MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngisom1 Structured version   Visualization version   GIF version

Theorem rngisom1 20382
Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the function value of the ring unity of the unital ring is a ring unity of the non-unital ring. (Contributed by AV, 27-Feb-2025.)
Hypotheses
Ref Expression
rngisom1.1 1 = (1r𝑅)
rngisom1.b 𝐵 = (Base‘𝑆)
rngisom1.t · = (.r𝑆)
Assertion
Ref Expression
rngisom1 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → ∀𝑥𝐵 (((𝐹1 ) · 𝑥) = 𝑥 ∧ (𝑥 · (𝐹1 )) = 𝑥))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑅   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥)   · (𝑥)   1 (𝑥)

Proof of Theorem rngisom1
StepHypRef Expression
1 rngimcnv 20372 . . . . . . . . 9 (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹 ∈ (𝑆 RngIso 𝑅))
2 rngisom1.b . . . . . . . . . 10 𝐵 = (Base‘𝑆)
3 eqid 2730 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
42, 3rngimrnghm 20371 . . . . . . . . 9 (𝐹 ∈ (𝑆 RngIso 𝑅) → 𝐹 ∈ (𝑆 RngHom 𝑅))
51, 4syl 17 . . . . . . . 8 (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹 ∈ (𝑆 RngHom 𝑅))
653ad2ant3 1135 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑆 RngHom 𝑅))
76adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → 𝐹 ∈ (𝑆 RngHom 𝑅))
8 rngisom1.1 . . . . . . . . 9 1 = (1r𝑅)
98, 2rngisomfv1 20381 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹1 ) ∈ 𝐵)
1093adant2 1131 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹1 ) ∈ 𝐵)
1110adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹1 ) ∈ 𝐵)
12 simpr 484 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → 𝑥𝐵)
13 rngisom1.t . . . . . . 7 · = (.r𝑆)
14 eqid 2730 . . . . . . 7 (.r𝑅) = (.r𝑅)
152, 13, 14rnghmmul 20365 . . . . . 6 ((𝐹 ∈ (𝑆 RngHom 𝑅) ∧ (𝐹1 ) ∈ 𝐵𝑥𝐵) → (𝐹‘((𝐹1 ) · 𝑥)) = ((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥)))
167, 11, 12, 15syl3anc 1373 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘((𝐹1 ) · 𝑥)) = ((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥)))
1716fveq2d 6865 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹‘((𝐹1 ) · 𝑥))) = (𝐹‘((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥))))
183, 2rngimf1o 20370 . . . . . 6 (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹:(Base‘𝑅)–1-1-onto𝐵)
19183ad2ant3 1135 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:(Base‘𝑅)–1-1-onto𝐵)
20 simpl2 1193 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → 𝑆 ∈ Rng)
212, 13rngcl 20080 . . . . . 6 ((𝑆 ∈ Rng ∧ (𝐹1 ) ∈ 𝐵𝑥𝐵) → ((𝐹1 ) · 𝑥) ∈ 𝐵)
2220, 11, 12, 21syl3anc 1373 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹1 ) · 𝑥) ∈ 𝐵)
23 f1ocnvfv2 7255 . . . . 5 ((𝐹:(Base‘𝑅)–1-1-onto𝐵 ∧ ((𝐹1 ) · 𝑥) ∈ 𝐵) → (𝐹‘(𝐹‘((𝐹1 ) · 𝑥))) = ((𝐹1 ) · 𝑥))
2419, 22, 23syl2an2r 685 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹‘((𝐹1 ) · 𝑥))) = ((𝐹1 ) · 𝑥))
253, 8ringidcl 20181 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
26253ad2ant1 1133 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 1 ∈ (Base‘𝑅))
2719, 26jca 511 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹:(Base‘𝑅)–1-1-onto𝐵1 ∈ (Base‘𝑅)))
2827adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹:(Base‘𝑅)–1-1-onto𝐵1 ∈ (Base‘𝑅)))
29 f1ocnvfv1 7254 . . . . . . . . 9 ((𝐹:(Base‘𝑅)–1-1-onto𝐵1 ∈ (Base‘𝑅)) → (𝐹‘(𝐹1 )) = 1 )
3028, 29syl 17 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹1 )) = 1 )
3130oveq1d 7405 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥)) = ( 1 (.r𝑅)(𝐹𝑥)))
