MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dscmet Structured version   Visualization version   GIF version

Theorem dscmet 24488
Description: The discrete metric on any set 𝑋. Definition 1.1-8 of [Kreyszig] p. 8. (Contributed by FL, 12-Oct-2006.)
Hypothesis
Ref Expression
dscmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if(𝑥 = 𝑦, 0, 1))
Assertion
Ref Expression
dscmet (𝑋𝑉𝐷 ∈ (Met‘𝑋))
Distinct variable group:   𝑥,𝑦,𝑋
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem dscmet
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 11121 . . . . . 6 0 ∈ ℝ
2 1re 11119 . . . . . 6 1 ∈ ℝ
31, 2ifcli 4522 . . . . 5 if(𝑥 = 𝑦, 0, 1) ∈ ℝ
43rgen2w 3053 . . . 4 𝑥𝑋𝑦𝑋 if(𝑥 = 𝑦, 0, 1) ∈ ℝ
5 dscmet.1 . . . . 5 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if(𝑥 = 𝑦, 0, 1))
65fmpo 8006 . . . 4 (∀𝑥𝑋𝑦𝑋 if(𝑥 = 𝑦, 0, 1) ∈ ℝ ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ)
74, 6mpbi 230 . . 3 𝐷:(𝑋 × 𝑋)⟶ℝ
8 equequ1 2026 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥 = 𝑦𝑤 = 𝑦))
98ifbid 4498 . . . . . . . 8 (𝑥 = 𝑤 → if(𝑥 = 𝑦, 0, 1) = if(𝑤 = 𝑦, 0, 1))
10 equequ2 2027 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑤 = 𝑦𝑤 = 𝑣))
1110ifbid 4498 . . . . . . . 8 (𝑦 = 𝑣 → if(𝑤 = 𝑦, 0, 1) = if(𝑤 = 𝑣, 0, 1))
12 0nn0 12403 . . . . . . . . . 10 0 ∈ ℕ0
13 1nn0 12404 . . . . . . . . . 10 1 ∈ ℕ0
1412, 13ifcli 4522 . . . . . . . . 9 if(𝑤 = 𝑣, 0, 1) ∈ ℕ0
1514elexi 3460 . . . . . . . 8 if(𝑤 = 𝑣, 0, 1) ∈ V
169, 11, 5, 15ovmpo 7512 . . . . . . 7 ((𝑤𝑋𝑣𝑋) → (𝑤𝐷𝑣) = if(𝑤 = 𝑣, 0, 1))
1716eqeq1d 2735 . . . . . 6 ((𝑤𝑋𝑣𝑋) → ((𝑤𝐷𝑣) = 0 ↔ if(𝑤 = 𝑣, 0, 1) = 0))
18 iffalse 4483 . . . . . . . . . 10 𝑤 = 𝑣 → if(𝑤 = 𝑣, 0, 1) = 1)
19 ax-1ne0 11082 . . . . . . . . . . 11 1 ≠ 0
2019a1i 11 . . . . . . . . . 10 𝑤 = 𝑣 → 1 ≠ 0)
2118, 20eqnetrd 2996 . . . . . . . . 9 𝑤 = 𝑣 → if(𝑤 = 𝑣, 0, 1) ≠ 0)
2221neneqd 2934 . . . . . . . 8 𝑤 = 𝑣 → ¬ if(𝑤 = 𝑣, 0, 1) = 0)
2322con4i 114 . . . . . . 7 (if(𝑤 = 𝑣, 0, 1) = 0 → 𝑤 = 𝑣)
24 iftrue 4480 . . . . . . 7 (𝑤 = 𝑣 → if(𝑤 = 𝑣, 0, 1) = 0)
2523, 24impbii 209 . . . . . 6 (if(𝑤 = 𝑣, 0, 1) = 0 ↔ 𝑤 = 𝑣)
2617, 25bitrdi 287 . . . . 5 ((𝑤𝑋𝑣𝑋) → ((𝑤𝐷𝑣) = 0 ↔ 𝑤 = 𝑣))
2712, 13ifcli 4522 . . . . . . . . . . 11 if(𝑢 = 𝑤, 0, 1) ∈ ℕ0
2812, 13ifcli 4522 . . . . . . . . . . 11 if(𝑢 = 𝑣, 0, 1) ∈ ℕ0
