MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpodivval Structured version   Visualization version   GIF version

Theorem grpodivval 30516
Description: Group division (or subtraction) operation value. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdiv.1 𝑋 = ran 𝐺
grpdiv.2 𝑁 = (inv‘𝐺)
grpdiv.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
grpodivval ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁𝐵)))

Proof of Theorem grpodivval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpdiv.1 . . . . 5 𝑋 = ran 𝐺
2 grpdiv.2 . . . . 5 𝑁 = (inv‘𝐺)
3 grpdiv.3 . . . . 5 𝐷 = ( /𝑔𝐺)
41, 2, 3grpodivfval 30515 . . . 4 (𝐺 ∈ GrpOp → 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦))))
54oveqd 7422 . . 3 (𝐺 ∈ GrpOp → (𝐴𝐷𝐵) = (𝐴(𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦)))𝐵))
6 oveq1 7412 . . . 4 (𝑥 = 𝐴 → (𝑥𝐺(𝑁𝑦)) = (𝐴𝐺(𝑁𝑦)))
7 fveq2 6876 . . . . 5 (𝑦 = 𝐵 → (𝑁𝑦) = (𝑁𝐵))
87oveq2d 7421 . . . 4 (𝑦 = 𝐵 → (𝐴𝐺(𝑁𝑦)) = (𝐴𝐺(𝑁𝐵)))
9 eqid 2735 . . . 4 (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦))) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦)))
10 ovex 7438 . . . 4 (𝐴𝐺(𝑁𝐵)) ∈ V
116, 8, 9, 10ovmpo 7567 . . 3 ((𝐴𝑋𝐵𝑋) → (𝐴(𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦)))𝐵) = (𝐴𝐺(𝑁𝐵)))
125, 11sylan9eq 2790 . 2 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁𝐵)))
13123impb 1114 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  ran crn 5655  cfv 6531  (class class class)co 7405  cmpo 7407  GrpOpcgr 30470  invcgn 30472   /𝑔 cgs 30473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-gdiv 30477
This theorem is referenced by:  grpodivinv  30517  grpoinvdiv  30518  grpodivdiv  30521  grpomuldivass  30522  grpodivid  30523  grponpcan  30524  ablodivdiv4  30535  nvmval  30623  rngosub  37954
  Copyright terms: Public domain W3C validator