Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvmptresicc Structured version   Visualization version   GIF version

Theorem dvmptresicc 40704
Description: Derivative of a function restricted to a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvmptresicc.f 𝐹 = (𝑥 ∈ ℂ ↦ 𝐴)
dvmptresicc.a ((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
dvmptresicc.fdv (𝜑 → (ℂ D 𝐹) = (𝑥 ∈ ℂ ↦ 𝐵))
dvmptresicc.b ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
dvmptresicc.c (𝜑𝐶 ∈ ℝ)
dvmptresicc.d (𝜑𝐷 ∈ ℝ)
Assertion
Ref Expression
dvmptresicc (𝜑 → (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem dvmptresicc
StepHypRef Expression
1 dvmptresicc.f . . . . 5 𝐹 = (𝑥 ∈ ℂ ↦ 𝐴)
21reseq1i 5560 . . . 4 (𝐹 ↾ (𝐶[,]𝐷)) = ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (𝐶[,]𝐷))
3 dvmptresicc.c . . . . . . 7 (𝜑𝐶 ∈ ℝ)
4 dvmptresicc.d . . . . . . 7 (𝜑𝐷 ∈ ℝ)
53, 4iccssred 40301 . . . . . 6 (𝜑 → (𝐶[,]𝐷) ⊆ ℝ)
6 ax-resscn 10245 . . . . . . 7 ℝ ⊆ ℂ
76a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
85, 7sstrd 3770 . . . . 5 (𝜑 → (𝐶[,]𝐷) ⊆ ℂ)
98resmptd 5628 . . . 4 (𝜑 → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (𝐶[,]𝐷)) = (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴))
102, 9syl5eq 2810 . . 3 (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) = (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴))
1110oveq2d 6857 . 2 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)))
125resabs1d 5602 . . . . 5 (𝜑 → ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷)) = (𝐹 ↾ (𝐶[,]𝐷)))
1312eqcomd 2770 . . . 4 (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) = ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷)))
1413oveq2d 6857 . . 3 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))))
15 dvmptresicc.a . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
1615, 1fmptd 6573 . . . . 5 (𝜑𝐹:ℂ⟶ℂ)
1716, 7fssresd 6252 . . . 4 (𝜑 → (𝐹 ↾ ℝ):ℝ⟶ℂ)
18 ssidd 3783 . . . 4 (𝜑 → ℝ ⊆ ℝ)
19 eqid 2764 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2019tgioo2 22884 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2119, 20dvres 23965 . . . 4 (((ℝ ⊆ ℂ ∧ (𝐹 ↾ ℝ):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐶[,]𝐷) ⊆ ℝ)) → (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))) = ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))))
227, 17, 18, 5, 21syl22anc 867 . . 3 (𝜑 → (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))) = ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))))
23 reelprrecn 10280 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
2423a1i 11 . . . . . 6 (𝜑 → ℝ ∈ {ℝ, ℂ})
25 ssidd 3783 . . . . . 6 (𝜑 → ℂ ⊆ ℂ)
26 dvmptresicc.fdv . . . . . . . . 9 (𝜑 → (ℂ D 𝐹) = (𝑥 ∈ ℂ ↦ 𝐵))
2726dmeqd 5493 . . . . . . . 8 (𝜑 → dom (ℂ D 𝐹) = dom (𝑥 ∈ ℂ ↦ 𝐵))
28 dvmptresicc.b . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
2928ralrimiva 3112 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ ℂ 𝐵 ∈ ℂ)
30 dmmptg 5817 . . . . . . . . 9 (∀𝑥 ∈ ℂ 𝐵 ∈ ℂ → dom (𝑥 ∈ ℂ ↦ 𝐵) = ℂ)
3129, 30syl 17 . . . . . . . 8 (𝜑 → dom (𝑥 ∈ ℂ ↦ 𝐵) = ℂ)
3227, 31eqtr2d 2799 . . . . . . 7 (𝜑 → ℂ = dom (ℂ D 𝐹))
337, 32sseqtrd 3800 . . . . . 6 (𝜑 → ℝ ⊆ dom (ℂ D 𝐹))
34 dvres3 23967 . . . . . 6 (((ℝ ∈ {ℝ, ℂ} ∧ 𝐹:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D 𝐹))) → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ))
