HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimreui Structured version   Visualization version   GIF version

Theorem hlimreui 29000
Description: The limit of a Hilbert space sequence is unique. (Contributed by NM, 19-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hlimreui (∃𝑥𝐻 𝐹𝑣 𝑥 ↔ ∃!𝑥𝐻 𝐹𝑣 𝑥)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐻

Proof of Theorem hlimreui
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 hlimuni 28999 . . . 4 ((𝐹𝑣 𝑥𝐹𝑣 𝑦) → 𝑥 = 𝑦)
21rgen2w 3139 . . 3 𝑥𝐻𝑦𝐻 ((𝐹𝑣 𝑥𝐹𝑣 𝑦) → 𝑥 = 𝑦)
32biantru 533 . 2 (∃𝑥𝐻 𝐹𝑣 𝑥 ↔ (∃𝑥𝐻 𝐹𝑣 𝑥 ∧ ∀𝑥𝐻𝑦𝐻 ((𝐹𝑣 𝑥𝐹𝑣 𝑦) → 𝑥 = 𝑦)))
4 breq2 5043 . . 3 (𝑥 = 𝑦 → (𝐹𝑣 𝑥𝐹𝑣 𝑦))
54reu4 3699 . 2 (∃!𝑥𝐻 𝐹𝑣 𝑥 ↔ (∃𝑥𝐻 𝐹𝑣 𝑥 ∧ ∀𝑥𝐻𝑦𝐻 ((𝐹𝑣 𝑥𝐹𝑣 𝑦) → 𝑥 = 𝑦)))
63, 5bitr4i 281 1 (∃𝑥𝐻 𝐹𝑣 𝑥 ↔ ∃!𝑥𝐻 𝐹𝑣 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wral 3126  wrex 3127  ∃!wreu 3128   class class class wbr 5039  𝑣 chli 28688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592  ax-addf 10593  ax-mulf 10594  ax-hilex 28760  ax-hfvadd 28761  ax-hvcom 28762  ax-hvass 28763  ax-hv0cl 28764  ax-hvaddid 28765  ax-hfvmul 28766  ax-hvmulid 28767  ax-hvmulass 28768  ax-hvdistr1 28769  ax-hvdistr2 28770  ax-hvmul0 28771  ax-hfi 28840  ax-his1 28843  ax-his2 28844  ax-his3 28845  ax-his4 28846
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-map 8383  df-pm 8384  df-en 8485  df-dom 8486  df-sdom 8487  df-sup 8882  df-inf 8883  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-n0 11876  df-z 11960  df-uz 12222  df-q 12327  df-rp 12368  df-xneg 12485  df-xadd 12486  df-xmul 12487  df-icc 12723  df-seq 13353  df-exp 13414  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-topgen 16695  df-psmet 20512  df-xmet 20513  df-met 20514  df-bl 20515  df-mopn 20516  df-top 21477  df-topon 21494  df-bases 21529  df-lm 21812  df-haus 21898  df-grpo 28254  df-gid 28255  df-ginv 28256  df-gdiv 28257  df-ablo 28306  df-vc 28320  df-nv 28353  df-va 28356  df-ba 28357  df-sm 28358  df-0v 28359  df-vs 28360  df-nmcv 28361  df-ims 28362  df-hnorm 28729  df-hvsub 28732  df-hlim 28733
This theorem is referenced by:  hlimeui  29001
  Copyright terms: Public domain W3C validator