| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnghmf | Structured version Visualization version GIF version | ||
| Description: A ring homomorphism is a function. (Contributed by AV, 23-Feb-2020.) |
| Ref | Expression |
|---|---|
| rnghmf.b | ⊢ 𝐵 = (Base‘𝑅) |
| rnghmf.c | ⊢ 𝐶 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| rnghmf | ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghmghm 20374 | . 2 ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
| 2 | rnghmf.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | rnghmf.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
| 4 | 2, 3 | ghmf 19140 | . 2 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐵⟶𝐶) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐹:𝐵⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 GrpHom cghm 19132 RngHom crnghm 20361 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-map 8761 df-ghm 19133 df-abl 19703 df-rng 20079 df-rnghm 20363 |
| This theorem is referenced by: rnghmf1o 20379 rngimcnv 20383 elrngchom 20548 rnghmsscmap2 20553 rnghmsscmap 20554 rnghmsubcsetclem2 20556 rngcsect 20560 rngcinv 20561 funcrngcsetc 20564 funcrngcsetcALT 20565 zrinitorngc 20566 zrtermorngc 20567 elrngchomALTV 48431 rngcinvALTV 48438 |
| Copyright terms: Public domain | W3C validator |