3524, 16, 25, 33, 34syl22anc 867 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ))
36 iccntr 22902 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷))
373, 4, 36syl2anc 579 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷))
3835, 37reseq12d 5565 . . . 4 (𝜑 → ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))) = (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷)))
39 ioossre 12436 . . . . 5 (𝐶(,)𝐷) ⊆ ℝ
40 resabs1 5601 . . . . 5 ((𝐶(,)𝐷) ⊆ ℝ → (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷)) = ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)))
4139, 40mp1i 13 . . . 4 (𝜑 → (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷)) = ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)))
4226reseq1d 5563 . . . . 5 (𝜑 → ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)) = ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷)))
43 ioosscn 40290 . . . . . 6 (𝐶(,)𝐷) ⊆ ℂ
44 resmpt 5625 . . . . . 6 ((𝐶(,)𝐷) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4543, 44mp1i 13 . . . . 5 (𝜑 → ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4642, 45eqtrd 2798 . . . 4 (𝜑 → ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4738, 41, 463eqtrd 2802 . . 3 (𝜑 → ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4814, 22, 473eqtrd 2802 . 2 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4911, 48eqtr3d 2800 1 (𝜑 → (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  wral 3054  wss 3731  {cpr 4335  cmpt 4887  dom cdm 5276  ran crn 5277  cres 5278  wf 6063  cfv 6067  (class class class)co 6841  cc 10186  cr 10187  (,)cioo 12376  [,]cicc 12379  TopOpenctopn 16349  topGenctg 16365  fldccnfld 20018  intcnt 21100   D cdv 23917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265  ax-pre-sup 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-int 4633  df-iun 4677  df-iin 4678  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-om 7263  df-1st 7365  df-2nd 7366  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-1o 7763  df-oadd 7767  df-er 7946  df-map 8061  df-pm 8062  df-en 8160  df-dom 8161  df-sdom 8162  df-fin 8163  df-fi 8523  df-sup 8554  df-inf 8555  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-div 10938  df-nn 11274  df-2 11334  df-3 11335  df-4 11336  df-5 11337  df-6 11338  df-7 11339  df-8 11340  df-9 11341  df-n0 11538  df-z 11624  df-dec 11740  df-uz 11886  df-q 11989  df-rp 12028  df-xneg 12145  df-xadd 12146  df-xmul 12147  df-ioo 12380  df-ico 12382  df-icc 12383  df-fz 12533  df-seq 13008  df-exp 13067  df-cj 14125  df-re 14126  df-im 14127  df-sqrt 14261  df-abs 14262  df-struct 16133  df-ndx 16134  df-slot 16135  df-base 16137  df-plusg 16228  df-mulr 16229  df-starv 16230  df-tset 16234  df-ple 16235  df-ds 16237  df-unif 16238  df-rest 16350  df-topn 16351  df-topgen 16371  df-psmet 20010  df-xmet 20011  df-met 20012  df-bl 20013  df-mopn 20014  df-fbas 20015  df-fg 20016  df-cnfld 20019  df-top 20977  df-topon 20994  df-topsp 21016  df-bases 21029  df-cld 21102  df-ntr 21103  df-cls 21104  df-nei 21181  df-lp 21219  df-perf 21220  df-cnp 21311  df-haus 21398  df-fil 21928  df-fm 22020  df-flim 22021  df-flf 22022  df-xms 22403  df-ms 22404  df-limc 23920  df-dv 23921
This theorem is referenced by:  itgsincmulx  40759
  Copyright terms: Public domain W3C validator