Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpodivval | Structured version Visualization version GIF version |
Description: Group division (or subtraction) operation value. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpdiv.1 | ⊢ 𝑋 = ran 𝐺 |
grpdiv.2 | ⊢ 𝑁 = (inv‘𝐺) |
grpdiv.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
Ref | Expression |
---|---|
grpodivval | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpdiv.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
2 | grpdiv.2 | . . . . 5 ⊢ 𝑁 = (inv‘𝐺) | |
3 | grpdiv.3 | . . . . 5 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
4 | 1, 2, 3 | grpodivfval 28797 | . . . 4 ⊢ (𝐺 ∈ GrpOp → 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))) |
5 | 4 | oveqd 7272 | . . 3 ⊢ (𝐺 ∈ GrpOp → (𝐴𝐷𝐵) = (𝐴(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))𝐵)) |
6 | oveq1 7262 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐺(𝑁‘𝑦)) = (𝐴𝐺(𝑁‘𝑦))) | |
7 | fveq2 6756 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑁‘𝑦) = (𝑁‘𝐵)) | |
8 | 7 | oveq2d 7271 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝐺(𝑁‘𝑦)) = (𝐴𝐺(𝑁‘𝐵))) |
9 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦))) | |
10 | ovex 7288 | . . . 4 ⊢ (𝐴𝐺(𝑁‘𝐵)) ∈ V | |
11 | 6, 8, 9, 10 | ovmpo 7411 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))𝐵) = (𝐴𝐺(𝑁‘𝐵))) |
12 | 5, 11 | sylan9eq 2799 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁‘𝐵))) |
13 | 12 | 3impb 1113 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ran crn 5581 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 GrpOpcgr 28752 invcgn 28754 /𝑔 cgs 28755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-gdiv 28759 |
This theorem is referenced by: grpodivinv 28799 grpoinvdiv 28800 grpodivdiv 28803 grpomuldivass 28804 grpodivid 28805 grponpcan 28806 ablodivdiv4 28817 nvmval 28905 rngosub 36015 |
Copyright terms: Public domain | W3C validator |