MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngisom1 Structured version   Visualization version   GIF version

Theorem rngisom1 20492
Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the function value of the ring unity of the unital ring is a ring unity of the non-unital ring. (Contributed by AV, 27-Feb-2025.)
Hypotheses
Ref Expression
rngisom1.1 1 = (1r𝑅)
rngisom1.b 𝐵 = (Base‘𝑆)
rngisom1.t · = (.r𝑆)
Assertion
Ref Expression
rngisom1 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → ∀𝑥𝐵 (((𝐹1 ) · 𝑥) = 𝑥 ∧ (𝑥 · (𝐹1 )) = 𝑥))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑅   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥)   · (𝑥)   1 (𝑥)

Proof of Theorem rngisom1
StepHypRef Expression
1 rngimcnv 20482 . . . . . . . . 9 (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹 ∈ (𝑆 RngIso 𝑅))
2 rngisom1.b . . . . . . . . . 10 𝐵 = (Base‘𝑆)
3 eqid 2740 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
42, 3rngimrnghm 20481 . . . . . . . . 9 (𝐹 ∈ (𝑆 RngIso 𝑅) → 𝐹 ∈ (𝑆 RngHom 𝑅))
51, 4syl 17 . . . . . . . 8 (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹 ∈ (𝑆 RngHom 𝑅))
653ad2ant3 1135 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑆 RngHom 𝑅))
76adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → 𝐹 ∈ (𝑆 RngHom 𝑅))
8 rngisom1.1 . . . . . . . . 9 1 = (1r𝑅)
98, 2rngisomfv1 20491 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹1 ) ∈ 𝐵)
1093adant2 1131 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹1 ) ∈ 𝐵)
1110adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹1 ) ∈ 𝐵)
12 simpr 484 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → 𝑥𝐵)
13 rngisom1.t . . . . . . 7 · = (.r𝑆)
14 eqid 2740 . . . . . . 7 (.r𝑅) = (.r𝑅)
152, 13, 14rnghmmul 20475 . . . . . 6 ((𝐹 ∈ (𝑆 RngHom 𝑅) ∧ (𝐹1 ) ∈ 𝐵𝑥𝐵) → (𝐹‘((𝐹1 ) · 𝑥)) = ((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥)))
167, 11, 12, 15syl3anc 1371 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘((𝐹1 ) · 𝑥)) = ((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥)))
1716fveq2d 6924 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹‘((𝐹1 ) · 𝑥))) = (𝐹‘((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥))))
183, 2rngimf1o 20480 . . . . . 6 (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹:(Base‘𝑅)–1-1-onto𝐵)
19183ad2ant3 1135 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:(Base‘𝑅)–1-1-onto𝐵)
20 simpl2 1192 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → 𝑆 ∈ Rng)
212, 13rngcl 20191 . . . . . 6 ((𝑆 ∈ Rng ∧ (𝐹1 ) ∈ 𝐵𝑥𝐵) → ((𝐹1 ) · 𝑥) ∈ 𝐵)
2220, 11, 12, 21syl3anc 1371 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹1 ) · 𝑥) ∈ 𝐵)
23 f1ocnvfv2 7313 . . . . 5 ((𝐹:(Base‘𝑅)–1-1-onto𝐵 ∧ ((𝐹1 ) · 𝑥) ∈ 𝐵) → (𝐹‘(𝐹‘((𝐹1 ) · 𝑥))) = ((𝐹1 ) · 𝑥))
2419, 22, 23syl2an2r 684 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹‘((𝐹1 ) · 𝑥))) = ((𝐹1 ) · 𝑥))
253, 8ringidcl 20289 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
26253ad2ant1 1133 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 1 ∈ (Base‘𝑅))
2719, 26jca 511 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹:(Base‘𝑅)–1-1-onto𝐵1 ∈ (Base‘𝑅)))
2827adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹:(Base‘𝑅)–1-1-onto𝐵1 ∈ (Base‘𝑅)))
29 f1ocnvfv1 7312 . . . . . . . . 9 ((𝐹:(Base‘𝑅)–1-1-onto𝐵1 ∈ (Base‘𝑅)) → (𝐹‘(𝐹1 )) = 1 )
3028, 29syl 17 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹1 )) = 1 )
3130oveq1d 7463 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥)) = ( 1 (.r𝑅)(𝐹𝑥)))
