Step | Hyp | Ref
| Expression |
1 | | dvmptresicc.f |
. . . . 5
β’ πΉ = (π₯ β β β¦ π΄) |
2 | 1 | reseq1i 5975 |
. . . 4
β’ (πΉ βΎ (πΆ[,]π·)) = ((π₯ β β β¦ π΄) βΎ (πΆ[,]π·)) |
3 | | dvmptresicc.c |
. . . . . . 7
β’ (π β πΆ β β) |
4 | | dvmptresicc.d |
. . . . . . 7
β’ (π β π· β β) |
5 | 3, 4 | iccssred 13407 |
. . . . . 6
β’ (π β (πΆ[,]π·) β β) |
6 | | ax-resscn 11163 |
. . . . . . 7
β’ β
β β |
7 | 6 | a1i 11 |
. . . . . 6
β’ (π β β β
β) |
8 | 5, 7 | sstrd 3991 |
. . . . 5
β’ (π β (πΆ[,]π·) β β) |
9 | 8 | resmptd 6038 |
. . . 4
β’ (π β ((π₯ β β β¦ π΄) βΎ (πΆ[,]π·)) = (π₯ β (πΆ[,]π·) β¦ π΄)) |
10 | 2, 9 | eqtrid 2784 |
. . 3
β’ (π β (πΉ βΎ (πΆ[,]π·)) = (π₯ β (πΆ[,]π·) β¦ π΄)) |
11 | 10 | oveq2d 7421 |
. 2
β’ (π β (β D (πΉ βΎ (πΆ[,]π·))) = (β D (π₯ β (πΆ[,]π·) β¦ π΄))) |
12 | 5 | resabs1d 6010 |
. . . . 5
β’ (π β ((πΉ βΎ β) βΎ (πΆ[,]π·)) = (πΉ βΎ (πΆ[,]π·))) |
13 | 12 | eqcomd 2738 |
. . . 4
β’ (π β (πΉ βΎ (πΆ[,]π·)) = ((πΉ βΎ β) βΎ (πΆ[,]π·))) |
14 | 13 | oveq2d 7421 |
. . 3
β’ (π β (β D (πΉ βΎ (πΆ[,]π·))) = (β D ((πΉ βΎ β) βΎ (πΆ[,]π·)))) |
15 | | dvmptresicc.a |
. . . . . 6
β’ ((π β§ π₯ β β) β π΄ β β) |
16 | 15, 1 | fmptd 7110 |
. . . . 5
β’ (π β πΉ:ββΆβ) |
17 | 16, 7 | fssresd 6755 |
. . . 4
β’ (π β (πΉ βΎ
β):ββΆβ) |
18 | | ssidd 4004 |
. . . 4
β’ (π β β β
β) |
19 | | eqid 2732 |
. . . . 5
β’
(TopOpenββfld) =
(TopOpenββfld) |
20 | 19 | tgioo2 24310 |
. . . . 5
β’
(topGenβran (,)) = ((TopOpenββfld)
βΎt β) |
21 | 19, 20 | dvres 25419 |
. . . 4
β’
(((β β β β§ (πΉ βΎ β):ββΆβ)
β§ (β β β β§ (πΆ[,]π·) β β)) β (β D
((πΉ βΎ β)
βΎ (πΆ[,]π·))) = ((β D (πΉ βΎ β)) βΎ
((intβ(topGenβran (,)))β(πΆ[,]π·)))) |
22 | 7, 17, 18, 5, 21 | syl22anc 837 |
. . 3
β’ (π β (β D ((πΉ βΎ β) βΎ (πΆ[,]π·))) = ((β D (πΉ βΎ β)) βΎ
((intβ(topGenβran (,)))β(πΆ[,]π·)))) |
23 | | reelprrecn 11198 |
. . . . . . 7
β’ β
β {β, β} |
24 | 23 | a1i 11 |
. . . . . 6
β’ (π β β β {β,
β}) |
25 | | ssidd 4004 |
. . . . . 6
β’ (π β β β
β) |
26 | | dvmptresicc.fdv |
. . . . . . . . 9
β’ (π β (β D πΉ) = (π₯ β β β¦ π΅)) |
27 | 26 | dmeqd 5903 |
. . . . . . . 8
β’ (π β dom (β D πΉ) = dom (π₯ β β β¦ π΅)) |
