| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl1r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl1r | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜓) | |
| 2 | 1 | 3ad2antl1 1186 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: soisores 7268 tfisi 7799 omopth2 8509 swrdsbslen 14589 swrdspsleq 14590 repswswrd 14708 ramub1lem1 16956 efgsfo 19636 lbspss 21004 maducoeval2 22543 madurid 22547 decpmatmullem 22674 mp2pm2mplem4 22712 llyrest 23388 ptbasin 23480 basqtop 23614 ustuqtop1 24145 mulcxp 26610 noetalem1 27669 sltmul2 28097 elwwlks2ons3im 29917 br8d 32571 isarchi2 33137 archiabllem2c 33147 cvmlift2lem10 35284 5segofs 35979 btwnconn1lem13 36072 2llnjaN 39545 paddasslem12 39810 lhp2lt 39980 lhpexle2lem 39988 lhpmcvr3 40004 lhpat3 40025 trlval3 40166 cdleme17b 40266 cdlemefr27cl 40382 cdlemg11b 40621 tendococl 40751 cdlemj3 40802 cdlemk35s-id 40917 cdlemk39s-id 40919 cdlemk53b 40935 cdlemk35u 40943 cdlemm10N 41097 dihopelvalcpre 41227 dihord6apre 41235 dihord5b 41238 dihglblem5apreN 41270 dihglblem2N 41273 dihmeetlem6 41288 dihmeetlem18N 41303 dvh3dim2 41427 dvh3dim3N 41428 jm2.25lem1 42971 limcleqr 45626 icccncfext 45869 fourierdlem87 46175 sge0seq 46428 smflimsuplem7 46808 fsupdm 46824 finfdm 46828 itscnhlc0xyqsol 48751 itscnhlinecirc02plem2 48769 |
| Copyright terms: Public domain | W3C validator |