MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngisom1 Structured version   Visualization version   GIF version

Theorem rngisom1 20483
Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the function value of the ring unity of the unital ring is a ring unity of the non-unital ring. (Contributed by AV, 27-Feb-2025.)
Hypotheses
Ref Expression
rngisom1.1 1 = (1r𝑅)
rngisom1.b 𝐵 = (Base‘𝑆)
rngisom1.t · = (.r𝑆)
Assertion
Ref Expression
rngisom1 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → ∀𝑥𝐵 (((𝐹1 ) · 𝑥) = 𝑥 ∧ (𝑥 · (𝐹1 )) = 𝑥))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑅   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥)   · (𝑥)   1 (𝑥)

Proof of Theorem rngisom1
StepHypRef Expression
1 rngimcnv 20473 . . . . . . . . 9 (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹 ∈ (𝑆 RngIso 𝑅))
2 rngisom1.b . . . . . . . . . 10 𝐵 = (Base‘𝑆)
3 eqid 2735 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
42, 3rngimrnghm 20472 . . . . . . . . 9 (𝐹 ∈ (𝑆 RngIso 𝑅) → 𝐹 ∈ (𝑆 RngHom 𝑅))
51, 4syl 17 . . . . . . . 8 (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹 ∈ (𝑆 RngHom 𝑅))
653ad2ant3 1134 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑆 RngHom 𝑅))
76adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → 𝐹 ∈ (𝑆 RngHom 𝑅))
8 rngisom1.1 . . . . . . . . 9 1 = (1r𝑅)
98, 2rngisomfv1 20482 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹1 ) ∈ 𝐵)
1093adant2 1130 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹1 ) ∈ 𝐵)
1110adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹1 ) ∈ 𝐵)
12 simpr 484 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → 𝑥𝐵)
13 rngisom1.t . . . . . . 7 · = (.r𝑆)
14 eqid 2735 . . . . . . 7 (.r𝑅) = (.r𝑅)
152, 13, 14rnghmmul 20466 . . . . . 6 ((𝐹 ∈ (𝑆 RngHom 𝑅) ∧ (𝐹1 ) ∈ 𝐵𝑥𝐵) → (𝐹‘((𝐹1 ) · 𝑥)) = ((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥)))
167, 11, 12, 15syl3anc 1370 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘((𝐹1 ) · 𝑥)) = ((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥)))
1716fveq2d 6911 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹‘((𝐹1 ) · 𝑥))) = (𝐹‘((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥))))
183, 2rngimf1o 20471 . . . . . 6 (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹:(Base‘𝑅)–1-1-onto𝐵)
19183ad2ant3 1134 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:(Base‘𝑅)–1-1-onto𝐵)
20 simpl2 1191 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → 𝑆 ∈ Rng)
212, 13rngcl 20182 . . . . . 6 ((𝑆 ∈ Rng ∧ (𝐹1 ) ∈ 𝐵𝑥𝐵) → ((𝐹1 ) · 𝑥) ∈ 𝐵)
2220, 11, 12, 21syl3anc 1370 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹1 ) · 𝑥) ∈ 𝐵)
23 f1ocnvfv2 7297 . . . . 5 ((𝐹:(Base‘𝑅)–1-1-onto𝐵 ∧ ((𝐹1 ) · 𝑥) ∈ 𝐵) → (𝐹‘(𝐹‘((𝐹1 ) · 𝑥))) = ((𝐹1 ) · 𝑥))
2419, 22, 23syl2an2r 685 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹‘((𝐹1 ) · 𝑥))) = ((𝐹1 ) · 𝑥))
253, 8ringidcl 20280 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
26253ad2ant1 1132 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 1 ∈ (Base‘𝑅))
2719, 26jca 511 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹:(Base‘𝑅)–1-1-onto𝐵1 ∈ (Base‘𝑅)))
2827adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹:(Base‘𝑅)–1-1-onto𝐵1 ∈ (Base‘𝑅)))
29 f1ocnvfv1 7296 . . . . . . . . 9 ((𝐹:(Base‘𝑅)–1-1-onto𝐵1 ∈ (Base‘𝑅)) → (𝐹‘(𝐹1 )) = 1 )
3028, 29syl 17 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹1 )) = 1 )
3130oveq1d 7446 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥)) = ( 1 (.r𝑅)(𝐹𝑥)))
