Proof of Theorem liminfltlem
Step | Hyp | Ref
| Expression |
1 | | nfmpt1 5182 |
. . 3
⊢
Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) |
2 | | liminfltlem.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
3 | | liminfltlem.z |
. . 3
⊢ 𝑍 =
(ℤ≥‘𝑀) |
4 | | liminfltlem.f |
. . . . . 6
⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
5 | 4 | ffvelrnda 6961 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
6 | 5 | renegcld 11402 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -(𝐹‘𝑘) ∈ ℝ) |
7 | 6 | fmpttd 6989 |
. . 3
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)):𝑍⟶ℝ) |
8 | 3 | fvexi 6788 |
. . . . . . 7
⊢ 𝑍 ∈ V |
9 | 8 | mptex 7099 |
. . . . . 6
⊢ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ V |
10 | 9 | limsupcli 43298 |
. . . . 5
⊢ (lim
sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) ∈
ℝ* |
11 | 10 | a1i 11 |
. . . 4
⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) ∈
ℝ*) |
12 | | nfv 1917 |
. . . . . 6
⊢
Ⅎ𝑘𝜑 |
13 | | nfcv 2907 |
. . . . . 6
⊢
Ⅎ𝑘𝐹 |
14 | 12, 13, 2, 3, 4 | liminfvaluz4 43340 |
. . . . 5
⊢ (𝜑 → (lim inf‘𝐹) = -𝑒(lim
sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)))) |
15 | | liminfltlem.r |
. . . . 5
⊢ (𝜑 → (lim inf‘𝐹) ∈
ℝ) |
16 | 14, 15 | eqeltrrd 2840 |
. . . 4
⊢ (𝜑 → -𝑒(lim
sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) ∈ ℝ) |
17 | 11, 16 | xnegrecl2d 43007 |
. . 3
⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) ∈ ℝ) |
18 | | liminfltlem.x |
. . 3
⊢ (𝜑 → 𝑋 ∈
ℝ+) |
19 | 1, 2, 3, 7, 17, 18 | limsupgt 43319 |
. 2
⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)))) |
20 | | simpll 764 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝜑) |
21 | 3 | uztrn2 12601 |
. . . . . 6
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
22 | 21 | adantll 711 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
23 | | negex 11219 |
. . . . . . . . . . 11
⊢ -(𝐹‘𝑘) ∈ V |
24 | | fvmpt4 42782 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ 𝑍 ∧ -(𝐹‘𝑘) ∈ V) → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) = -(𝐹‘𝑘)) |
25 | 23, 24 | mpan2 688 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) = -(𝐹‘𝑘)) |
26 | 25 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) = -(𝐹‘𝑘)) |
27 | 26 | oveq1d 7290 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) − 𝑋) = (-(𝐹‘𝑘) − 𝑋)) |
28 | 5 | recnd 11003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
29 | 18 | rpred 12772 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ ℝ) |
30 | 29 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑋 ∈ ℝ) |
31 | 30 | recnd 11003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑋 ∈ ℂ) |
32 | 28, 31 | negdi2d 11346 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -((𝐹‘𝑘) + 𝑋) = (-(𝐹‘𝑘) − 𝑋)) |
33 | 27, 32 | eqtr4d 2781 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) − 𝑋) = -((𝐹‘𝑘) + 𝑋)) |
34 | 17 | recnd 11003 |
. . . . . . . . . 10
⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) ∈ ℂ) |
35 | 17 | rexnegd 42692 |
. . . . . . . . . . 11
⊢ (𝜑 → -𝑒(lim
sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) = -(lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)))) |
36 | 14, 35 | eqtr2d 2779 |
. . . . . . . . . 10
⊢ (𝜑 → -(lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) = (lim inf‘𝐹)) |
37 | 34, 36 | negcon1ad 11327 |
. . . . . . . . 9
⊢ (𝜑 → -(lim inf‘𝐹) = (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)))) |
38 | 37 | eqcomd 2744 |
. . . . . . . 8
⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) = -(lim inf‘𝐹)) |
39 | 38 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) = -(lim inf‘𝐹)) |
40 | 33, 39 | breq12d 5087 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) ↔ -((𝐹‘𝑘) + 𝑋) < -(lim inf‘𝐹))) |
41 | 15 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (lim inf‘𝐹) ∈ ℝ) |
42 | 5, 30 | readdcld 11004 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) + 𝑋) ∈ ℝ) |
43 | 41, 42 | ltnegd 11553 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋) ↔ -((𝐹‘𝑘) + 𝑋) < -(lim inf‘𝐹))) |
44 | 40, 43 | bitr4d 281 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) ↔ (lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋))) |
45 | 20, 22, 44 | syl2anc 584 |
. . . 4
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) ↔ (lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋))) |
46 | 45 | ralbidva 3111 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋))) |
47 | 46 | rexbidva 3225 |
. 2
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋))) |
48 | 19, 47 | mpbid 231 |
1
⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋)) |