Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfltlem Structured version   Visualization version   GIF version

Theorem liminfltlem 42376
Description: Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfltlem.m (𝜑𝑀 ∈ ℤ)
liminfltlem.z 𝑍 = (ℤ𝑀)
liminfltlem.f (𝜑𝐹:𝑍⟶ℝ)
liminfltlem.r (𝜑 → (lim inf‘𝐹) ∈ ℝ)
liminfltlem.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
liminfltlem (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
Distinct variable groups:   𝑗,𝐹,𝑘   𝑘,𝑀   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗,𝑘
Allowed substitution hint:   𝑀(𝑗)

Proof of Theorem liminfltlem
StepHypRef Expression
1 nfmpt1 5150 . . 3 𝑘(𝑘𝑍 ↦ -(𝐹𝑘))
2 liminfltlem.m . . 3 (𝜑𝑀 ∈ ℤ)
3 liminfltlem.z . . 3 𝑍 = (ℤ𝑀)
4 liminfltlem.f . . . . . 6 (𝜑𝐹:𝑍⟶ℝ)
54ffvelrnda 6842 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
65renegcld 11065 . . . 4 ((𝜑𝑘𝑍) → -(𝐹𝑘) ∈ ℝ)
76fmpttd 6870 . . 3 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)):𝑍⟶ℝ)
83fvexi 6675 . . . . . . 7 𝑍 ∈ V
98mptex 6977 . . . . . 6 (𝑘𝑍 ↦ -(𝐹𝑘)) ∈ V
109limsupcli 42329 . . . . 5 (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℝ*
1110a1i 11 . . . 4 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℝ*)
12 nfv 1916 . . . . . 6 𝑘𝜑
13 nfcv 2982 . . . . . 6 𝑘𝐹
1412, 13, 2, 3, 4liminfvaluz4 42371 . . . . 5 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
15 liminfltlem.r . . . . 5 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
1614, 15eqeltrrd 2917 . . . 4 (𝜑 → -𝑒(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℝ)
1711, 16xnegrecl2d 42036 . . 3 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℝ)
18 liminfltlem.x . . 3 (𝜑𝑋 ∈ ℝ+)
191, 2, 3, 7, 17, 18limsupgt 42350 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
20 simpll 766 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
213uztrn2 12259 . . . . . 6 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2221adantll 713 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
23 negex 10882 . . . . . . . . . . 11 -(𝐹𝑘) ∈ V
24 fvmpt4 41803 . . . . . . . . . . 11 ((𝑘𝑍 ∧ -(𝐹𝑘) ∈ V) → ((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) = -(𝐹𝑘))
2523, 24mpan2 690 . . . . . . . . . 10 (𝑘𝑍 → ((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) = -(𝐹𝑘))
2625adantl 485 . . . . . . . . 9 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) = -(𝐹𝑘))
2726oveq1d 7164 . . . . . . . 8 ((𝜑𝑘𝑍) → (((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) = (-(𝐹𝑘) − 𝑋))
285recnd 10667 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2918rpred 12428 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℝ)
3029adantr 484 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑋 ∈ ℝ)
3130recnd 10667 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑋 ∈ ℂ)
3228, 31negdi2d 11009 . . . . . . . 8 ((𝜑𝑘𝑍) → -((𝐹𝑘) + 𝑋) = (-(𝐹𝑘) − 𝑋))
3327, 32eqtr4d 2862 . . . . . . 7 ((𝜑𝑘𝑍) → (((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) = -((𝐹𝑘) + 𝑋))
3417recnd 10667 . . . . . . . . . 10 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℂ)
3517rexnegd 41707 . . . . . . . . . . 11 (𝜑 → -𝑒(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
3614, 35eqtr2d 2860 . . . . . . . . . 10 (𝜑 → -(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = (lim inf‘𝐹))
3734, 36negcon1ad 10990 . . . . . . . . 9 (𝜑 → -(lim inf‘𝐹) = (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
3837eqcomd 2830 . . . . . . . 8 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim inf‘𝐹))
3938adantr 484 . . . . . . 7 ((𝜑𝑘𝑍) → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim inf‘𝐹))
4033, 39breq12d 5065 . . . . . 6 ((𝜑𝑘𝑍) → ((((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ -((𝐹𝑘) + 𝑋) < -(lim inf‘𝐹)))
4115adantr 484 . . . . . . 7 ((𝜑𝑘𝑍) → (lim inf‘𝐹) ∈ ℝ)
425, 30readdcld 10668 . . . . . . 7 ((𝜑𝑘𝑍) → ((𝐹𝑘) + 𝑋) ∈ ℝ)
4341, 42ltnegd 11216 . . . . . 6 ((𝜑𝑘𝑍) → ((lim inf‘𝐹) < ((𝐹𝑘) + 𝑋) ↔ -((𝐹𝑘) + 𝑋) < -(lim inf‘𝐹)))
4440, 43bitr4d 285 . . . . 5 ((𝜑𝑘𝑍) → ((((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ (lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
4520, 22, 44syl2anc 587 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ (lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
4645ralbidva 3191 . . 3 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ ∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
4746rexbidva 3288 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
4819, 47mpbid 235 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wral 3133  wrex 3134  Vcvv 3480   class class class wbr 5052  cmpt 5132  wf 6339  cfv 6343  (class class class)co 7149  cr 10534   + caddc 10538  *cxr 10672   < clt 10673  cmin 10868  -cneg 10869  cz 11978  cuz 12240  +crp 12386  -𝑒cxne 12501  lim supclsp 14827  lim infclsi 42323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-sup 8903  df-inf 8904  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-n0 11895  df-z 11979  df-uz 12241  df-q 12346  df-rp 12387  df-xneg 12504  df-xadd 12505  df-ico 12741  df-fz 12895  df-fzo 13038  df-fl 13166  df-ceil 13167  df-limsup 14828  df-liminf 42324
This theorem is referenced by:  liminflt  42377
  Copyright terms: Public domain W3C validator