32 simpl1 1191 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → 𝑅 ∈ Ring)
332, 3rngimf1o 20480 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 RngIso 𝑅) → 𝐹:𝐵1-1-onto→(Base‘𝑅))
34 f1of 6862 . . . . . . . . . . . 12 (𝐹:𝐵1-1-onto→(Base‘𝑅) → 𝐹:𝐵⟶(Base‘𝑅))
3533, 34syl 17 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 RngIso 𝑅) → 𝐹:𝐵⟶(Base‘𝑅))
361, 35syl 17 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹:𝐵⟶(Base‘𝑅))
37363ad2ant3 1135 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:𝐵⟶(Base‘𝑅))
3837ffvelcdmda 7118 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹𝑥) ∈ (Base‘𝑅))
393, 14, 8, 32, 38ringlidmd 20295 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ( 1 (.r𝑅)(𝐹𝑥)) = (𝐹𝑥))
4031, 39eqtrd 2780 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥)) = (𝐹𝑥))
4140fveq2d 6924 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥))) = (𝐹‘(𝐹𝑥)))
42 f1ocnvfv2 7313 . . . . . 6 ((𝐹:(Base‘𝑅)–1-1-onto𝐵𝑥𝐵) → (𝐹‘(𝐹𝑥)) = 𝑥)
4319, 42sylan 579 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹𝑥)) = 𝑥)
4441, 43eqtrd 2780 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥))) = 𝑥)
4517, 24, 443eqtr3d 2788 . . 3 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹1 ) · 𝑥) = 𝑥)
4613ad2ant3 1135 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑆 RngIso 𝑅))
4746, 4syl 17 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑆 RngHom 𝑅))
4847adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → 𝐹 ∈ (𝑆 RngHom 𝑅))
492, 13, 14rnghmmul 20475 . . . . . . 7 ((𝐹 ∈ (𝑆 RngHom 𝑅) ∧ 𝑥𝐵 ∧ (𝐹1 ) ∈ 𝐵) → (𝐹‘(𝑥 · (𝐹1 ))) = ((𝐹𝑥)(.r𝑅)(𝐹‘(𝐹1 ))))
5048, 12, 11, 49syl3anc 1371 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝑥 · (𝐹1 ))) = ((𝐹𝑥)(.r𝑅)(𝐹‘(𝐹1 ))))
5130oveq2d 7464 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹𝑥)(.r𝑅)(𝐹‘(𝐹1 ))) = ((𝐹𝑥)(.r𝑅) 1 ))
523, 14, 8, 32, 38ringridmd 20296 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹𝑥)(.r𝑅) 1 ) = (𝐹𝑥))
5350, 51, 523eqtrd 2784 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝑥 · (𝐹1 ))) = (𝐹𝑥))
5453fveq2d 6924 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹‘(𝑥 · (𝐹1 )))) = (𝐹‘(𝐹𝑥)))
552, 13rngcl 20191 . . . . . 6 ((𝑆 ∈ Rng ∧ 𝑥𝐵 ∧ (𝐹1 ) ∈ 𝐵) → (𝑥 · (𝐹1 )) ∈ 𝐵)
5620, 12, 11, 55syl3anc 1371 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝑥 · (𝐹1 )) ∈ 𝐵)
57 f1ocnvfv2 7313 . . . . 5 ((𝐹:(Base‘𝑅)–1-1-onto𝐵 ∧ (𝑥 · (𝐹1 )) ∈ 𝐵) → (𝐹‘(𝐹‘(𝑥 · (𝐹1 )))) = (𝑥 · (𝐹1 )))
5819, 56, 57syl2an2r 684 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹‘(𝑥 · (𝐹1 )))) = (𝑥 · (𝐹1 )))
5954, 58, 433eqtr3d 2788 . . 3 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝑥 · (𝐹1 )) = 𝑥)
6045, 59jca 511 . 2 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (((𝐹1 ) · 𝑥) = 𝑥 ∧ (𝑥 · (𝐹1 )) = 𝑥))
6160ralrimiva 3152 1 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → ∀𝑥𝐵 (((𝐹1 ) · 𝑥) = 𝑥 ∧ (𝑥 · (𝐹1 )) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  ccnv 5699  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Basecbs 17258  .rcmulr 17312  Rngcrng 20179  1rcur 20208  Ringcrg 20260   RngHom crnghm 20460   RngIso crngim 20461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mgm 18678  df-mgmhm 18730  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-ghm 19253  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-rnghm 20462  df-rngim 20463
This theorem is referenced by:  rngisomring  20493  rngisomring1  20494
  Copyright terms: Public domain W3C validator