Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvmptresicc Structured version   Visualization version   GIF version

Theorem dvmptresicc 42069
Description: Derivative of a function restricted to a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvmptresicc.f 𝐹 = (𝑥 ∈ ℂ ↦ 𝐴)
dvmptresicc.a ((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
dvmptresicc.fdv (𝜑 → (ℂ D 𝐹) = (𝑥 ∈ ℂ ↦ 𝐵))
dvmptresicc.b ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
dvmptresicc.c (𝜑𝐶 ∈ ℝ)
dvmptresicc.d (𝜑𝐷 ∈ ℝ)
Assertion
Ref Expression
dvmptresicc (𝜑 → (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem dvmptresicc
StepHypRef Expression
1 dvmptresicc.f . . . . 5 𝐹 = (𝑥 ∈ ℂ ↦ 𝐴)
21reseq1i 5848 . . . 4 (𝐹 ↾ (𝐶[,]𝐷)) = ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (𝐶[,]𝐷))
3 dvmptresicc.c . . . . . . 7 (𝜑𝐶 ∈ ℝ)
4 dvmptresicc.d . . . . . . 7 (𝜑𝐷 ∈ ℝ)
53, 4iccssred 41645 . . . . . 6 (𝜑 → (𝐶[,]𝐷) ⊆ ℝ)
6 ax-resscn 10583 . . . . . . 7 ℝ ⊆ ℂ
76a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
85, 7sstrd 3981 . . . . 5 (𝜑 → (𝐶[,]𝐷) ⊆ ℂ)
98resmptd 5907 . . . 4 (𝜑 → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (𝐶[,]𝐷)) = (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴))
102, 9syl5eq 2873 . . 3 (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) = (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴))
1110oveq2d 7164 . 2 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)))
125resabs1d 5883 . . . . 5 (𝜑 → ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷)) = (𝐹 ↾ (𝐶[,]𝐷)))
1312eqcomd 2832 . . . 4 (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) = ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷)))
1413oveq2d 7164 . . 3 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))))
15 dvmptresicc.a . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
1615, 1fmptd 6874 . . . . 5 (𝜑𝐹:ℂ⟶ℂ)
1716, 7fssresd 6542 . . . 4 (𝜑 → (𝐹 ↾ ℝ):ℝ⟶ℂ)
18 ssidd 3994 . . . 4 (𝜑 → ℝ ⊆ ℝ)
19 eqid 2826 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2019tgioo2 23326 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2119, 20dvres 24424 . . . 4 (((ℝ ⊆ ℂ ∧ (𝐹 ↾ ℝ):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐶[,]𝐷) ⊆ ℝ)) → (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))) = ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))))
227, 17, 18, 5, 21syl22anc 836 . . 3 (𝜑 → (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))) = ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))))
23 reelprrecn 10618 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
2423a1i 11 . . . . . 6 (𝜑 → ℝ ∈ {ℝ, ℂ})
25 ssidd 3994 . . . . . 6 (𝜑 → ℂ ⊆ ℂ)
26 dvmptresicc.fdv . . . . . . . . 9 (𝜑 → (ℂ D 𝐹) = (𝑥 ∈ ℂ ↦ 𝐵))
2726dmeqd 5773 . . . . . . . 8 (𝜑 → dom (ℂ D 𝐹) = dom (𝑥 ∈ ℂ ↦ 𝐵))
28 dvmptresicc.b . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
2928ralrimiva 3187 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ ℂ 𝐵 ∈ ℂ)
30 dmmptg 6094 . . . . . . . . 9 (∀𝑥 ∈ ℂ 𝐵 ∈ ℂ → dom (𝑥 ∈ ℂ ↦ 𝐵) = ℂ)
3129, 30syl 17 . . . . . . . 8 (𝜑 → dom (𝑥 ∈ ℂ ↦ 𝐵) = ℂ)
3227, 31eqtr2d 2862 . . . . . . 7 (𝜑 → ℂ = dom (ℂ D 𝐹))
337, 32sseqtrd 4011 . . . . . 6 (𝜑 → ℝ ⊆ dom (ℂ D 𝐹))
34 dvres3 24426 . . . . . 6 (((ℝ ∈ {ℝ, ℂ} ∧ 𝐹:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D 𝐹))) → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ))
3524, 16, 25, 33, 34syl22anc 836 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ))
36 iccntr 23344 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷))
373, 4, 36syl2anc 584 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷))
3835, 37reseq12d 5853 . . . 4 (𝜑 → ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))) = (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷)))
39 ioossre 12788 . . . . 5 (𝐶(,)𝐷) ⊆ ℝ
40 resabs1 5882 . . . . 5 ((𝐶(,)𝐷) ⊆ ℝ → (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷)) = ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)))
4139, 40mp1i 13 . . . 4 (𝜑 → (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷)) = ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)))
4226reseq1d 5851 . . . . 5 (𝜑 → ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)) = ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷)))
43 ioosscn 41634 . . . . . 6 (𝐶(,)𝐷) ⊆ ℂ
44 resmpt 5904 . . . . . 6 ((𝐶(,)𝐷) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4543, 44mp1i 13 . . . . 5 (𝜑 → ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4642, 45eqtrd 2861 . . . 4 (𝜑 → ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4738, 41, 463eqtrd 2865 . . 3 (𝜑 → ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4814, 22, 473eqtrd 2865 . 2 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4911, 48eqtr3d 2863 1 (𝜑 → (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  wral 3143  wss 3940  {cpr 4566  cmpt 5143  dom cdm 5554  ran crn 5555  cres 5556  wf 6348  cfv 6352  (class class class)co 7148  cc 10524  cr 10525  (,)cioo 12728  [,]cicc 12731  TopOpenctopn 16685  topGenctg 16701  fldccnfld 20461  intcnt 21541   D cdv 24376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fi 8864  df-sup 8895  df-inf 8896  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-ico 12734  df-icc 12735  df-fz 12883  df-seq 13360  df-exp 13420  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-plusg 16568  df-mulr 16569  df-starv 16570  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-rest 16686  df-topn 16687  df-topgen 16707  df-psmet 20453  df-xmet 20454  df-met 20455  df-bl 20456  df-mopn 20457  df-fbas 20458  df-fg 20459  df-cnfld 20462  df-top 21418  df-topon 21435  df-topsp 21457  df-bases 21470  df-cld 21543  df-ntr 21544  df-cls 21545  df-nei 21622  df-lp 21660  df-perf 21661  df-cnp 21752  df-haus 21839  df-fil 22370  df-fm 22462  df-flim 22463  df-flf 22464  df-xms 22845  df-ms 22846  df-limc 24379  df-dv 24380
This theorem is referenced by:  itgsincmulx  42124
  Copyright terms: Public domain W3C validator