2927, 28nn0addcli 12425 . . . . . . . . . 10 (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) ∈ ℕ0
30 elnn0 12390 . . . . . . . . . 10 ((if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) ∈ ℕ0 ↔ ((if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) ∈ ℕ ∨ (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) = 0))
3129, 30mpbi 230 . . . . . . . . 9 ((if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) ∈ ℕ ∨ (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) = 0)
32 breq1 5096 . . . . . . . . . . . 12 (0 = if(𝑤 = 𝑣, 0, 1) → (0 ≤ 1 ↔ if(𝑤 = 𝑣, 0, 1) ≤ 1))
33 breq1 5096 . . . . . . . . . . . 12 (1 = if(𝑤 = 𝑣, 0, 1) → (1 ≤ 1 ↔ if(𝑤 = 𝑣, 0, 1) ≤ 1))
34 0le1 11647 . . . . . . . . . . . 12 0 ≤ 1
352leidi 11658 . . . . . . . . . . . 12 1 ≤ 1
3632, 33, 34, 35keephyp 4546 . . . . . . . . . . 11 if(𝑤 = 𝑣, 0, 1) ≤ 1
37 nnge1 12160 . . . . . . . . . . 11 ((if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) ∈ ℕ → 1 ≤ (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)))
3814nn0rei 12399 . . . . . . . . . . . 12 if(𝑤 = 𝑣, 0, 1) ∈ ℝ
3929nn0rei 12399 . . . . . . . . . . . 12 (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) ∈ ℝ
4038, 2, 39letri 11249 . . . . . . . . . . 11 ((if(𝑤 = 𝑣, 0, 1) ≤ 1 ∧ 1 ≤ (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1))) → if(𝑤 = 𝑣, 0, 1) ≤ (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)))
4136, 37, 40sylancr 587 . . . . . . . . . 10 ((if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) ∈ ℕ → if(𝑤 = 𝑣, 0, 1) ≤ (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)))
4227nn0ge0i 12415 . . . . . . . . . . . . 13 0 ≤ if(𝑢 = 𝑤, 0, 1)
4328nn0ge0i 12415 . . . . . . . . . . . . 13 0 ≤ if(𝑢 = 𝑣, 0, 1)
4427nn0rei 12399 . . . . . . . . . . . . . 14 if(𝑢 = 𝑤, 0, 1) ∈ ℝ
4528nn0rei 12399 . . . . . . . . . . . . . 14 if(𝑢 = 𝑣, 0, 1) ∈ ℝ
4644, 45add20i 11667 . . . . . . . . . . . . 13 ((0 ≤ if(𝑢 = 𝑤, 0, 1) ∧ 0 ≤ if(𝑢 = 𝑣, 0, 1)) → ((if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) = 0 ↔ (if(𝑢 = 𝑤, 0, 1) = 0 ∧ if(𝑢 = 𝑣, 0, 1) = 0)))
4742, 43, 46mp2an 692 . . . . . . . . . . . 12 ((if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) = 0 ↔ (if(𝑢 = 𝑤, 0, 1) = 0 ∧ if(𝑢 = 𝑣, 0, 1) = 0))
