Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfltlem Structured version   Visualization version   GIF version

Theorem liminfltlem 45330
Description: Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfltlem.m (𝜑𝑀 ∈ ℤ)
liminfltlem.z 𝑍 = (ℤ𝑀)
liminfltlem.f (𝜑𝐹:𝑍⟶ℝ)
liminfltlem.r (𝜑 → (lim inf‘𝐹) ∈ ℝ)
liminfltlem.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
liminfltlem (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
Distinct variable groups:   𝑗,𝐹,𝑘   𝑘,𝑀   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗,𝑘
Allowed substitution hint:   𝑀(𝑗)

Proof of Theorem liminfltlem
StepHypRef Expression
1 nfmpt1 5257 . . 3 𝑘(𝑘𝑍 ↦ -(𝐹𝑘))
2 liminfltlem.m . . 3 (𝜑𝑀 ∈ ℤ)
3 liminfltlem.z . . 3 𝑍 = (ℤ𝑀)
4 liminfltlem.f . . . . . 6 (𝜑𝐹:𝑍⟶ℝ)
54ffvelcdmda 7093 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
65renegcld 11673 . . . 4 ((𝜑𝑘𝑍) → -(𝐹𝑘) ∈ ℝ)
76fmpttd 7124 . . 3 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)):𝑍⟶ℝ)
83fvexi 6910 . . . . . . 7 𝑍 ∈ V
98mptex 7235 . . . . . 6 (𝑘𝑍 ↦ -(𝐹𝑘)) ∈ V
109limsupcli 45283 . . . . 5 (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℝ*
1110a1i 11 . . . 4 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℝ*)
12 nfv 1909 . . . . . 6 𝑘𝜑
13 nfcv 2891 . . . . . 6 𝑘𝐹
1412, 13, 2, 3, 4liminfvaluz4 45325 . . . . 5 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
15 liminfltlem.r . . . . 5 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
1614, 15eqeltrrd 2826 . . . 4 (𝜑 → -𝑒(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℝ)
1711, 16xnegrecl2d 44987 . . 3 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℝ)
18 liminfltlem.x . . 3 (𝜑𝑋 ∈ ℝ+)
191, 2, 3, 7, 17, 18limsupgt 45304 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
20 simpll 765 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
213uztrn2 12874 . . . . . 6 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2221adantll 712 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
23 negex 11490 . . . . . . . . . . 11 -(𝐹𝑘) ∈ V
24 fvmpt4 44751 . . . . . . . . . . 11 ((𝑘𝑍 ∧ -(𝐹𝑘) ∈ V) → ((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) = -(𝐹𝑘))
2523, 24mpan2 689 . . . . . . . . . 10 (𝑘𝑍 → ((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) = -(𝐹𝑘))
2625adantl 480 . . . . . . . . 9 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) = -(𝐹𝑘))
2726oveq1d 7434 . . . . . . . 8 ((𝜑𝑘𝑍) → (((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) = (-(𝐹𝑘) − 𝑋))
285recnd 11274 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2918rpred 13051 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℝ)
3029adantr 479 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑋 ∈ ℝ)
3130recnd 11274 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑋 ∈ ℂ)
3228, 31negdi2d 11617 . . . . . . . 8 ((𝜑𝑘𝑍) → -((𝐹𝑘) + 𝑋) = (-(𝐹𝑘) − 𝑋))
3327, 32eqtr4d 2768 . . . . . . 7 ((𝜑𝑘𝑍) → (((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) = -((𝐹𝑘) + 𝑋))
3417recnd 11274 . . . . . . . . . 10 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℂ)
3517rexnegd 44649 . . . . . . . . . . 11 (𝜑 → -𝑒(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
3614, 35eqtr2d 2766 . . . . . . . . . 10 (𝜑 → -(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = (lim inf‘𝐹))
3734, 36negcon1ad 11598 . . . . . . . . 9 (𝜑 → -(lim inf‘𝐹) = (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
3837eqcomd 2731 . . . . . . . 8 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim inf‘𝐹))
3938adantr 479 . . . . . . 7 ((𝜑𝑘𝑍) → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim inf‘𝐹))
4033, 39breq12d 5162 . . . . . 6 ((𝜑𝑘𝑍) → ((((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ -((𝐹𝑘) + 𝑋) < -(lim inf‘𝐹)))
4115adantr 479 . . . . . . 7 ((𝜑𝑘𝑍) → (lim inf‘𝐹) ∈ ℝ)
425, 30readdcld 11275 . . . . . . 7 ((𝜑𝑘𝑍) → ((𝐹𝑘) + 𝑋) ∈ ℝ)
4341, 42ltnegd 11824 . . . . . 6 ((𝜑𝑘𝑍) → ((lim inf‘𝐹) < ((𝐹𝑘) + 𝑋) ↔ -((𝐹𝑘) + 𝑋) < -(lim inf‘𝐹)))
4440, 43bitr4d 281 . . . . 5 ((𝜑𝑘𝑍) → ((((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ (lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
4520, 22, 44syl2anc 582 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ (lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
4645ralbidva 3165 . . 3 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ ∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
4746rexbidva 3166 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
4819, 47mpbid 231 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3050  wrex 3059  Vcvv 3461   class class class wbr 5149  cmpt 5232  wf 6545  cfv 6549  (class class class)co 7419  cr 11139   + caddc 11143  *cxr 11279   < clt 11280  cmin 11476  -cneg 11477  cz 12591  cuz 12855  +crp 13009  -𝑒cxne 13124  lim supclsp 15450  lim infclsi 45277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-n0 12506  df-z 12592  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-ico 13365  df-fz 13520  df-fzo 13663  df-fl 13793  df-ceil 13794  df-limsup 15451  df-liminf 45278
This theorem is referenced by:  liminflt  45331
  Copyright terms: Public domain W3C validator