MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptresicc Structured version   Visualization version   GIF version

Theorem dvmptresicc 25971
Description: Derivative of a function restricted to a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvmptresicc.f 𝐹 = (𝑥 ∈ ℂ ↦ 𝐴)
dvmptresicc.a ((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
dvmptresicc.fdv (𝜑 → (ℂ D 𝐹) = (𝑥 ∈ ℂ ↦ 𝐵))
dvmptresicc.b ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
dvmptresicc.c (𝜑𝐶 ∈ ℝ)
dvmptresicc.d (𝜑𝐷 ∈ ℝ)
Assertion
Ref Expression
dvmptresicc (𝜑 → (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem dvmptresicc
StepHypRef Expression
1 dvmptresicc.f . . . . 5 𝐹 = (𝑥 ∈ ℂ ↦ 𝐴)
21reseq1i 6005 . . . 4 (𝐹 ↾ (𝐶[,]𝐷)) = ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (𝐶[,]𝐷))
3 dvmptresicc.c . . . . . . 7 (𝜑𝐶 ∈ ℝ)
4 dvmptresicc.d . . . . . . 7 (𝜑𝐷 ∈ ℝ)
53, 4iccssred 13494 . . . . . 6 (𝜑 → (𝐶[,]𝐷) ⊆ ℝ)
6 ax-resscn 11241 . . . . . . 7 ℝ ⊆ ℂ
76a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
85, 7sstrd 4019 . . . . 5 (𝜑 → (𝐶[,]𝐷) ⊆ ℂ)
98resmptd 6069 . . . 4 (𝜑 → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (𝐶[,]𝐷)) = (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴))
102, 9eqtrid 2792 . . 3 (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) = (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴))
1110oveq2d 7464 . 2 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)))
125resabs1d 6037 . . . . 5 (𝜑 → ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷)) = (𝐹 ↾ (𝐶[,]𝐷)))
1312eqcomd 2746 . . . 4 (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) = ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷)))
1413oveq2d 7464 . . 3 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))))
15 dvmptresicc.a . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
1615, 1fmptd 7148 . . . . 5 (𝜑𝐹:ℂ⟶ℂ)
1716, 7fssresd 6788 . . . 4 (𝜑 → (𝐹 ↾ ℝ):ℝ⟶ℂ)
18 ssidd 4032 . . . 4 (𝜑 → ℝ ⊆ ℝ)
19 eqid 2740 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2019tgioo2 24844 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2119, 20dvres 25966 . . . 4 (((ℝ ⊆ ℂ ∧ (𝐹 ↾ ℝ):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐶[,]𝐷) ⊆ ℝ)) → (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))) = ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))))
227, 17, 18, 5, 21syl22anc 838 . . 3 (𝜑 → (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))) = ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))))
23 reelprrecn 11276 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
2423a1i 11 . . . . . 6 (𝜑 → ℝ ∈ {ℝ, ℂ})
25 ssidd 4032 . . . . . 6 (𝜑 → ℂ ⊆ ℂ)
26 dvmptresicc.fdv . . . . . . . . 9 (𝜑 → (ℂ D 𝐹) = (𝑥 ∈ ℂ ↦ 𝐵))
2726dmeqd 5930 . . . . . . . 8 (𝜑 → dom (ℂ D 𝐹) = dom (𝑥 ∈ ℂ ↦ 𝐵))
28 dvmptresicc.b . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
2928ralrimiva 3152 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ ℂ 𝐵 ∈ ℂ)
30 dmmptg 6273 . . . . . . . . 9 (∀𝑥 ∈ ℂ 𝐵 ∈ ℂ → dom (𝑥 ∈ ℂ ↦ 𝐵) = ℂ)
3129, 30syl 17 . . . . . . . 8 (𝜑 → dom (𝑥 ∈ ℂ ↦ 𝐵) = ℂ)
3227, 31eqtr2d 2781 . . . . . . 7 (𝜑 → ℂ = dom (ℂ D 𝐹))
337, 32sseqtrd 4049 . . . . . 6 (𝜑 → ℝ ⊆ dom (ℂ D 𝐹))
34 dvres3 25968 . . . . . 6 (((ℝ ∈ {ℝ, ℂ} ∧ 𝐹:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D 𝐹))) → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ))
3524, 16, 25, 33, 34syl22anc 838 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ))
36 iccntr 24862 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷))
373, 4, 36syl2anc 583 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷))
3835, 37reseq12d 6010 . . . 4 (𝜑 → ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))) = (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷)))
39 ioossre 13468 . . . . 5 (𝐶(,)𝐷) ⊆ ℝ
40 resabs1 6036 . . . . 5 ((𝐶(,)𝐷) ⊆ ℝ → (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷)) = ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)))
4139, 40mp1i 13 . . . 4 (𝜑 → (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷)) = ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)))
4226reseq1d 6008 . . . . 5 (𝜑 → ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)) = ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷)))
43 ioosscn 13469 . . . . . 6 (𝐶(,)𝐷) ⊆ ℂ
44 resmpt 6066 . . . . . 6 ((𝐶(,)𝐷) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4543, 44mp1i 13 . . . . 5 (𝜑 → ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4642, 45eqtrd 2780 . . . 4 (𝜑 → ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4738, 41, 463eqtrd 2784 . . 3 (𝜑 → ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4814, 22, 473eqtrd 2784 . 2 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4911, 48eqtr3d 2782 1 (𝜑 → (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976  {cpr 4650  cmpt 5249  dom cdm 5700  ran crn 5701  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  (,)cioo 13407  [,]cicc 13410  TopOpenctopn 17481  topGenctg 17497  fldccnfld 21387  intcnt 23046   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-rest 17482  df-topn 17483  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cnp 23257  df-haus 23344  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-limc 25921  df-dv 25922
This theorem is referenced by:  resdvopclptsd  41985  itgsincmulx  45895
  Copyright terms: Public domain W3C validator