48 equequ2 2027 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤 → (𝑢 = 𝑣𝑢 = 𝑤))
4948ifbid 4498 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑤 → if(𝑢 = 𝑣, 0, 1) = if(𝑢 = 𝑤, 0, 1))
5049eqeq1d 2735 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑤 → (if(𝑢 = 𝑣, 0, 1) = 0 ↔ if(𝑢 = 𝑤, 0, 1) = 0))
5150, 48bibi12d 345 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑤 → ((if(𝑢 = 𝑣, 0, 1) = 0 ↔ 𝑢 = 𝑣) ↔ (if(𝑢 = 𝑤, 0, 1) = 0 ↔ 𝑢 = 𝑤)))
52 equequ1 2026 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑢 → (𝑤 = 𝑣𝑢 = 𝑣))
5352ifbid 4498 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑢 → if(𝑤 = 𝑣, 0, 1) = if(𝑢 = 𝑣, 0, 1))
5453eqeq1d 2735 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑢 → (if(𝑤 = 𝑣, 0, 1) = 0 ↔ if(𝑢 = 𝑣, 0, 1) = 0))
5554, 52bibi12d 345 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑢 → ((if(𝑤 = 𝑣, 0, 1) = 0 ↔ 𝑤 = 𝑣) ↔ (if(𝑢 = 𝑣, 0, 1) = 0 ↔ 𝑢 = 𝑣)))
5655, 25chvarvv 1990 . . . . . . . . . . . . . . . 16 (if(𝑢 = 𝑣, 0, 1) = 0 ↔ 𝑢 = 𝑣)
5751, 56chvarvv 1990 . . . . . . . . . . . . . . 15 (if(𝑢 = 𝑤, 0, 1) = 0 ↔ 𝑢 = 𝑤)
58 eqtr2 2754 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑤𝑢 = 𝑣) → 𝑤 = 𝑣)
5957, 56, 58syl2anb 598 . . . . . . . . . . . . . 14 ((if(𝑢 = 𝑤, 0, 1) = 0 ∧ if(𝑢 = 𝑣, 0, 1) = 0) → 𝑤 = 𝑣)
6059iftrued 4482 . . . . . . . . . . . . 13 ((if(𝑢 = 𝑤, 0, 1) = 0 ∧ if(𝑢 = 𝑣, 0, 1) = 0) → if(𝑤 = 𝑣, 0, 1) = 0)
611leidi 11658 . . . . . . . . . . . . 13 0 ≤ 0
6260, 61eqbrtrdi 5132 . . . . . . . . . . . 12 ((if(𝑢 = 𝑤, 0, 1) = 0 ∧ if(𝑢 = 𝑣, 0, 1) = 0) → if(𝑤 = 𝑣, 0, 1) ≤ 0)
6347, 62sylbi 217 . . . . . . . . . . 11 ((if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) = 0 → if(𝑤 = 𝑣, 0, 1) ≤ 0)
64 id 22 . . . . . . . . . . 11 ((if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) = 0 → (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) = 0)
6563, 64breqtrrd 5121 . . . . . . . . . 10 ((if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) = 0 → if(𝑤 = 𝑣, 0, 1) ≤ (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)))
6641, 65jaoi 857 . . . . . . . . 9 (((if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) ∈ ℕ ∨ (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) = 0) → if(𝑤 = 𝑣, 0, 1) ≤ (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)))
