Proof of Theorem rngisom1
| Step | Hyp | Ref
| Expression |
| 1 | | rngimcnv 20416 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑅 RngIso 𝑆) → ◡𝐹 ∈ (𝑆 RngIso 𝑅)) |
| 2 | | rngisom1.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑆) |
| 3 | | eqid 2735 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 4 | 2, 3 | rngimrnghm 20415 |
. . . . . . . . 9
⊢ (◡𝐹 ∈ (𝑆 RngIso 𝑅) → ◡𝐹 ∈ (𝑆 RngHom 𝑅)) |
| 5 | 1, 4 | syl 17 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑅 RngIso 𝑆) → ◡𝐹 ∈ (𝑆 RngHom 𝑅)) |
| 6 | 5 | 3ad2ant3 1135 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → ◡𝐹 ∈ (𝑆 RngHom 𝑅)) |
| 7 | 6 | adantr 480 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → ◡𝐹 ∈ (𝑆 RngHom 𝑅)) |
| 8 | | rngisom1.1 |
. . . . . . . . 9
⊢ 1 =
(1r‘𝑅) |
| 9 | 8, 2 | rngisomfv1 20425 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹‘ 1 ) ∈ 𝐵) |
| 10 | 9 | 3adant2 1131 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹‘ 1 ) ∈ 𝐵) |
| 11 | 10 | adantr 480 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → (𝐹‘ 1 ) ∈ 𝐵) |
| 12 | | simpr 484 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
| 13 | | rngisom1.t |
. . . . . . 7
⊢ · =
(.r‘𝑆) |
| 14 | | eqid 2735 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 15 | 2, 13, 14 | rnghmmul 20409 |
. . . . . 6
⊢ ((◡𝐹 ∈ (𝑆 RngHom 𝑅) ∧ (𝐹‘ 1 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (◡𝐹‘((𝐹‘ 1 ) · 𝑥)) = ((◡𝐹‘(𝐹‘ 1
))(.r‘𝑅)(◡𝐹‘𝑥))) |
| 16 | 7, 11, 12, 15 | syl3anc 1373 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → (◡𝐹‘((𝐹‘ 1 ) · 𝑥)) = ((◡𝐹‘(𝐹‘ 1
))(.r‘𝑅)(◡𝐹‘𝑥))) |
| 17 | 16 | fveq2d 6880 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → (𝐹‘(◡𝐹‘((𝐹‘ 1 ) · 𝑥))) = (𝐹‘((◡𝐹‘(𝐹‘ 1
))(.r‘𝑅)(◡𝐹‘𝑥)))) |
| 18 | 3, 2 | rngimf1o 20414 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹:(Base‘𝑅)–1-1-onto→𝐵) |
| 19 | 18 | 3ad2ant3 1135 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:(Base‘𝑅)–1-1-onto→𝐵) |
| 20 | | simpl2 1193 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → 𝑆 ∈ Rng) |
| 21 | 2, 13 | rngcl 20124 |
. . . . . 6
⊢ ((𝑆 ∈ Rng ∧ (𝐹‘ 1 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝐹‘ 1 ) · 𝑥) ∈ 𝐵) |
| 22 | 20, 11, 12, 21 | syl3anc 1373 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → ((𝐹‘ 1 ) · 𝑥) ∈ 𝐵) |
| 23 | | f1ocnvfv2 7270 |
. . . . 5
⊢ ((𝐹:(Base‘𝑅)–1-1-onto→𝐵 ∧ ((𝐹‘ 1 ) · 𝑥) ∈ 𝐵) → (𝐹‘(◡𝐹‘((𝐹‘ 1 ) · 𝑥))) = ((𝐹‘ 1 ) · 𝑥)) |
| 24 | 19, 22, 23 | syl2an2r 685 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → (𝐹‘(◡𝐹‘((𝐹‘ 1 ) · 𝑥))) = ((𝐹‘ 1 ) · 𝑥)) |
| 25 | 3, 8 | ringidcl 20225 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → 1 ∈
(Base‘𝑅)) |
| 26 | 25 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 1 ∈ (Base‘𝑅)) |
| 27 | 19, 26 | jca 511 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹:(Base‘𝑅)–1-1-onto→𝐵 ∧ 1 ∈ (Base‘𝑅))) |
| 28 | 27 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → (𝐹:(Base‘𝑅)–1-1-onto→𝐵 ∧ 1 ∈ (Base‘𝑅))) |
| 29 | | f1ocnvfv1 7269 |
. . . . . . . . 9
⊢ ((𝐹:(Base‘𝑅)–1-1-onto→𝐵 ∧ 1 ∈ (Base‘𝑅)) → (◡𝐹‘(𝐹‘ 1 )) = 1 ) |
| 30 | 28, 29 | syl 17 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → (◡𝐹‘(𝐹‘ 1 )) = 1 ) |
| 31 | 30 | oveq1d 7420 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → ((◡𝐹‘(𝐹‘ 1
))(.r‘𝑅)(◡𝐹‘𝑥)) = ( 1 (.r‘𝑅)(◡𝐹‘𝑥))) |
| 32 | | simpl1 1192 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 33 | 2, 3 | rngimf1o 20414 |
