MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dscmet Structured version   Visualization version   GIF version

Theorem dscmet 23259
Description: The discrete metric on any set 𝑋. Definition 1.1-8 of [Kreyszig] p. 8. (Contributed by FL, 12-Oct-2006.)
Hypothesis
Ref Expression
dscmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if(𝑥 = 𝑦, 0, 1))
Assertion
Ref Expression
dscmet (𝑋𝑉𝐷 ∈ (Met‘𝑋))
Distinct variable group:   𝑥,𝑦,𝑋
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem dscmet
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 10666 . . . . . 6 0 ∈ ℝ
2 1re 10664 . . . . . 6 1 ∈ ℝ
31, 2ifcli 4460 . . . . 5 if(𝑥 = 𝑦, 0, 1) ∈ ℝ
43rgen2w 3081 . . . 4 𝑥𝑋𝑦𝑋 if(𝑥 = 𝑦, 0, 1) ∈ ℝ
5 dscmet.1 . . . . 5 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if(𝑥 = 𝑦, 0, 1))
65fmpo 7763 . . . 4 (∀𝑥𝑋𝑦𝑋 if(𝑥 = 𝑦, 0, 1) ∈ ℝ ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ)
74, 6mpbi 233 . . 3 𝐷:(𝑋 × 𝑋)⟶ℝ
8 equequ1 2033 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥 = 𝑦𝑤 = 𝑦))
98ifbid 4436 . . . . . . . 8 (𝑥 = 𝑤 → if(𝑥 = 𝑦, 0, 1) = if(𝑤 = 𝑦, 0, 1))
10 equequ2 2034 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑤 = 𝑦𝑤 = 𝑣))
1110ifbid 4436 . . . . . . . 8 (𝑦 = 𝑣 → if(𝑤 = 𝑦, 0, 1) = if(𝑤 = 𝑣, 0, 1))
12 0nn0 11934 . . . . . . . . . 10 0 ∈ ℕ0
13 1nn0 11935 . . . . . . . . . 10 1 ∈ ℕ0
1412, 13ifcli 4460 . . . . . . . . 9 if(𝑤 = 𝑣, 0, 1) ∈ ℕ0
1514elexi 3428 . . . . . . . 8 if(𝑤 = 𝑣, 0, 1) ∈ V
169, 11, 5, 15ovmpo 7298 . . . . . . 7 ((𝑤𝑋𝑣𝑋) → (𝑤𝐷𝑣) = if(𝑤 = 𝑣, 0, 1))
1716eqeq1d 2761 . . . . . 6 ((𝑤𝑋𝑣𝑋) → ((𝑤𝐷𝑣) = 0 ↔ if(𝑤 = 𝑣, 0, 1) = 0))
18 iffalse 4422 . . . . . . . . . 10 𝑤 = 𝑣 → if(𝑤 = 𝑣, 0, 1) = 1)
19 ax-1ne0 10629 . . . . . . . . . . 11 1 ≠ 0
2019a1i 11 . . . . . . . . . 10 𝑤 = 𝑣 → 1 ≠ 0)
2118, 20eqnetrd 3016 . . . . . . . . 9 𝑤 = 𝑣 → if(𝑤 = 𝑣, 0, 1) ≠ 0)
2221neneqd 2954 . . . . . . . 8 𝑤 = 𝑣 → ¬ if(𝑤 = 𝑣, 0, 1) = 0)
2322con4i 114 . . . . . . 7 (if(𝑤 = 𝑣, 0, 1) = 0 → 𝑤 = 𝑣)
24 iftrue 4419 . . . . . . 7 (𝑤 = 𝑣 → if(𝑤 = 𝑣, 0, 1) = 0)
2523, 24impbii 212 . . . . . 6 (if(𝑤 = 𝑣, 0, 1) = 0 ↔ 𝑤 = 𝑣)
2617, 25bitrdi 290 . . . . 5 ((𝑤𝑋𝑣𝑋) → ((𝑤𝐷𝑣) = 0 ↔ 𝑤 = 𝑣))
2712, 13ifcli 4460 . . . . . . . . . . 11 if(𝑢 = 𝑤, 0, 1) ∈ ℕ0
2812, 13ifcli 4460 . . . . . . . . . . 11 if(𝑢 = 𝑣, 0, 1) ∈ ℕ0