6731, 66mp1i 13 . . . . . . . 8 ((𝑢𝑋 ∧ (𝑤𝑋𝑣𝑋)) → if(𝑤 = 𝑣, 0, 1) ≤ (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)))
6816adantl 481 . . . . . . . 8 ((𝑢𝑋 ∧ (𝑤𝑋𝑣𝑋)) → (𝑤𝐷𝑣) = if(𝑤 = 𝑣, 0, 1))
69 eqeq12 2750 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑤) → (𝑥 = 𝑦𝑢 = 𝑤))
7069ifbid 4498 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑤) → if(𝑥 = 𝑦, 0, 1) = if(𝑢 = 𝑤, 0, 1))
7127elexi 3460 . . . . . . . . . . 11 if(𝑢 = 𝑤, 0, 1) ∈ V
7270, 5, 71ovmpoa 7507 . . . . . . . . . 10 ((𝑢𝑋𝑤𝑋) → (𝑢𝐷𝑤) = if(𝑢 = 𝑤, 0, 1))
7372adantrr 717 . . . . . . . . 9 ((𝑢𝑋 ∧ (𝑤𝑋𝑣𝑋)) → (𝑢𝐷𝑤) = if(𝑢 = 𝑤, 0, 1))
74 eqeq12 2750 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑥 = 𝑦𝑢 = 𝑣))
7574ifbid 4498 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑣) → if(𝑥 = 𝑦, 0, 1) = if(𝑢 = 𝑣, 0, 1))
7628elexi 3460 . . . . . . . . . . 11 if(𝑢 = 𝑣, 0, 1) ∈ V
7775, 5, 76ovmpoa 7507 . . . . . . . . . 10 ((𝑢𝑋𝑣𝑋) → (𝑢𝐷𝑣) = if(𝑢 = 𝑣, 0, 1))
7877adantrl 716 . . . . . . . . 9 ((𝑢𝑋 ∧ (𝑤𝑋𝑣𝑋)) → (𝑢𝐷𝑣) = if(𝑢 = 𝑣, 0, 1))
7973, 78oveq12d 7370 . . . . . . . 8 ((𝑢𝑋 ∧ (𝑤𝑋𝑣𝑋)) → ((𝑢𝐷𝑤) + (𝑢𝐷𝑣)) = (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)))
8067, 68, 793brtr4d 5125 . . . . . . 7 ((𝑢𝑋 ∧ (𝑤𝑋𝑣𝑋)) → (𝑤𝐷𝑣) ≤ ((𝑢𝐷𝑤) + (𝑢𝐷𝑣)))
8180expcom 413 . . . . . 6 ((𝑤𝑋𝑣𝑋) → (𝑢𝑋 → (𝑤𝐷𝑣) ≤ ((𝑢𝐷𝑤) + (𝑢𝐷𝑣))))
8281ralrimiv 3124 . . . . 5 ((𝑤𝑋𝑣𝑋) → ∀𝑢𝑋 (𝑤𝐷𝑣) ≤ ((𝑢𝐷𝑤) + (𝑢𝐷𝑣)))
8326, 82jca 511 . . . 4 ((𝑤𝑋𝑣𝑋) → (((𝑤𝐷𝑣) = 0 ↔ 𝑤 = 𝑣) ∧ ∀𝑢𝑋 (𝑤𝐷𝑣) ≤ ((𝑢𝐷𝑤) + (𝑢𝐷𝑣))))
8483rgen2 3173 . . 3 𝑤𝑋𝑣𝑋 (((𝑤𝐷𝑣) = 0 ↔ 𝑤 = 𝑣) ∧ ∀𝑢𝑋 (𝑤𝐷𝑣) ≤ ((𝑢𝐷𝑤) + (𝑢𝐷𝑣)))
857, 84pm3.2i 470 . 2 (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑤𝑋𝑣𝑋 (((𝑤𝐷𝑣) = 0 ↔ 𝑤 = 𝑣) ∧ ∀𝑢𝑋 (𝑤𝐷𝑣) ≤ ((𝑢𝐷𝑤) + (𝑢𝐷𝑣))))
86 ismet 24239 . 2 (𝑋𝑉 → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑤𝑋𝑣𝑋 (((𝑤𝐷𝑣) = 0 ↔ 𝑤 = 𝑣) ∧ ∀𝑢𝑋 (𝑤𝐷𝑣) ≤ ((𝑢𝐷𝑤) + (𝑢𝐷𝑣))))))
8785, 86mpbiri 258 1 (𝑋𝑉𝐷 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2929  wral 3048  ifcif 4474   class class class wbr 5093   × cxp 5617  wf 6482  cfv 6486  (class class class)co 7352  cmpo 7354  cr 11012  0cc0 11013  1c1 11014   + caddc 11016  cle 11154  cn 12132  0cn0 12388  Metcmet 21279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-met 21287
This theorem is referenced by:  dscopn  24489
  Copyright terms: Public domain W3C validator