) |
| dvmptresicc.a | ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ) |
| dvmptresicc.fdv | ⊢ (𝜑 → (ℂ D 𝐹) = (𝑥 ∈ ℂ ↦ 𝐵)) |
| dvmptresicc.b | ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ) |
| dvmptresicc.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| dvmptresicc.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| Ref | Expression |
|---|---|
| dvmptresicc | ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptresicc.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝐴) | |
| 2 | 1 | reseq1i 5949 | . . . 4 ⊢ (𝐹 ↾ (𝐶[,]𝐷)) = ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (𝐶[,]𝐷)) |
| 3 | dvmptresicc.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 4 | dvmptresicc.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
| 5 | 3, 4 | iccssred 13402 | . . . . . 6 ⊢ (𝜑 → (𝐶[,]𝐷) ⊆ ℝ) |
| 6 | ax-resscn 11132 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 8 | 5, 7 | sstrd 3960 | . . . . 5 ⊢ (𝜑 → (𝐶[,]𝐷) ⊆ ℂ) |
| 9 | 8 | resmptd 6014 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (𝐶[,]𝐷)) = (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)) |
| 10 | 2, 9 | eqtrid 2777 | . . 3 ⊢ (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) = (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)) |
| 11 | 10 | oveq2d 7406 | . 2 ⊢ (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴))) |
| 12 | 5 | resabs1d 5982 | . . . . 5 ⊢ (𝜑 → ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷)) = (𝐹 ↾ (𝐶[,]𝐷))) |
| 13 | 12 | eqcomd 2736 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) = ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))) |
| 14 | 13 | oveq2d 7406 | . . 3 ⊢ (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷)))) |
| 15 | dvmptresicc.a | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 16 | 15, 1 | fmptd 7089 | . . . . 5 ⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
| 17 | 16, 7 | fssresd 6730 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ ℝ):ℝ⟶ℂ) |
| 18 | ssidd 3973 | . . . 4 ⊢ (𝜑 → ℝ ⊆ ℝ) | |
| 19 | eqid 2730 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 20 | tgioo4 24700 | . . . . 5 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 21 | 19, 20 | dvres 25819 | . . . 4 ⊢ (((ℝ ⊆ ℂ ∧ (𝐹 ↾ ℝ):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐶[,]𝐷) ⊆ ℝ)) → (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))) = ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)))) |
| 22 | 7, 17, 18, 5, 21 | syl22anc 838 | . . 3 ⊢ (𝜑 → (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))) = ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)))) |
| 23 | reelprrecn 11167 | . . . . . . 7 ⊢ ℝ ∈ {ℝ, ℂ} | |
| 24 | 23 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) |
| 25 | ssidd 3973 | . . . . . 6 ⊢ (𝜑 → ℂ ⊆ ℂ) | |
| 26 | dvmptresicc.fdv | . . . . . . . . 9 ⊢ (𝜑 → (ℂ D 𝐹) = (𝑥 ∈ ℂ ↦ 𝐵)) | |
| 27 | 26 | dmeqd 5872 | . . . . . . . 8 ⊢ (𝜑 → dom (ℂ D 𝐹) = dom (𝑥 ∈ ℂ ↦ 𝐵)) |
| 28 | dvmptresicc.b | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 29 | 28 | ralrimiva 3126 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ ℂ 𝐵 ∈ ℂ) |
| 30 | dmmptg 6218 | . . . . . . . . 9 ⊢ (∀𝑥 ∈ ℂ 𝐵 ∈ ℂ → dom (𝑥 ∈ ℂ ↦ 𝐵) = ℂ) | |
| 31 | 29, 30 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → dom (𝑥 ∈ ℂ ↦ 𝐵) = ℂ) |
| 32 | 27, 31 | eqtr2d 2766 | . . . . . . 7 ⊢ (𝜑 → ℂ = dom (ℂ D 𝐹)) |
| 33 | 7, 32 | sseqtrd 3986 | . . . . . 6 ⊢ (𝜑 → ℝ ⊆ dom (ℂ D 𝐹)) |
| 34 | dvres3 25821 | . . . . . 6 ⊢ (((ℝ ∈ {ℝ, ℂ} ∧ 𝐹:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D 𝐹))) → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ)) | |
| 35 | 24, 16, 25, 33, 34 | syl22anc 838 | . . . . 5 ⊢ (𝜑 → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ)) |
| 36 | iccntr 24717 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷)) | |
| 37 | 3, 4, 36 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷)) |
| 38 | 35, 37 | reseq12d 5954 | . . . 4 ⊢ (𝜑 → ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))) = (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷))) |
| 39 | ioossre 13375 | . . . . 5 ⊢ (𝐶(,)𝐷) ⊆ ℝ | |
| 40 | resabs1 5980 | . . . . 5 ⊢ ((𝐶(,)𝐷) ⊆ ℝ → (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷)) = ((ℂ D 𝐹) ↾ (𝐶(,)𝐷))) | |
| 41 | 39, 40 | mp1i 13 | . . . 4 ⊢ (𝜑 → (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷)) = ((ℂ D 𝐹) ↾ (𝐶(,)𝐷))) |
| 42 | 26 | reseq1d 5952 | . . . . 5 ⊢ (𝜑 → ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)) = ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷))) |
| 43 | ioosscn 13376 | . . . . . 6 ⊢ (𝐶(,)𝐷) ⊆ ℂ | |
| 44 | resmpt 6011 | . . . . . 6 ⊢ ((𝐶(,)𝐷) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵)) | |
| 45 | 43, 44 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵)) |
| 46 | 42, 45 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵)) |
| 47 | 38, 41, 46 | 3eqtrd 2769 | . . 3 ⊢ (𝜑 → ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵)) |
| 48 | 14, 22, 47 | 3eqtrd 2769 | . 2 ⊢ (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵)) |
| 49 | 11, 48 | eqtr3d 2767 | 1 ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 {cpr 4594 ↦ cmpt 5191 dom cdm 5641 ran crn 5642 ↾ cres 5643 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 (,)cioo 13313 [,]cicc 13316 TopOpenctopn 17391 topGenctg 17407 ℂfldccnfld 21271 intcnt 22911 D cdv 25771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fi 9369 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-rest 17392 df-topn 17393 df-topgen 17413 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-lp 23030 df-perf 23031 df-cnp 23122 df-haus 23209 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-xms 24215 df-ms 24216 df-limc 25774 df-dv 25775 |
| This theorem is referenced by: resdvopclptsd 42023 itgsincmulx 45979 |
| Copyright terms: Public domain | W3C validator |