2927, 28nn0addcli 11956 . . . . . . . . . 10 (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) ∈ ℕ0
30 elnn0 11921 . . . . . . . . . 10 ((if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) ∈ ℕ0 ↔ ((if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) ∈ ℕ ∨ (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) = 0))
3129, 30mpbi 233 . . . . . . . . 9 ((if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) ∈ ℕ ∨ (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) = 0)
32 breq1 5028 . . . . . . . . . . . 12 (0 = if(𝑤 = 𝑣, 0, 1) → (0 ≤ 1 ↔ if(𝑤 = 𝑣, 0, 1) ≤ 1))
33 breq1 5028 . . . . . . . . . . . 12 (1 = if(𝑤 = 𝑣, 0, 1) → (1 ≤ 1 ↔ if(𝑤 = 𝑣, 0, 1) ≤ 1))
34 0le1 11186 . . . . . . . . . . . 12 0 ≤ 1
352leidi 11197 . . . . . . . . . . . 12 1 ≤ 1
3632, 33, 34, 35keephyp 4484 . . . . . . . . . . 11 if(𝑤 = 𝑣, 0, 1) ≤ 1
37 nnge1 11687 . . . . . . . . . . 11 ((if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) ∈ ℕ → 1 ≤ (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)))
3814nn0rei 11930 . . . . . . . . . . . 12 if(𝑤 = 𝑣, 0, 1) ∈ ℝ
3929nn0rei 11930 . . . . . . . . . . . 12 (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) ∈ ℝ
4038, 2, 39letri 10792 . . . . . . . . . . 11 ((if(𝑤 = 𝑣, 0, 1) ≤ 1 ∧ 1 ≤ (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1))) → if(𝑤 = 𝑣, 0, 1) ≤ (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)))
4136, 37, 40sylancr 591 . . . . . . . . . 10 ((if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) ∈ ℕ → if(𝑤 = 𝑣, 0, 1) ≤ (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)))
4227nn0ge0i 11946 . . . . . . . . . . . . 13 0 ≤ if(𝑢 = 𝑤, 0, 1)
4328nn0ge0i 11946 . . . . . . . . . . . . 13 0 ≤ if(𝑢 = 𝑣, 0, 1)
4427nn0rei 11930 . . . . . . . . . . . . . 14 if(𝑢 = 𝑤, 0, 1) ∈ ℝ
4528nn0rei 11930 . . . . . . . . . . . . . 14 if(𝑢 = 𝑣, 0, 1) ∈ ℝ
4644, 45add20i 11206 . . . . . . . . . . . . 13 ((0 ≤ if(𝑢 = 𝑤, 0, 1) ∧ 0 ≤ if(𝑢 = 𝑣, 0, 1)) → ((if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) = 0 ↔ (if(𝑢 = 𝑤, 0, 1) = 0 ∧ if(𝑢 = 𝑣, 0, 1) = 0)))
4742, 43, 46mp2an 692 . . . . . . . . . . . 12 ((if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) = 0 ↔ (if(𝑢 = 𝑤, 0, 1) = 0 ∧ if(𝑢 = 𝑣, 0, 1) = 0))
48 equequ2 2034 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤 → (𝑢 = 𝑣𝑢 = 𝑤))