. . . . . . . . . . . 12
⊢ (◡𝐹 ∈ (𝑆 RngIso 𝑅) → ◡𝐹:𝐵–1-1-onto→(Base‘𝑅)) |
| 34 | | f1of 6818 |
. . . . . . . . . . . 12
⊢ (◡𝐹:𝐵–1-1-onto→(Base‘𝑅) → ◡𝐹:𝐵⟶(Base‘𝑅)) |
| 35 | 33, 34 | syl 17 |
. . . . . . . . . . 11
⊢ (◡𝐹 ∈ (𝑆 RngIso 𝑅) → ◡𝐹:𝐵⟶(Base‘𝑅)) |
| 36 | 1, 35 | syl 17 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑅 RngIso 𝑆) → ◡𝐹:𝐵⟶(Base‘𝑅)) |
| 37 | 36 | 3ad2ant3 1135 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → ◡𝐹:𝐵⟶(Base‘𝑅)) |
| 38 | 37 | ffvelcdmda 7074 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → (◡𝐹‘𝑥) ∈ (Base‘𝑅)) |
| 39 | 3, 14, 8, 32, 38 | ringlidmd 20232 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → ( 1 (.r‘𝑅)(◡𝐹‘𝑥)) = (◡𝐹‘𝑥)) |
| 40 | 31, 39 | eqtrd 2770 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → ((◡𝐹‘(𝐹‘ 1
))(.r‘𝑅)(◡𝐹‘𝑥)) = (◡𝐹‘𝑥)) |
| 41 | 40 | fveq2d 6880 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → (𝐹‘((◡𝐹‘(𝐹‘ 1
))(.r‘𝑅)(◡𝐹‘𝑥))) = (𝐹‘(◡𝐹‘𝑥))) |
| 42 | | f1ocnvfv2 7270 |
. . . . . 6
⊢ ((𝐹:(Base‘𝑅)–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
| 43 | 19, 42 | sylan 580 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
| 44 | 41, 43 | eqtrd 2770 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → (𝐹‘((◡𝐹‘(𝐹‘ 1
))(.r‘𝑅)(◡𝐹‘𝑥))) = 𝑥) |
| 45 | 17, 24, 44 | 3eqtr3d 2778 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → ((𝐹‘ 1 ) · 𝑥) = 𝑥) |
| 46 | 1 | 3ad2ant3 1135 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → ◡𝐹 ∈ (𝑆 RngIso 𝑅)) |
| 47 | 46, 4 | syl 17 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → ◡𝐹 ∈ (𝑆 RngHom 𝑅)) |
| 48 | 47 | adantr 480 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → ◡𝐹 ∈ (𝑆 RngHom 𝑅)) |
| 49 | 2, 13, 14 | rnghmmul 20409 |
. . . . . . 7
⊢ ((◡𝐹 ∈ (𝑆 RngHom 𝑅) ∧ 𝑥 ∈ 𝐵 ∧ (𝐹‘ 1 ) ∈ 𝐵) → (◡𝐹‘(𝑥 · (𝐹‘ 1 ))) = ((◡𝐹‘𝑥)(.r‘𝑅)(◡𝐹‘(𝐹‘ 1 )))) |
| 50 | 48, 12, 11, 49 | syl3anc 1373 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → (◡𝐹‘(𝑥 · (𝐹‘ 1 ))) = ((◡𝐹‘𝑥)(.r‘𝑅)(◡𝐹‘(𝐹‘ 1 )))) |
| 51 | 30 | oveq2d 7421 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → ((◡𝐹‘𝑥)(.r‘𝑅)(◡𝐹‘(𝐹‘ 1 ))) = ((◡𝐹‘𝑥)(.r‘𝑅) 1 )) |
| 52 | 3, 14, 8, 32, 38 | ringridmd 20233 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → ((◡𝐹‘𝑥)(.r‘𝑅) 1 ) = (◡𝐹‘𝑥)) |
| 53 | 50, 51, 52 | 3eqtrd 2774 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → (◡𝐹‘(𝑥 · (𝐹‘ 1 ))) = (◡𝐹‘𝑥)) |
| 54 | 53 | fveq2d 6880 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → (𝐹‘(◡𝐹‘(𝑥 · (𝐹‘ 1 )))) = (𝐹‘(◡𝐹‘𝑥))) |
| 55 | 2, 13 | rngcl 20124 |
. . . . . 6
⊢ ((𝑆 ∈ Rng ∧ 𝑥 ∈ 𝐵 ∧ (𝐹‘ 1 ) ∈ 𝐵) → (𝑥 · (𝐹‘ 1 )) ∈ 𝐵) |
| 56 | 20, 12, 11, 55 | syl3anc 1373 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → (𝑥 · (𝐹‘ 1 )) ∈ 𝐵) |
| 57 | | f1ocnvfv2 7270 |
. . . . 5
⊢ ((𝐹:(Base‘𝑅)–1-1-onto→𝐵 ∧ (𝑥 · (𝐹‘ 1 )) ∈ 𝐵) → (𝐹‘(◡𝐹‘(𝑥 · (𝐹‘ 1 )))) = (𝑥 · (𝐹‘ 1 ))) |
| 58 | 19, 56, 57 | syl2an2r 685 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → (𝐹‘(◡𝐹‘(𝑥 · (𝐹‘ 1 )))) = (𝑥 · (𝐹‘ 1 ))) |
| 59 | 54, 58, 43 | 3eqtr3d 2778 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → (𝑥 · (𝐹‘ 1 )) = 𝑥) |
| 60 | 45, 59 | jca 511 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥 ∈ 𝐵) → (((𝐹‘ 1 ) · 𝑥) = 𝑥 ∧ (𝑥 · (𝐹‘ 1 )) = 𝑥)) |
| 61 | 60 | ralrimiva 3132 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → ∀𝑥 ∈ 𝐵 (((𝐹‘ 1 ) · 𝑥) = 𝑥 ∧ (𝑥 · (𝐹‘ 1 )) = 𝑥)) |