Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpodivval | Structured version Visualization version GIF version |
Description: Group division (or subtraction) operation value. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpdiv.1 | ⊢ 𝑋 = ran 𝐺 |
grpdiv.2 | ⊢ 𝑁 = (inv‘𝐺) |
grpdiv.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
Ref | Expression |
---|---|
grpodivval | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpdiv.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
2 | grpdiv.2 | . . . . 5 ⊢ 𝑁 = (inv‘𝐺) | |
3 | grpdiv.3 | . . . . 5 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
4 | 1, 2, 3 | grpodivfval 29250 | . . . 4 ⊢ (𝐺 ∈ GrpOp → 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))) |
5 | 4 | oveqd 7363 | . . 3 ⊢ (𝐺 ∈ GrpOp → (𝐴𝐷𝐵) = (𝐴(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))𝐵)) |
6 | oveq1 7353 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐺(𝑁‘𝑦)) = (𝐴𝐺(𝑁‘𝑦))) | |
7 | fveq2 6834 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑁‘𝑦) = (𝑁‘𝐵)) | |
8 | 7 | oveq2d 7362 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝐺(𝑁‘𝑦)) = (𝐴𝐺(𝑁‘𝐵))) |
9 | eqid 2737 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦))) | |
10 | ovex 7379 | . . . 4 ⊢ (𝐴𝐺(𝑁‘𝐵)) ∈ V | |
11 | 6, 8, 9, 10 | ovmpo 7504 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))𝐵) = (𝐴𝐺(𝑁‘𝐵))) |
12 | 5, 11 | sylan9eq 2797 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁‘𝐵))) |
13 | 12 | 3impb 1115 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ran crn 5628 ‘cfv 6488 (class class class)co 7346 ∈ cmpo 7348 GrpOpcgr 29205 invcgn 29207 /𝑔 cgs 29208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-id 5525 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7908 df-2nd 7909 df-gdiv 29212 |
This theorem is referenced by: grpodivinv 29252 grpoinvdiv 29253 grpodivdiv 29256 grpomuldivass 29257 grpodivid 29258 grponpcan 29259 ablodivdiv4 29270 nvmval 29358 rngosub 36244 |
Copyright terms: Public domain | W3C validator |