4948ifbid 4436 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑤 → if(𝑢 = 𝑣, 0, 1) = if(𝑢 = 𝑤, 0, 1))
5049eqeq1d 2761 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑤 → (if(𝑢 = 𝑣, 0, 1) = 0 ↔ if(𝑢 = 𝑤, 0, 1) = 0))
5150, 48bibi12d 350 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑤 → ((if(𝑢 = 𝑣, 0, 1) = 0 ↔ 𝑢 = 𝑣) ↔ (if(𝑢 = 𝑤, 0, 1) = 0 ↔ 𝑢 = 𝑤)))
52 equequ1 2033 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑢 → (𝑤 = 𝑣𝑢 = 𝑣))
5352ifbid 4436 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑢 → if(𝑤 = 𝑣, 0, 1) = if(𝑢 = 𝑣, 0, 1))
5453eqeq1d 2761 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑢 → (if(𝑤 = 𝑣, 0, 1) = 0 ↔ if(𝑢 = 𝑣, 0, 1) = 0))
5554, 52bibi12d 350 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑢 → ((if(𝑤 = 𝑣, 0, 1) = 0 ↔ 𝑤 = 𝑣) ↔ (if(𝑢 = 𝑣, 0, 1) = 0 ↔ 𝑢 = 𝑣)))
5655, 25chvarvv 2006 . . . . . . . . . . . . . . . 16 (if(𝑢 = 𝑣, 0, 1) = 0 ↔ 𝑢 = 𝑣)
5751, 56chvarvv 2006 . . . . . . . . . . . . . . 15 (if(𝑢 = 𝑤, 0, 1) = 0 ↔ 𝑢 = 𝑤)
58 eqtr2 2780 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑤𝑢 = 𝑣) → 𝑤 = 𝑣)
5957, 56, 58syl2anb 601 . . . . . . . . . . . . . 14 ((if(𝑢 = 𝑤, 0, 1) = 0 ∧ if(𝑢 = 𝑣, 0, 1) = 0) → 𝑤 = 𝑣)
6059iftrued 4421 . . . . . . . . . . . . 13 ((if(𝑢 = 𝑤, 0, 1) = 0 ∧ if(𝑢 = 𝑣, 0, 1) = 0) → if(𝑤 = 𝑣, 0, 1) = 0)
611leidi 11197 . . . . . . . . . . . . 13 0 ≤ 0
6260, 61eqbrtrdi 5064 . . . . . . . . . . . 12 ((if(𝑢 = 𝑤, 0, 1) = 0 ∧ if(𝑢 = 𝑣, 0, 1) = 0) → if(𝑤 = 𝑣, 0, 1) ≤ 0)
6347, 62sylbi 220 . . . . . . . . . . 11 ((if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) = 0 → if(𝑤 = 𝑣, 0, 1) ≤ 0)
64 id 22 . . . . . . . . . . 11 ((if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) = 0 → (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) = 0)
6563, 64breqtrrd 5053 . . . . . . . . . 10 ((if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) = 0 → if(𝑤 = 𝑣, 0, 1) ≤ (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)))
6641, 65jaoi 855 . . . . . . . . 9 (((if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) ∈ ℕ ∨ (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)) = 0) → if(𝑤 = 𝑣, 0, 1) ≤ (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)))
6731, 66mp1i 13 . . . . . . . 8 ((𝑢𝑋 ∧ (𝑤𝑋𝑣𝑋)) → if(𝑤 = 𝑣, 0, 1) ≤ (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)))
