MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpodivval Structured version   Visualization version   GIF version

Theorem grpodivval 30519
Description: Group division (or subtraction) operation value. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdiv.1 𝑋 = ran 𝐺
grpdiv.2 𝑁 = (inv‘𝐺)
grpdiv.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
grpodivval ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁𝐵)))

Proof of Theorem grpodivval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpdiv.1 . . . . 5 𝑋 = ran 𝐺
2 grpdiv.2 . . . . 5 𝑁 = (inv‘𝐺)
3 grpdiv.3 . . . . 5 𝐷 = ( /𝑔𝐺)
41, 2, 3grpodivfval 30518 . . . 4 (𝐺 ∈ GrpOp → 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦))))
54oveqd 7371 . . 3 (𝐺 ∈ GrpOp → (𝐴𝐷𝐵) = (𝐴(𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦)))𝐵))
6 oveq1 7361 . . . 4 (𝑥 = 𝐴 → (𝑥𝐺(𝑁𝑦)) = (𝐴𝐺(𝑁𝑦)))
7 fveq2 6830 . . . . 5 (𝑦 = 𝐵 → (𝑁𝑦) = (𝑁𝐵))
87oveq2d 7370 . . . 4 (𝑦 = 𝐵 → (𝐴𝐺(𝑁𝑦)) = (𝐴𝐺(𝑁𝐵)))
9 eqid 2733 . . . 4 (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦))) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦)))
10 ovex 7387 . . . 4 (𝐴𝐺(𝑁𝐵)) ∈ V
116, 8, 9, 10ovmpo 7514 . . 3 ((𝐴𝑋𝐵𝑋) → (𝐴(𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦)))𝐵) = (𝐴𝐺(𝑁𝐵)))
125, 11sylan9eq 2788 . 2 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁𝐵)))
13123impb 1114 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  ran crn 5622  cfv 6488  (class class class)co 7354  cmpo 7356  GrpOpcgr 30473  invcgn 30475   /𝑔 cgs 30476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-1st 7929  df-2nd 7930  df-gdiv 30480
This theorem is referenced by:  grpodivinv  30520  grpoinvdiv  30521  grpodivdiv  30524  grpomuldivass  30525  grpodivid  30526  grponpcan  30527  ablodivdiv4  30538  nvmval  30626  rngosub  37993
  Copyright terms: Public domain W3C validator