32 simpl1 1192 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → 𝑅 ∈ Ring)
332, 3rngimf1o 20370 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 RngIso 𝑅) → 𝐹:𝐵1-1-onto→(Base‘𝑅))
34 f1of 6803 . . . . . . . . . . . 12 (𝐹:𝐵1-1-onto→(Base‘𝑅) → 𝐹:𝐵⟶(Base‘𝑅))
3533, 34syl 17 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 RngIso 𝑅) → 𝐹:𝐵⟶(Base‘𝑅))
361, 35syl 17 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹:𝐵⟶(Base‘𝑅))
37363ad2ant3 1135 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:𝐵⟶(Base‘𝑅))
3837ffvelcdmda 7059 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹𝑥) ∈ (Base‘𝑅))
393, 14, 8, 32, 38ringlidmd 20188 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ( 1 (.r𝑅)(𝐹𝑥)) = (𝐹𝑥))
4031, 39eqtrd 2765 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥)) = (𝐹𝑥))
4140fveq2d 6865 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥))) = (𝐹‘(𝐹𝑥)))
42 f1ocnvfv2 7255 . . . . . 6 ((𝐹:(Base‘𝑅)–1-1-onto𝐵𝑥𝐵) → (𝐹‘(𝐹𝑥)) = 𝑥)
4319, 42sylan 580 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹𝑥)) = 𝑥)
4441, 43eqtrd 2765 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥))) = 𝑥)
4517, 24, 443eqtr3d 2773 . . 3 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹1 ) · 𝑥) = 𝑥)
4613ad2ant3 1135 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑆 RngIso 𝑅))
4746, 4syl 17 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑆 RngHom 𝑅))
4847adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → 𝐹 ∈ (𝑆 RngHom 𝑅))
492, 13, 14rnghmmul 20365 . . . . . . 7 ((𝐹 ∈ (𝑆 RngHom 𝑅) ∧ 𝑥𝐵 ∧ (𝐹1 ) ∈ 𝐵) → (𝐹‘(𝑥 · (𝐹1 ))) = ((𝐹𝑥)(.r𝑅)(𝐹‘(𝐹1 ))))
5048, 12, 11, 49syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝑥 · (𝐹1 ))) = ((𝐹𝑥)(.r𝑅)(𝐹‘(𝐹1 ))))
5130oveq2d 7406 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹𝑥)(.r𝑅)(𝐹‘(𝐹1 ))) = ((𝐹𝑥)(.r𝑅) 1 ))
523, 14, 8, 32, 38ringridmd 20189 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹𝑥)(.r𝑅) 1 ) = (𝐹𝑥))
5350, 51, 523eqtrd 2769 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝑥 · (𝐹1 ))) = (𝐹𝑥))
5453fveq2d 6865 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹‘(𝑥 · (𝐹1 )))) = (𝐹‘(𝐹𝑥)))
552, 13rngcl 20080 . . . . . 6 ((𝑆 ∈ Rng ∧ 𝑥𝐵 ∧ (𝐹1 ) ∈ 𝐵) → (𝑥 · (𝐹1 )) ∈ 𝐵)
5620, 12, 11, 55syl3anc 1373 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝑥 · (𝐹1 )) ∈ 𝐵)
57 f1ocnvfv2 7255 . . . . 5 ((𝐹:(Base‘𝑅)–1-1-onto𝐵 ∧ (𝑥 · (𝐹1 )) ∈ 𝐵) → (𝐹‘(𝐹‘(𝑥 · (𝐹1 )))) = (𝑥 · (𝐹1 )))
5819, 56, 57syl2an2r 685 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹‘(𝑥 · (𝐹1 )))) = (𝑥 · (𝐹1 )))
5954, 58, 433eqtr3d 2773 . . 3 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝑥 · (𝐹1 )) = 𝑥)
6045, 59jca 511 . 2 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (((𝐹1 ) · 𝑥) = 𝑥 ∧ (𝑥 · (𝐹1 )) = 𝑥))
6160ralrimiva 3126 1 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → ∀𝑥𝐵 (((𝐹1 ) · 𝑥) = 𝑥 ∧ (𝑥 · (𝐹1 )) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  ccnv 5640  wf 6510  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  Basecbs 17186  .rcmulr 17228  Rngcrng 20068  1rcur 20097  Ringcrg 20149   RngHom crnghm 20350   RngIso crngim 20351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-0g 17411  df-mgm 18574  df-mgmhm 18626  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-ghm 19152  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-rnghm 20352  df-rngim 20353
This theorem is referenced by:  rngisomring  20383  rngisomring1  20384
  Copyright terms: Public domain W3C validator