6816adantl 486 . . . . . . . 8 ((𝑢𝑋 ∧ (𝑤𝑋𝑣𝑋)) → (𝑤𝐷𝑣) = if(𝑤 = 𝑣, 0, 1))
69 eqeq12 2773 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑤) → (𝑥 = 𝑦𝑢 = 𝑤))
7069ifbid 4436 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑤) → if(𝑥 = 𝑦, 0, 1) = if(𝑢 = 𝑤, 0, 1))
7127elexi 3428 . . . . . . . . . . 11 if(𝑢 = 𝑤, 0, 1) ∈ V
7270, 5, 71ovmpoa 7293 . . . . . . . . . 10 ((𝑢𝑋𝑤𝑋) → (𝑢𝐷𝑤) = if(𝑢 = 𝑤, 0, 1))
7372adantrr 717 . . . . . . . . 9 ((𝑢𝑋 ∧ (𝑤𝑋𝑣𝑋)) → (𝑢𝐷𝑤) = if(𝑢 = 𝑤, 0, 1))
74 eqeq12 2773 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑥 = 𝑦𝑢 = 𝑣))
7574ifbid 4436 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑣) → if(𝑥 = 𝑦, 0, 1) = if(𝑢 = 𝑣, 0, 1))
7628elexi 3428 . . . . . . . . . . 11 if(𝑢 = 𝑣, 0, 1) ∈ V
7775, 5, 76ovmpoa 7293 . . . . . . . . . 10 ((𝑢𝑋𝑣𝑋) → (𝑢𝐷𝑣) = if(𝑢 = 𝑣, 0, 1))
7877adantrl 716 . . . . . . . . 9 ((𝑢𝑋 ∧ (𝑤𝑋𝑣𝑋)) → (𝑢𝐷𝑣) = if(𝑢 = 𝑣, 0, 1))
7973, 78oveq12d 7161 . . . . . . . 8 ((𝑢𝑋 ∧ (𝑤𝑋𝑣𝑋)) → ((𝑢𝐷𝑤) + (𝑢𝐷𝑣)) = (if(𝑢 = 𝑤, 0, 1) + if(𝑢 = 𝑣, 0, 1)))
8067, 68, 793brtr4d 5057 . . . . . . 7 ((𝑢𝑋 ∧ (𝑤𝑋𝑣𝑋)) → (𝑤𝐷𝑣) ≤ ((𝑢𝐷𝑤) + (𝑢𝐷𝑣)))
8180expcom 418 . . . . . 6 ((𝑤𝑋𝑣𝑋) → (𝑢𝑋 → (𝑤𝐷𝑣) ≤ ((𝑢𝐷𝑤) + (𝑢𝐷𝑣))))
8281ralrimiv 3110 . . . . 5 ((𝑤𝑋𝑣𝑋) → ∀𝑢𝑋 (𝑤𝐷𝑣) ≤ ((𝑢𝐷𝑤) + (𝑢𝐷𝑣)))
8326, 82jca 516 . . . 4 ((𝑤𝑋𝑣𝑋) → (((𝑤𝐷𝑣) = 0 ↔ 𝑤 = 𝑣) ∧ ∀𝑢𝑋 (𝑤𝐷𝑣) ≤ ((𝑢𝐷𝑤) + (𝑢𝐷𝑣))))
8483rgen2 3130 . . 3 𝑤𝑋𝑣𝑋 (((𝑤𝐷𝑣) = 0 ↔ 𝑤 = 𝑣) ∧ ∀𝑢𝑋 (𝑤𝐷𝑣) ≤ ((𝑢𝐷𝑤) + (𝑢𝐷𝑣)))
857, 84pm3.2i 475 . 2 (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑤𝑋𝑣𝑋 (((𝑤𝐷𝑣) = 0 ↔ 𝑤 = 𝑣) ∧ ∀𝑢𝑋 (𝑤𝐷𝑣) ≤ ((𝑢𝐷𝑤) + (𝑢𝐷𝑣))))
86 ismet 23010 . 2 (𝑋𝑉 → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑤𝑋𝑣𝑋 (((𝑤𝐷𝑣) = 0 ↔ 𝑤 = 𝑣) ∧ ∀𝑢𝑋 (𝑤𝐷𝑣) ≤ ((𝑢𝐷𝑤) + (𝑢𝐷𝑣))))))
8785, 86mpbiri 261 1 (𝑋𝑉𝐷 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  wo 845   = wceq 1539  wcel 2112  wne 2949  wral 3068  ifcif 4413   class class class wbr 5025   × cxp 5515  wf 6324  cfv 6328  (class class class)co 7143  cmpo 7145  cr 10559  0cc0 10560  1c1 10561   + caddc 10563  cle 10699  cn 11659  0cn0 11919  Metcmet 20137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-map 8411  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-n0 11920  df-met 20145
This theorem is referenced by:  dscopn  23260
  Copyright terms: Public domain W3C validator