![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl1r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simpl1r | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 769 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜓) | |
2 | 1 | 3ad2antl1 1184 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: soisores 7346 tfisi 7879 omopth2 8620 swrdsbslen 14698 swrdspsleq 14699 repswswrd 14818 ramub1lem1 17059 efgsfo 19771 lbspss 21098 maducoeval2 22661 madurid 22665 decpmatmullem 22792 mp2pm2mplem4 22830 llyrest 23508 ptbasin 23600 basqtop 23734 ustuqtop1 24265 mulcxp 26741 noetalem1 27800 sltmul2 28211 elwwlks2ons3im 29983 br8d 32629 isarchi2 33174 archiabllem2c 33184 cvmlift2lem10 35296 5segofs 35987 btwnconn1lem13 36080 2llnjaN 39548 paddasslem12 39813 lhp2lt 39983 lhpexle2lem 39991 lhpmcvr3 40007 lhpat3 40028 trlval3 40169 cdleme17b 40269 cdlemefr27cl 40385 cdlemg11b 40624 tendococl 40754 cdlemj3 40805 cdlemk35s-id 40920 cdlemk39s-id 40922 cdlemk53b 40938 cdlemk35u 40946 cdlemm10N 41100 dihopelvalcpre 41230 dihord6apre 41238 dihord5b 41241 dihglblem5apreN 41273 dihglblem2N 41276 dihmeetlem6 41291 dihmeetlem18N 41306 dvh3dim2 41430 dvh3dim3N 41431 jm2.25lem1 42986 limcleqr 45599 icccncfext 45842 fourierdlem87 46148 sge0seq 46401 smflimsuplem7 46781 fsupdm 46797 finfdm 46801 itscnhlc0xyqsol 48614 itscnhlinecirc02plem2 48632 |
Copyright terms: Public domain | W3C validator |