| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpodivval | Structured version Visualization version GIF version | ||
| Description: Group division (or subtraction) operation value. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpdiv.1 | ⊢ 𝑋 = ran 𝐺 |
| grpdiv.2 | ⊢ 𝑁 = (inv‘𝐺) |
| grpdiv.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
| Ref | Expression |
|---|---|
| grpodivval | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpdiv.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpdiv.2 | . . . . 5 ⊢ 𝑁 = (inv‘𝐺) | |
| 3 | grpdiv.3 | . . . . 5 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
| 4 | 1, 2, 3 | grpodivfval 30496 | . . . 4 ⊢ (𝐺 ∈ GrpOp → 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))) |
| 5 | 4 | oveqd 7370 | . . 3 ⊢ (𝐺 ∈ GrpOp → (𝐴𝐷𝐵) = (𝐴(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))𝐵)) |
| 6 | oveq1 7360 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐺(𝑁‘𝑦)) = (𝐴𝐺(𝑁‘𝑦))) | |
| 7 | fveq2 6826 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑁‘𝑦) = (𝑁‘𝐵)) | |
| 8 | 7 | oveq2d 7369 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝐺(𝑁‘𝑦)) = (𝐴𝐺(𝑁‘𝐵))) |
| 9 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦))) | |
| 10 | ovex 7386 | . . . 4 ⊢ (𝐴𝐺(𝑁‘𝐵)) ∈ V | |
| 11 | 6, 8, 9, 10 | ovmpo 7513 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))𝐵) = (𝐴𝐺(𝑁‘𝐵))) |
| 12 | 5, 11 | sylan9eq 2784 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁‘𝐵))) |
| 13 | 12 | 3impb 1114 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ran crn 5624 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 GrpOpcgr 30451 invcgn 30453 /𝑔 cgs 30454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-gdiv 30458 |
| This theorem is referenced by: grpodivinv 30498 grpoinvdiv 30499 grpodivdiv 30502 grpomuldivass 30503 grpodivid 30504 grponpcan 30505 ablodivdiv4 30516 nvmval 30604 rngosub 37909 |
| Copyright terms: Public domain | W3C validator |