Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfltlem Structured version   Visualization version   GIF version

Theorem liminfltlem 45842
Description: Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfltlem.m (𝜑𝑀 ∈ ℤ)
liminfltlem.z 𝑍 = (ℤ𝑀)
liminfltlem.f (𝜑𝐹:𝑍⟶ℝ)
liminfltlem.r (𝜑 → (lim inf‘𝐹) ∈ ℝ)
liminfltlem.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
liminfltlem (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
Distinct variable groups:   𝑗,𝐹,𝑘   𝑘,𝑀   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗,𝑘
Allowed substitution hint:   𝑀(𝑗)

Proof of Theorem liminfltlem
StepHypRef Expression
1 nfmpt1 5185 . . 3 𝑘(𝑘𝑍 ↦ -(𝐹𝑘))
2 liminfltlem.m . . 3 (𝜑𝑀 ∈ ℤ)
3 liminfltlem.z . . 3 𝑍 = (ℤ𝑀)
4 liminfltlem.f . . . . . 6 (𝜑𝐹:𝑍⟶ℝ)
54ffvelcdmda 7012 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
65renegcld 11539 . . . 4 ((𝜑𝑘𝑍) → -(𝐹𝑘) ∈ ℝ)
76fmpttd 7043 . . 3 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)):𝑍⟶ℝ)
83fvexi 6831 . . . . . . 7 𝑍 ∈ V
98mptex 7152 . . . . . 6 (𝑘𝑍 ↦ -(𝐹𝑘)) ∈ V
109limsupcli 45795 . . . . 5 (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℝ*
1110a1i 11 . . . 4 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℝ*)
12 nfv 1915 . . . . . 6 𝑘𝜑
13 nfcv 2894 . . . . . 6 𝑘𝐹
1412, 13, 2, 3, 4liminfvaluz4 45837 . . . . 5 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
15 liminfltlem.r . . . . 5 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
1614, 15eqeltrrd 2832 . . . 4 (𝜑 → -𝑒(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℝ)
1711, 16xnegrecl2d 45505 . . 3 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℝ)
18 liminfltlem.x . . 3 (𝜑𝑋 ∈ ℝ+)
191, 2, 3, 7, 17, 18limsupgt 45816 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
20 simpll 766 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
213uztrn2 12746 . . . . . 6 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2221adantll 714 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
23 negex 11353 . . . . . . . . . . 11 -(𝐹𝑘) ∈ V
24 fvmpt4 45275 . . . . . . . . . . 11 ((𝑘𝑍 ∧ -(𝐹𝑘) ∈ V) → ((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) = -(𝐹𝑘))
2523, 24mpan2 691 . . . . . . . . . 10 (𝑘𝑍 → ((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) = -(𝐹𝑘))
2625adantl 481 . . . . . . . . 9 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) = -(𝐹𝑘))
2726oveq1d 7356 . . . . . . . 8 ((𝜑𝑘𝑍) → (((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) = (-(𝐹𝑘) − 𝑋))
285recnd 11135 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2918rpred 12929 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℝ)
3029adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑋 ∈ ℝ)
3130recnd 11135 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑋 ∈ ℂ)
3228, 31negdi2d 11481 . . . . . . . 8 ((𝜑𝑘𝑍) → -((𝐹𝑘) + 𝑋) = (-(𝐹𝑘) − 𝑋))
3327, 32eqtr4d 2769 . . . . . . 7 ((𝜑𝑘𝑍) → (((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) = -((𝐹𝑘) + 𝑋))
3417recnd 11135 . . . . . . . . . 10 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℂ)
3517rexnegd 45180 . . . . . . . . . . 11 (𝜑 → -𝑒(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
3614, 35eqtr2d 2767 . . . . . . . . . 10 (𝜑 → -(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = (lim inf‘𝐹))
3734, 36negcon1ad 11462 . . . . . . . . 9 (𝜑 → -(lim inf‘𝐹) = (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
3837eqcomd 2737 . . . . . . . 8 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim inf‘𝐹))
3938adantr 480 . . . . . . 7 ((𝜑𝑘𝑍) → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim inf‘𝐹))
4033, 39breq12d 5099 . . . . . 6 ((𝜑𝑘𝑍) → ((((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ -((𝐹𝑘) + 𝑋) < -(lim inf‘𝐹)))
4115adantr 480 . . . . . . 7 ((𝜑𝑘𝑍) → (lim inf‘𝐹) ∈ ℝ)
425, 30readdcld 11136 . . . . . . 7 ((𝜑𝑘𝑍) → ((𝐹𝑘) + 𝑋) ∈ ℝ)
4341, 42ltnegd 11690 . . . . . 6 ((𝜑𝑘𝑍) → ((lim inf‘𝐹) < ((𝐹𝑘) + 𝑋) ↔ -((𝐹𝑘) + 𝑋) < -(lim inf‘𝐹)))
4440, 43bitr4d 282 . . . . 5 ((𝜑𝑘𝑍) → ((((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ (lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
4520, 22, 44syl2anc 584 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ (lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
4645ralbidva 3153 . . 3 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ ∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
4746rexbidva 3154 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
4819, 47mpbid 232 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436   class class class wbr 5086  cmpt 5167  wf 6472  cfv 6476  (class class class)co 7341  cr 11000   + caddc 11004  *cxr 11140   < clt 11141  cmin 11339  -cneg 11340  cz 12463  cuz 12727  +crp 12885  -𝑒cxne 13003  lim supclsp 15372  lim infclsi 45789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-n0 12377  df-z 12464  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-ico 13246  df-fz 13403  df-fzo 13550  df-fl 13691  df-ceil 13692  df-limsup 15373  df-liminf 45790
This theorem is referenced by:  liminflt  45843
  Copyright terms: Public domain W3C validator