| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl1r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl1r | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜓) | |
| 2 | 1 | 3ad2antl1 1186 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: soisores 7267 tfisi 7795 omopth2 8505 swrdsbslen 14574 swrdspsleq 14575 repswswrd 14693 ramub1lem1 16940 efgsfo 19653 lbspss 21018 maducoeval2 22556 madurid 22560 decpmatmullem 22687 mp2pm2mplem4 22725 llyrest 23401 ptbasin 23493 basqtop 23627 ustuqtop1 24157 mulcxp 26622 noetalem1 27681 sltmul2 28111 elwwlks2ons3im 29934 br8d 32593 isarchi2 33161 archiabllem2c 33171 cvmlift2lem10 35377 5segofs 36071 btwnconn1lem13 36164 2llnjaN 39685 paddasslem12 39950 lhp2lt 40120 lhpexle2lem 40128 lhpmcvr3 40144 lhpat3 40165 trlval3 40306 cdleme17b 40406 cdlemefr27cl 40522 cdlemg11b 40761 tendococl 40891 cdlemj3 40942 cdlemk35s-id 41057 cdlemk39s-id 41059 cdlemk53b 41075 cdlemk35u 41083 cdlemm10N 41237 dihopelvalcpre 41367 dihord6apre 41375 dihord5b 41378 dihglblem5apreN 41410 dihglblem2N 41413 dihmeetlem6 41428 dihmeetlem18N 41443 dvh3dim2 41567 dvh3dim3N 41568 jm2.25lem1 43115 limcleqr 45766 icccncfext 46009 fourierdlem87 46315 sge0seq 46568 smflimsuplem7 46948 fsupdm 46964 finfdm 46968 itscnhlc0xyqsol 48890 itscnhlinecirc02plem2 48908 |
| Copyright terms: Public domain | W3C validator |