| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvmptresicc | Structured version Visualization version GIF version | ||
| Description: Derivative of a function restricted to a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| dvmptresicc.f | ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝐴) |
| dvmptresicc.a | ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ) |
| dvmptresicc.fdv | ⊢ (𝜑 → (ℂ D 𝐹) = (𝑥 ∈ ℂ ↦ 𝐵)) |
| dvmptresicc.b | ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ) |
| dvmptresicc.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| dvmptresicc.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| Ref | Expression |
|---|---|
| dvmptresicc | ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptresicc.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝐴) | |
| 2 | 1 | reseq1i 5993 | . . . 4 ⊢ (𝐹 ↾ (𝐶[,]𝐷)) = ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (𝐶[,]𝐷)) |
| 3 | dvmptresicc.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 4 | dvmptresicc.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
| 5 | 3, 4 | iccssred 13474 | . . . . . 6 ⊢ (𝜑 → (𝐶[,]𝐷) ⊆ ℝ) |
| 6 | ax-resscn 11212 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 8 | 5, 7 | sstrd 3994 | . . . . 5 ⊢ (𝜑 → (𝐶[,]𝐷) ⊆ ℂ) |
| 9 | 8 | resmptd 6058 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (𝐶[,]𝐷)) = (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)) |
| 10 | 2, 9 | eqtrid 2789 | . . 3 ⊢ (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) = (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)) |
| 11 | 10 | oveq2d 7447 | . 2 ⊢ (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴))) |
| 12 | 5 | resabs1d 6026 | . . . . 5 ⊢ (𝜑 → ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷)) = (𝐹 ↾ (𝐶[,]𝐷))) |
| 13 | 12 | eqcomd 2743 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) = ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))) |
| 14 | 13 | oveq2d 7447 | . . 3 ⊢ (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷)))) |
| 15 | dvmptresicc.a | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 16 | 15, 1 | fmptd 7134 | . . . . 5 ⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
| 17 | 16, 7 | fssresd 6775 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ ℝ):ℝ⟶ℂ) |
| 18 | ssidd 4007 | . . . 4 ⊢ (𝜑 → ℝ ⊆ ℝ) | |
| 19 | eqid 2737 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 20 | tgioo4 24826 | . . . . 5 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 21 | 19, 20 | dvres 25946 | . . . 4 ⊢ (((ℝ ⊆ ℂ ∧ (𝐹 ↾ ℝ):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐶[,]𝐷) ⊆ ℝ)) → (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))) = ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)))) |
| 22 | 7, 17, 18, 5, 21 | syl22anc 839 | . . 3 ⊢ (𝜑 → (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))) = ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)))) |
| 23 | reelprrecn 11247 | . . . . . . 7 ⊢ ℝ ∈ {ℝ, ℂ} | |
| 24 | 23 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) |
| 25 | ssidd 4007 | . . . . . 6 ⊢ (𝜑 → ℂ ⊆ ℂ) | |
| 26 | dvmptresicc.fdv | . . . . . . . . 9 ⊢ (𝜑 → (ℂ D 𝐹) = (𝑥 ∈ ℂ ↦ 𝐵)) | |
| 27 | 26 | dmeqd 5916 | . . . . . . . 8 ⊢ (𝜑 → dom (ℂ D 𝐹) = dom (𝑥 ∈ ℂ ↦ 𝐵)) |
| 28 | dvmptresicc.b | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 29 | 28 | ralrimiva 3146 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ ℂ 𝐵 ∈ ℂ) |
| 30 | dmmptg 6262 | . . . . . . . . 9 ⊢ (∀𝑥 ∈ ℂ 𝐵 ∈ ℂ → dom (𝑥 ∈ ℂ ↦ 𝐵) = ℂ) | |
| 31 | 29, 30 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → dom (𝑥 ∈ ℂ ↦ 𝐵) = ℂ) |
| 32 | 27, 31 | eqtr2d 2778 | . . . . . . 7 ⊢ (𝜑 → ℂ = dom (ℂ D 𝐹)) |
| 33 | 7, 32 | sseqtrd 4020 | . . . . . 6 ⊢ (𝜑 → ℝ ⊆ dom (ℂ D 𝐹)) |
| 34 | dvres3 25948 | . . . . . 6 ⊢ (((ℝ ∈ {ℝ, ℂ} ∧ 𝐹:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D 𝐹))) → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ)) | |
| 35 | 24, 16, 25, 33, 34 | syl22anc 839 | . . . . 5 ⊢ (𝜑 → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ)) |
| 36 | iccntr 24843 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷)) | |
| 37 | 3, 4, 36 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷)) |
| 38 | 35, 37 | reseq12d 5998 | . . . 4 ⊢ (𝜑 → ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))) = (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷))) |
| 39 | ioossre 13448 | . . . . 5 ⊢ (𝐶(,)𝐷) ⊆ ℝ | |
| 40 | resabs1 6024 | . . . . 5 ⊢ ((𝐶(,)𝐷) ⊆ ℝ → (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷)) = ((ℂ D 𝐹) ↾ (𝐶(,)𝐷))) | |
| 41 | 39, 40 | mp1i 13 | . . . 4 ⊢ (𝜑 → (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷)) = ((ℂ D 𝐹) ↾ (𝐶(,)𝐷))) |
| 42 | 26 | reseq1d 5996 | . . . . 5 ⊢ (𝜑 → ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)) = ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷))) |
| 43 | ioosscn 13449 | . . . . . 6 ⊢ (𝐶(,)𝐷) ⊆ ℂ | |
| 44 | resmpt 6055 | . . . . . 6 ⊢ ((𝐶(,)𝐷) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵)) | |
| 45 | 43, 44 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵)) |
| 46 | 42, 45 | eqtrd 2777 | . . . 4 ⊢ (𝜑 → ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵)) |
| 47 | 38, 41, 46 | 3eqtrd 2781 | . . 3 ⊢ (𝜑 → ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵)) |
| 48 | 14, 22, 47 | 3eqtrd 2781 | . 2 ⊢ (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵)) |
| 49 | 11, 48 | eqtr3d 2779 | 1 ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ⊆ wss 3951 {cpr 4628 ↦ cmpt 5225 dom cdm 5685 ran crn 5686 ↾ cres 5687 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ℝcr 11154 (,)cioo 13387 [,]cicc 13390 TopOpenctopn 17466 topGenctg 17482 ℂfldccnfld 21364 intcnt 23025 D cdv 25898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fi 9451 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-ioo 13391 df-ico 13393 df-icc 13394 df-fz 13548 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-mulr 17311 df-starv 17312 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-rest 17467 df-topn 17468 df-topgen 17488 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-fbas 21361 df-fg 21362 df-cnfld 21365 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cld 23027 df-ntr 23028 df-cls 23029 df-nei 23106 df-lp 23144 df-perf 23145 df-cnp 23236 df-haus 23323 df-fil 23854 df-fm 23946 df-flim 23947 df-flf 23948 df-xms 24330 df-ms 24331 df-limc 25901 df-dv 25902 |
| This theorem is referenced by: resdvopclptsd 42029 itgsincmulx 45989 |
| Copyright terms: Public domain | W3C validator |