| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpodivval | Structured version Visualization version GIF version | ||
| Description: Group division (or subtraction) operation value. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpdiv.1 | ⊢ 𝑋 = ran 𝐺 |
| grpdiv.2 | ⊢ 𝑁 = (inv‘𝐺) |
| grpdiv.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
| Ref | Expression |
|---|---|
| grpodivval | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpdiv.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpdiv.2 | . . . . 5 ⊢ 𝑁 = (inv‘𝐺) | |
| 3 | grpdiv.3 | . . . . 5 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
| 4 | 1, 2, 3 | grpodivfval 30518 | . . . 4 ⊢ (𝐺 ∈ GrpOp → 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))) |
| 5 | 4 | oveqd 7371 | . . 3 ⊢ (𝐺 ∈ GrpOp → (𝐴𝐷𝐵) = (𝐴(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))𝐵)) |
| 6 | oveq1 7361 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐺(𝑁‘𝑦)) = (𝐴𝐺(𝑁‘𝑦))) | |
| 7 | fveq2 6830 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑁‘𝑦) = (𝑁‘𝐵)) | |
| 8 | 7 | oveq2d 7370 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝐺(𝑁‘𝑦)) = (𝐴𝐺(𝑁‘𝐵))) |
| 9 | eqid 2733 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦))) | |
| 10 | ovex 7387 | . . . 4 ⊢ (𝐴𝐺(𝑁‘𝐵)) ∈ V | |
| 11 | 6, 8, 9, 10 | ovmpo 7514 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))𝐵) = (𝐴𝐺(𝑁‘𝐵))) |
| 12 | 5, 11 | sylan9eq 2788 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁‘𝐵))) |
| 13 | 12 | 3impb 1114 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ran crn 5622 ‘cfv 6488 (class class class)co 7354 ∈ cmpo 7356 GrpOpcgr 30473 invcgn 30475 /𝑔 cgs 30476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-gdiv 30480 |
| This theorem is referenced by: grpodivinv 30520 grpoinvdiv 30521 grpodivdiv 30524 grpomuldivass 30525 grpodivid 30526 grponpcan 30527 ablodivdiv4 30538 nvmval 30626 rngosub 37993 |
| Copyright terms: Public domain | W3C validator |