MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngisom1 Structured version   Visualization version   GIF version

Theorem rngisom1 20384
Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the function value of the ring unity of the unital ring is a ring unity of the non-unital ring. (Contributed by AV, 27-Feb-2025.)
Hypotheses
Ref Expression
rngisom1.1 1 = (1r𝑅)
rngisom1.b 𝐵 = (Base‘𝑆)
rngisom1.t · = (.r𝑆)
Assertion
Ref Expression
rngisom1 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → ∀𝑥𝐵 (((𝐹1 ) · 𝑥) = 𝑥 ∧ (𝑥 · (𝐹1 )) = 𝑥))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑅   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥)   · (𝑥)   1 (𝑥)

Proof of Theorem rngisom1
StepHypRef Expression
1 rngimcnv 20374 . . . . . . . . 9 (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹 ∈ (𝑆 RngIso 𝑅))
2 rngisom1.b . . . . . . . . . 10 𝐵 = (Base‘𝑆)
3 eqid 2731 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
42, 3rngimrnghm 20373 . . . . . . . . 9 (𝐹 ∈ (𝑆 RngIso 𝑅) → 𝐹 ∈ (𝑆 RngHom 𝑅))
51, 4syl 17 . . . . . . . 8 (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹 ∈ (𝑆 RngHom 𝑅))
653ad2ant3 1135 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑆 RngHom 𝑅))
76adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → 𝐹 ∈ (𝑆 RngHom 𝑅))
8 rngisom1.1 . . . . . . . . 9 1 = (1r𝑅)
98, 2rngisomfv1 20383 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹1 ) ∈ 𝐵)
1093adant2 1131 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹1 ) ∈ 𝐵)
1110adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹1 ) ∈ 𝐵)
12 simpr 484 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → 𝑥𝐵)
13 rngisom1.t . . . . . . 7 · = (.r𝑆)
14 eqid 2731 . . . . . . 7 (.r𝑅) = (.r𝑅)
152, 13, 14rnghmmul 20367 . . . . . 6 ((𝐹 ∈ (𝑆 RngHom 𝑅) ∧ (𝐹1 ) ∈ 𝐵𝑥𝐵) → (𝐹‘((𝐹1 ) · 𝑥)) = ((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥)))
167, 11, 12, 15syl3anc 1373 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘((𝐹1 ) · 𝑥)) = ((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥)))
1716fveq2d 6826 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹‘((𝐹1 ) · 𝑥))) = (𝐹‘((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥))))
183, 2rngimf1o 20372 . . . . . 6 (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹:(Base‘𝑅)–1-1-onto𝐵)
19183ad2ant3 1135 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:(Base‘𝑅)–1-1-onto𝐵)
20 simpl2 1193 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → 𝑆 ∈ Rng)
212, 13rngcl 20082 . . . . . 6 ((𝑆 ∈ Rng ∧ (𝐹1 ) ∈ 𝐵𝑥𝐵) → ((𝐹1 ) · 𝑥) ∈ 𝐵)
2220, 11, 12, 21syl3anc 1373 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹1 ) · 𝑥) ∈ 𝐵)
23 f1ocnvfv2 7211 . . . . 5 ((𝐹:(Base‘𝑅)–1-1-onto𝐵 ∧ ((𝐹1 ) · 𝑥) ∈ 𝐵) → (𝐹‘(𝐹‘((𝐹1 ) · 𝑥))) = ((𝐹1 ) · 𝑥))
2419, 22, 23syl2an2r 685 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹‘((𝐹1 ) · 𝑥))) = ((𝐹1 ) · 𝑥))
253, 8ringidcl 20183 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
26253ad2ant1 1133 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 1 ∈ (Base‘𝑅))
2719, 26jca 511 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹:(Base‘𝑅)–1-1-onto𝐵1 ∈ (Base‘𝑅)))
2827adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹:(Base‘𝑅)–1-1-onto𝐵1 ∈ (Base‘𝑅)))
29 f1ocnvfv1 7210 . . . . . . . . 9 ((𝐹:(Base‘𝑅)–1-1-onto𝐵1 ∈ (Base‘𝑅)) → (𝐹‘(𝐹1 )) = 1 )
3028, 29syl 17 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹1 )) = 1 )
3130oveq1d 7361 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥)) = ( 1 (.r𝑅)(𝐹𝑥)))
