MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpodivval Structured version   Visualization version   GIF version

Theorem grpodivval 29788
Description: Group division (or subtraction) operation value. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdiv.1 𝑋 = ran 𝐺
grpdiv.2 𝑁 = (invβ€˜πΊ)
grpdiv.3 𝐷 = ( /𝑔 β€˜πΊ)
Assertion
Ref Expression
grpodivval ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐷𝐡) = (𝐴𝐺(π‘β€˜π΅)))

Proof of Theorem grpodivval
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpdiv.1 . . . . 5 𝑋 = ran 𝐺
2 grpdiv.2 . . . . 5 𝑁 = (invβ€˜πΊ)
3 grpdiv.3 . . . . 5 𝐷 = ( /𝑔 β€˜πΊ)
41, 2, 3grpodivfval 29787 . . . 4 (𝐺 ∈ GrpOp β†’ 𝐷 = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺(π‘β€˜π‘¦))))
54oveqd 7426 . . 3 (𝐺 ∈ GrpOp β†’ (𝐴𝐷𝐡) = (𝐴(π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺(π‘β€˜π‘¦)))𝐡))
6 oveq1 7416 . . . 4 (π‘₯ = 𝐴 β†’ (π‘₯𝐺(π‘β€˜π‘¦)) = (𝐴𝐺(π‘β€˜π‘¦)))
7 fveq2 6892 . . . . 5 (𝑦 = 𝐡 β†’ (π‘β€˜π‘¦) = (π‘β€˜π΅))
87oveq2d 7425 . . . 4 (𝑦 = 𝐡 β†’ (𝐴𝐺(π‘β€˜π‘¦)) = (𝐴𝐺(π‘β€˜π΅)))
9 eqid 2733 . . . 4 (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺(π‘β€˜π‘¦))) = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺(π‘β€˜π‘¦)))
10 ovex 7442 . . . 4 (𝐴𝐺(π‘β€˜π΅)) ∈ V
116, 8, 9, 10ovmpo 7568 . . 3 ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴(π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺(π‘β€˜π‘¦)))𝐡) = (𝐴𝐺(π‘β€˜π΅)))
125, 11sylan9eq 2793 . 2 ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (𝐴𝐷𝐡) = (𝐴𝐺(π‘β€˜π΅)))
13123impb 1116 1 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐷𝐡) = (𝐴𝐺(π‘β€˜π΅)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  ran crn 5678  β€˜cfv 6544  (class class class)co 7409   ∈ cmpo 7411  GrpOpcgr 29742  invcgn 29744   /𝑔 cgs 29745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-gdiv 29749
This theorem is referenced by:  grpodivinv  29789  grpoinvdiv  29790  grpodivdiv  29793  grpomuldivass  29794  grpodivid  29795  grponpcan  29796  ablodivdiv4  29807  nvmval  29895  rngosub  36798
  Copyright terms: Public domain W3C validator