![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnghmf | Structured version Visualization version GIF version |
Description: A ring homomorphism is a function. (Contributed by AV, 23-Feb-2020.) |
Ref | Expression |
---|---|
rnghmf.b | ⊢ 𝐵 = (Base‘𝑅) |
rnghmf.c | ⊢ 𝐶 = (Base‘𝑆) |
Ref | Expression |
---|---|
rnghmf | ⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnghmghm 46630 | . 2 ⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
2 | rnghmf.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | rnghmf.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
4 | 2, 3 | ghmf 19090 | . 2 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐵⟶𝐶) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹:𝐵⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ⟶wf 6536 ‘cfv 6540 (class class class)co 7404 Basecbs 17140 GrpHom cghm 19083 RngHomo crngh 46617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7407 df-oprab 7408 df-mpo 7409 df-map 8818 df-ghm 19084 df-abl 19644 df-rng 46584 df-rnghomo 46619 |
This theorem is referenced by: rnghmf1o 46635 rngimcnv 46639 elrngchom 46768 rnghmsscmap2 46773 rnghmsscmap 46774 rnghmsubcsetclem2 46776 rngcsect 46780 rngcinv 46781 elrngchomALTV 46786 rngcinvALTV 46793 funcrngcsetc 46798 funcrngcsetcALT 46799 zrinitorngc 46800 zrtermorngc 46801 |
Copyright terms: Public domain | W3C validator |