MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpodivval Structured version   Visualization version   GIF version

Theorem grpodivval 29251
Description: Group division (or subtraction) operation value. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdiv.1 𝑋 = ran 𝐺
grpdiv.2 𝑁 = (inv‘𝐺)
grpdiv.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
grpodivval ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁𝐵)))

Proof of Theorem grpodivval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpdiv.1 . . . . 5 𝑋 = ran 𝐺
2 grpdiv.2 . . . . 5 𝑁 = (inv‘𝐺)
3 grpdiv.3 . . . . 5 𝐷 = ( /𝑔𝐺)
41, 2, 3grpodivfval 29250 . . . 4 (𝐺 ∈ GrpOp → 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦))))
54oveqd 7363 . . 3 (𝐺 ∈ GrpOp → (𝐴𝐷𝐵) = (𝐴(𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦)))𝐵))
6 oveq1 7353 . . . 4 (𝑥 = 𝐴 → (𝑥𝐺(𝑁𝑦)) = (𝐴𝐺(𝑁𝑦)))
7 fveq2 6834 . . . . 5 (𝑦 = 𝐵 → (𝑁𝑦) = (𝑁𝐵))
87oveq2d 7362 . . . 4 (𝑦 = 𝐵 → (𝐴𝐺(𝑁𝑦)) = (𝐴𝐺(𝑁𝐵)))
9 eqid 2737 . . . 4 (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦))) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦)))
10 ovex 7379 . . . 4 (𝐴𝐺(𝑁𝐵)) ∈ V
116, 8, 9, 10ovmpo 7504 . . 3 ((𝐴𝑋𝐵𝑋) → (𝐴(𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦)))𝐵) = (𝐴𝐺(𝑁𝐵)))
125, 11sylan9eq 2797 . 2 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁𝐵)))
13123impb 1115 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1541  wcel 2106  ran crn 5628  cfv 6488  (class class class)co 7346  cmpo 7348  GrpOpcgr 29205  invcgn 29207   /𝑔 cgs 29208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-id 5525  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7908  df-2nd 7909  df-gdiv 29212
This theorem is referenced by:  grpodivinv  29252  grpoinvdiv  29253  grpodivdiv  29256  grpomuldivass  29257  grpodivid  29258  grponpcan  29259  ablodivdiv4  29270  nvmval  29358  rngosub  36244
  Copyright terms: Public domain W3C validator