32 simpl1 1190 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → 𝑅 ∈ Ring)
332, 3rngimf1o 20471 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 RngIso 𝑅) → 𝐹:𝐵1-1-onto→(Base‘𝑅))
34 f1of 6849 . . . . . . . . . . . 12 (𝐹:𝐵1-1-onto→(Base‘𝑅) → 𝐹:𝐵⟶(Base‘𝑅))
3533, 34syl 17 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 RngIso 𝑅) → 𝐹:𝐵⟶(Base‘𝑅))
361, 35syl 17 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹:𝐵⟶(Base‘𝑅))
37363ad2ant3 1134 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:𝐵⟶(Base‘𝑅))
3837ffvelcdmda 7104 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹𝑥) ∈ (Base‘𝑅))
393, 14, 8, 32, 38ringlidmd 20286 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ( 1 (.r𝑅)(𝐹𝑥)) = (𝐹𝑥))
4031, 39eqtrd 2775 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥)) = (𝐹𝑥))
4140fveq2d 6911 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥))) = (𝐹‘(𝐹𝑥)))
42 f1ocnvfv2 7297 . . . . . 6 ((𝐹:(Base‘𝑅)–1-1-onto𝐵𝑥𝐵) → (𝐹‘(𝐹𝑥)) = 𝑥)
4319, 42sylan 580 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹𝑥)) = 𝑥)
4441, 43eqtrd 2775 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥))) = 𝑥)
4517, 24, 443eqtr3d 2783 . . 3 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹1 ) · 𝑥) = 𝑥)
4613ad2ant3 1134 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑆 RngIso 𝑅))
4746, 4syl 17 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑆 RngHom 𝑅))
4847adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → 𝐹 ∈ (𝑆 RngHom 𝑅))
492, 13, 14rnghmmul 20466 . . . . . . 7 ((𝐹 ∈ (𝑆 RngHom 𝑅) ∧ 𝑥𝐵 ∧ (𝐹1 ) ∈ 𝐵) → (𝐹‘(𝑥 · (𝐹1 ))) = ((𝐹𝑥)(.r𝑅)(𝐹‘(𝐹1 ))))
5048, 12, 11, 49syl3anc 1370 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝑥 · (𝐹1 ))) = ((𝐹𝑥)(.r𝑅)(𝐹‘(𝐹1 ))))
5130oveq2d 7447 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹𝑥)(.r𝑅)(𝐹‘(𝐹1 ))) = ((𝐹𝑥)(.r𝑅) 1 ))
523, 14, 8, 32, 38ringridmd 20287 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹𝑥)(.r𝑅) 1 ) = (𝐹𝑥))
5350, 51, 523eqtrd 2779 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝑥 · (𝐹1 ))) = (𝐹𝑥))
5453fveq2d 6911 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹‘(𝑥 · (𝐹1 )))) = (𝐹‘(𝐹𝑥)))
552, 13rngcl 20182 . . . . . 6 ((𝑆 ∈ Rng ∧ 𝑥𝐵 ∧ (𝐹1 ) ∈ 𝐵) → (𝑥 · (𝐹1 )) ∈ 𝐵)
5620, 12, 11, 55syl3anc 1370 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝑥 · (𝐹1 )) ∈ 𝐵)
57 f1ocnvfv2 7297 . . . . 5 ((𝐹:(Base‘𝑅)–1-1-onto𝐵 ∧ (𝑥 · (𝐹1 )) ∈ 𝐵) → (𝐹‘(𝐹‘(𝑥 · (𝐹1 )))) = (𝑥 · (𝐹1 )))
5819, 56, 57syl2an2r 685 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹‘(𝑥 · (𝐹1 )))) = (𝑥 · (𝐹1 )))
5954, 58, 433eqtr3d 2783 . . 3 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝑥 · (𝐹1 )) = 𝑥)
6045, 59jca 511 . 2 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (((𝐹1 ) · 𝑥) = 𝑥 ∧ (𝑥 · (𝐹1 )) = 𝑥))
6160ralrimiva 3144 1 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → ∀𝑥𝐵 (((𝐹1 ) · 𝑥) = 𝑥 ∧ (𝑥 · (𝐹1 )) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  ccnv 5688  wf 6559  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  Basecbs 17245  .rcmulr 17299  Rngcrng 20170  1rcur 20199  Ringcrg 20251   RngHom crnghm 20451   RngIso crngim 20452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-0g 17488  df-mgm 18666  df-mgmhm 18718  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-ghm 19244  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-rnghm 20453  df-rngim 20454
This theorem is referenced by:  rngisomring  20484  rngisomring1  20485
  Copyright terms: Public domain W3C validator