![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl1r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simpl1r | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜓) | |
2 | 1 | 3ad2antl1 1186 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: soisores 7324 tfisi 7848 omopth2 8584 swrdsbslen 14614 swrdspsleq 14615 repswswrd 14734 ramub1lem1 16959 efgsfo 19607 lbspss 20693 maducoeval2 22142 madurid 22146 decpmatmullem 22273 mp2pm2mplem4 22311 llyrest 22989 ptbasin 23081 basqtop 23215 ustuqtop1 23746 mulcxp 26193 noetalem1 27244 sltmul2 27626 elwwlks2ons3im 29239 br8d 31870 isarchi2 32362 archiabllem2c 32372 cvmlift2lem10 34334 5segofs 35009 btwnconn1lem13 35102 2llnjaN 38485 paddasslem12 38750 lhp2lt 38920 lhpexle2lem 38928 lhpmcvr3 38944 lhpat3 38965 trlval3 39106 cdleme17b 39206 cdlemefr27cl 39322 cdlemg11b 39561 tendococl 39691 cdlemj3 39742 cdlemk35s-id 39857 cdlemk39s-id 39859 cdlemk53b 39875 cdlemk35u 39883 cdlemm10N 40037 dihopelvalcpre 40167 dihord6apre 40175 dihord5b 40178 dihglblem5apreN 40210 dihglblem2N 40213 dihmeetlem6 40228 dihmeetlem18N 40243 dvh3dim2 40367 dvh3dim3N 40368 jm2.25lem1 41785 limcleqr 44408 icccncfext 44651 fourierdlem87 44957 sge0seq 45210 smflimsuplem7 45590 fsupdm 45606 finfdm 45610 itscnhlc0xyqsol 47499 itscnhlinecirc02plem2 47517 |
Copyright terms: Public domain | W3C validator |