MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptresicc Structured version   Visualization version   GIF version

Theorem dvmptresicc 24629
Description: Derivative of a function restricted to a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvmptresicc.f 𝐹 = (𝑥 ∈ ℂ ↦ 𝐴)
dvmptresicc.a ((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
dvmptresicc.fdv (𝜑 → (ℂ D 𝐹) = (𝑥 ∈ ℂ ↦ 𝐵))
dvmptresicc.b ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
dvmptresicc.c (𝜑𝐶 ∈ ℝ)
dvmptresicc.d (𝜑𝐷 ∈ ℝ)
Assertion
Ref Expression
dvmptresicc (𝜑 → (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem dvmptresicc
StepHypRef Expression
1 dvmptresicc.f . . . . 5 𝐹 = (𝑥 ∈ ℂ ↦ 𝐴)
21reseq1i 5824 . . . 4 (𝐹 ↾ (𝐶[,]𝐷)) = ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (𝐶[,]𝐷))
3 dvmptresicc.c . . . . . . 7 (𝜑𝐶 ∈ ℝ)
4 dvmptresicc.d . . . . . . 7 (𝜑𝐷 ∈ ℝ)
53, 4iccssred 12879 . . . . . 6 (𝜑 → (𝐶[,]𝐷) ⊆ ℝ)
6 ax-resscn 10645 . . . . . . 7 ℝ ⊆ ℂ
76a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
85, 7sstrd 3904 . . . . 5 (𝜑 → (𝐶[,]𝐷) ⊆ ℂ)
98resmptd 5885 . . . 4 (𝜑 → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (𝐶[,]𝐷)) = (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴))
102, 9syl5eq 2805 . . 3 (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) = (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴))
1110oveq2d 7172 . 2 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)))
125resabs1d 5859 . . . . 5 (𝜑 → ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷)) = (𝐹 ↾ (𝐶[,]𝐷)))
1312eqcomd 2764 . . . 4 (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) = ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷)))
1413oveq2d 7172 . . 3 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))))
15 dvmptresicc.a . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
1615, 1fmptd 6875 . . . . 5 (𝜑𝐹:ℂ⟶ℂ)
1716, 7fssresd 6535 . . . 4 (𝜑 → (𝐹 ↾ ℝ):ℝ⟶ℂ)
18 ssidd 3917 . . . 4 (𝜑 → ℝ ⊆ ℝ)
19 eqid 2758 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2019tgioo2 23518 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2119, 20dvres 24624 . . . 4 (((ℝ ⊆ ℂ ∧ (𝐹 ↾ ℝ):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐶[,]𝐷) ⊆ ℝ)) → (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))) = ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))))
227, 17, 18, 5, 21syl22anc 837 . . 3 (𝜑 → (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))) = ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))))
23 reelprrecn 10680 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
2423a1i 11 . . . . . 6 (𝜑 → ℝ ∈ {ℝ, ℂ})
25 ssidd 3917 . . . . . 6 (𝜑 → ℂ ⊆ ℂ)
26 dvmptresicc.fdv . . . . . . . . 9 (𝜑 → (ℂ D 𝐹) = (𝑥 ∈ ℂ ↦ 𝐵))
2726dmeqd 5751 . . . . . . . 8 (𝜑 → dom (ℂ D 𝐹) = dom (𝑥 ∈ ℂ ↦ 𝐵))
28 dvmptresicc.b . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
2928ralrimiva 3113 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ ℂ 𝐵 ∈ ℂ)
30 dmmptg 6076 . . . . . . . . 9 (∀𝑥 ∈ ℂ 𝐵 ∈ ℂ → dom (𝑥 ∈ ℂ ↦ 𝐵) = ℂ)
3129, 30syl 17 . . . . . . . 8 (𝜑 → dom (𝑥 ∈ ℂ ↦ 𝐵) = ℂ)
3227, 31eqtr2d 2794 . . . . . . 7 (𝜑 → ℂ = dom (ℂ D 𝐹))
337, 32sseqtrd 3934 . . . . . 6 (𝜑 → ℝ ⊆ dom (ℂ D 𝐹))
34 dvres3 24626 . . . . . 6 (((ℝ ∈ {ℝ, ℂ} ∧ 𝐹:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D 𝐹))) → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ))
3524, 16, 25, 33, 34syl22anc 837 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ))
36 iccntr 23536 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷))
373, 4, 36syl2anc 587 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷))
3835, 37reseq12d 5829 . . . 4 (𝜑 → ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))) = (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷)))
39 ioossre 12853 . . . . 5 (𝐶(,)𝐷) ⊆ ℝ
40 resabs1 5858 . . . . 5 ((𝐶(,)𝐷) ⊆ ℝ → (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷)) = ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)))
4139, 40mp1i 13 . . . 4 (𝜑 → (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷)) = ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)))
4226reseq1d 5827 . . . . 5 (𝜑 → ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)) = ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷)))
43 ioosscn 12854 . . . . . 6 (𝐶(,)𝐷) ⊆ ℂ
44 resmpt 5882 . . . . . 6 ((𝐶(,)𝐷) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4543, 44mp1i 13 . . . . 5 (𝜑 → ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4642, 45eqtrd 2793 . . . 4 (𝜑 → ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4738, 41, 463eqtrd 2797 . . 3 (𝜑 → ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4814, 22, 473eqtrd 2797 . 2 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4911, 48eqtr3d 2795 1 (𝜑 → (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3070  wss 3860  {cpr 4527  cmpt 5116  dom cdm 5528  ran crn 5529  cres 5530  wf 6336  cfv 6340  (class class class)co 7156  cc 10586  cr 10587  (,)cioo 12792  [,]cicc 12795  TopOpenctopn 16767  topGenctg 16783  fldccnfld 20180  intcnt 21731   D cdv 24576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-map 8424  df-pm 8425  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-fi 8921  df-sup 8952  df-inf 8953  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-dec 12151  df-uz 12296  df-q 12402  df-rp 12444  df-xneg 12561  df-xadd 12562  df-xmul 12563  df-ioo 12796  df-ico 12798  df-icc 12799  df-fz 12953  df-seq 13432  df-exp 13493  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-struct 16557  df-ndx 16558  df-slot 16559  df-base 16561  df-plusg 16650  df-mulr 16651  df-starv 16652  df-tset 16656  df-ple 16657  df-ds 16659  df-unif 16660  df-rest 16768  df-topn 16769  df-topgen 16789  df-psmet 20172  df-xmet 20173  df-met 20174  df-bl 20175  df-mopn 20176  df-fbas 20177  df-fg 20178  df-cnfld 20181  df-top 21608  df-topon 21625  df-topsp 21647  df-bases 21660  df-cld 21733  df-ntr 21734  df-cls 21735  df-nei 21812  df-lp 21850  df-perf 21851  df-cnp 21942  df-haus 22029  df-fil 22560  df-fm 22652  df-flim 22653  df-flf 22654  df-xms 23036  df-ms 23037  df-limc 24579  df-dv 24580
This theorem is referenced by:  resdvopclptsd  39630  itgsincmulx  43027
  Copyright terms: Public domain W3C validator