28 | | dvmptresicc.b |
. . . . . . . . . 10
β’ ((π β§ π₯ β β) β π΅ β β) |
29 | 28 | ralrimiva 3146 |
. . . . . . . . 9
β’ (π β βπ₯ β β π΅ β β) |
30 | | dmmptg 6238 |
. . . . . . . . 9
β’
(βπ₯ β
β π΅ β β
β dom (π₯ β
β β¦ π΅) =
β) |
31 | 29, 30 | syl 17 |
. . . . . . . 8
β’ (π β dom (π₯ β β β¦ π΅) = β) |
32 | 27, 31 | eqtr2d 2773 |
. . . . . . 7
β’ (π β β = dom (β D
πΉ)) |
33 | 7, 32 | sseqtrd 4021 |
. . . . . 6
β’ (π β β β dom
(β D πΉ)) |
34 | | dvres3 25421 |
. . . . . 6
β’
(((β β {β, β} β§ πΉ:ββΆβ) β§ (β
β β β§ β β dom (β D πΉ))) β (β D (πΉ βΎ β)) = ((β D πΉ) βΎ
β)) |
35 | 24, 16, 25, 33, 34 | syl22anc 837 |
. . . . 5
β’ (π β (β D (πΉ βΎ β)) = ((β D
πΉ) βΎ
β)) |
36 | | iccntr 24328 |
. . . . . 6
β’ ((πΆ β β β§ π· β β) β
((intβ(topGenβran (,)))β(πΆ[,]π·)) = (πΆ(,)π·)) |
37 | 3, 4, 36 | syl2anc 584 |
. . . . 5
β’ (π β
((intβ(topGenβran (,)))β(πΆ[,]π·)) = (πΆ(,)π·)) |
38 | 35, 37 | reseq12d 5980 |
. . . 4
β’ (π β ((β D (πΉ βΎ β)) βΎ
((intβ(topGenβran (,)))β(πΆ[,]π·))) = (((β D πΉ) βΎ β) βΎ (πΆ(,)π·))) |
39 | | ioossre 13381 |
. . . . 5
β’ (πΆ(,)π·) β β |
40 | | resabs1 6009 |
. . . . 5
β’ ((πΆ(,)π·) β β β (((β D πΉ) βΎ β) βΎ
(πΆ(,)π·)) = ((β D πΉ) βΎ (πΆ(,)π·))) |
41 | 39, 40 | mp1i 13 |
. . . 4
β’ (π β (((β D πΉ) βΎ β) βΎ
(πΆ(,)π·)) = ((β D πΉ) βΎ (πΆ(,)π·))) |
42 | 26 | reseq1d 5978 |
. . . . 5
β’ (π β ((β D πΉ) βΎ (πΆ(,)π·)) = ((π₯ β β β¦ π΅) βΎ (πΆ(,)π·))) |
43 | | ioosscn 13382 |
. . . . . 6
β’ (πΆ(,)π·) β β |
44 | | resmpt 6035 |
. . . . . 6
β’ ((πΆ(,)π·) β β β ((π₯ β β β¦ π΅) βΎ (πΆ(,)π·)) = (π₯ β (πΆ(,)π·) β¦ π΅)) |
45 | 43, 44 | mp1i 13 |
. . . . 5
β’ (π β ((π₯ β β β¦ π΅) βΎ (πΆ(,)π·)) = (π₯ β (πΆ(,)π·) β¦ π΅)) |
46 | 42, 45 | eqtrd 2772 |
. . . 4
β’ (π β ((β D πΉ) βΎ (πΆ(,)π·)) = (π₯ β (πΆ(,)π·) β¦ π΅)) |
47 | 38, 41, 46 | 3eqtrd 2776 |
. . 3
β’ (π β ((β D (πΉ βΎ β)) βΎ
((intβ(topGenβran (,)))β(πΆ[,]π·))) = (π₯ β (πΆ(,)π·) β¦ π΅)) |
48 | 14, 22, 47 | 3eqtrd 2776 |
. 2
β’ (π β (β D (πΉ βΎ (πΆ[,]π·))) = (π₯ β (πΆ(,)π·) β¦ π΅)) |
49 | 11, 48 | eqtr3d 2774 |
1
β’ (π β (β D (π₯ β (πΆ[,]π·) β¦ π΄)) = (π₯ β (πΆ(,)π·) β¦ π΅)) |