Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnghmf Structured version   Visualization version   GIF version

Theorem rnghmf 46682
Description: A ring homomorphism is a function. (Contributed by AV, 23-Feb-2020.)
Hypotheses
Ref Expression
rnghmf.b 𝐵 = (Base‘𝑅)
rnghmf.c 𝐶 = (Base‘𝑆)
Assertion
Ref Expression
rnghmf (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹:𝐵𝐶)

Proof of Theorem rnghmf
StepHypRef Expression
1 rnghmghm 46681 . 2 (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
2 rnghmf.b . . 3 𝐵 = (Base‘𝑅)
3 rnghmf.c . . 3 𝐶 = (Base‘𝑆)
42, 3ghmf 19090 . 2 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐵𝐶)
51, 4syl 17 1 (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹:𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wf 6536  cfv 6540  (class class class)co 7405  Basecbs 17140   GrpHom cghm 19083   RngHomo crngh 46668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818  df-ghm 19084  df-abl 19645  df-rng 46635  df-rnghomo 46670
This theorem is referenced by:  rnghmf1o  46686  rngimcnv  46690  elrngchom  46819  rnghmsscmap2  46824  rnghmsscmap  46825  rnghmsubcsetclem2  46827  rngcsect  46831  rngcinv  46832  elrngchomALTV  46837  rngcinvALTV  46844  funcrngcsetc  46849  funcrngcsetcALT  46850  zrinitorngc  46851  zrtermorngc  46852
  Copyright terms: Public domain W3C validator