32 simpl1 1192 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → 𝑅 ∈ Ring)
332, 3rngimf1o 20372 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 RngIso 𝑅) → 𝐹:𝐵1-1-onto→(Base‘𝑅))
34 f1of 6763 . . . . . . . . . . . 12 (𝐹:𝐵1-1-onto→(Base‘𝑅) → 𝐹:𝐵⟶(Base‘𝑅))
3533, 34syl 17 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 RngIso 𝑅) → 𝐹:𝐵⟶(Base‘𝑅))
361, 35syl 17 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹:𝐵⟶(Base‘𝑅))
37363ad2ant3 1135 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:𝐵⟶(Base‘𝑅))
3837ffvelcdmda 7017 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹𝑥) ∈ (Base‘𝑅))
393, 14, 8, 32, 38ringlidmd 20190 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ( 1 (.r𝑅)(𝐹𝑥)) = (𝐹𝑥))
4031, 39eqtrd 2766 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥)) = (𝐹𝑥))
4140fveq2d 6826 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥))) = (𝐹‘(𝐹𝑥)))
42 f1ocnvfv2 7211 . . . . . 6 ((𝐹:(Base‘𝑅)–1-1-onto𝐵𝑥𝐵) → (𝐹‘(𝐹𝑥)) = 𝑥)
4319, 42sylan 580 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹𝑥)) = 𝑥)
4441, 43eqtrd 2766 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘((𝐹‘(𝐹1 ))(.r𝑅)(𝐹𝑥))) = 𝑥)
4517, 24, 443eqtr3d 2774 . . 3 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹1 ) · 𝑥) = 𝑥)
4613ad2ant3 1135 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑆 RngIso 𝑅))
4746, 4syl 17 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑆 RngHom 𝑅))
4847adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → 𝐹 ∈ (𝑆 RngHom 𝑅))
492, 13, 14rnghmmul 20367 . . . . . . 7 ((𝐹 ∈ (𝑆 RngHom 𝑅) ∧ 𝑥𝐵 ∧ (𝐹1 ) ∈ 𝐵) → (𝐹‘(𝑥 · (𝐹1 ))) = ((𝐹𝑥)(.r𝑅)(𝐹‘(𝐹1 ))))
5048, 12, 11, 49syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝑥 · (𝐹1 ))) = ((𝐹𝑥)(.r𝑅)(𝐹‘(𝐹1 ))))
5130oveq2d 7362 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹𝑥)(.r𝑅)(𝐹‘(𝐹1 ))) = ((𝐹𝑥)(.r𝑅) 1 ))
523, 14, 8, 32, 38ringridmd 20191 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → ((𝐹𝑥)(.r𝑅) 1 ) = (𝐹𝑥))
5350, 51, 523eqtrd 2770 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝑥 · (𝐹1 ))) = (𝐹𝑥))
5453fveq2d 6826 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹‘(𝑥 · (𝐹1 )))) = (𝐹‘(𝐹𝑥)))
552, 13rngcl 20082 . . . . . 6 ((𝑆 ∈ Rng ∧ 𝑥𝐵 ∧ (𝐹1 ) ∈ 𝐵) → (𝑥 · (𝐹1 )) ∈ 𝐵)
5620, 12, 11, 55syl3anc 1373 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝑥 · (𝐹1 )) ∈ 𝐵)
57 f1ocnvfv2 7211 . . . . 5 ((𝐹:(Base‘𝑅)–1-1-onto𝐵 ∧ (𝑥 · (𝐹1 )) ∈ 𝐵) → (𝐹‘(𝐹‘(𝑥 · (𝐹1 )))) = (𝑥 · (𝐹1 )))
5819, 56, 57syl2an2r 685 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝐹‘(𝐹‘(𝑥 · (𝐹1 )))) = (𝑥 · (𝐹1 )))
5954, 58, 433eqtr3d 2774 . . 3 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (𝑥 · (𝐹1 )) = 𝑥)
6045, 59jca 511 . 2 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ 𝑥𝐵) → (((𝐹1 ) · 𝑥) = 𝑥 ∧ (𝑥 · (𝐹1 )) = 𝑥))
6160ralrimiva 3124 1 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → ∀𝑥𝐵 (((𝐹1 ) · 𝑥) = 𝑥 ∧ (𝑥 · (𝐹1 )) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  ccnv 5613  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Basecbs 17120  .rcmulr 17162  Rngcrng 20070  1rcur 20099  Ringcrg 20151   RngHom crnghm 20352   RngIso crngim 20353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18548  df-mgmhm 18600  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-ghm 19125  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-rnghm 20354  df-rngim 20355
This theorem is referenced by:  rngisomring  20385  rngisomring1  20386
  Copyright terms: Public domain W3C validator