| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl1r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl1r | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜓) | |
| 2 | 1 | 3ad2antl1 1186 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: soisores 7302 tfisi 7835 omopth2 8548 swrdsbslen 14629 swrdspsleq 14630 repswswrd 14749 ramub1lem1 16997 efgsfo 19669 lbspss 20989 maducoeval2 22527 madurid 22531 decpmatmullem 22658 mp2pm2mplem4 22696 llyrest 23372 ptbasin 23464 basqtop 23598 ustuqtop1 24129 mulcxp 26594 noetalem1 27653 sltmul2 28074 elwwlks2ons3im 29884 br8d 32538 isarchi2 33139 archiabllem2c 33149 cvmlift2lem10 35299 5segofs 35994 btwnconn1lem13 36087 2llnjaN 39560 paddasslem12 39825 lhp2lt 39995 lhpexle2lem 40003 lhpmcvr3 40019 lhpat3 40040 trlval3 40181 cdleme17b 40281 cdlemefr27cl 40397 cdlemg11b 40636 tendococl 40766 cdlemj3 40817 cdlemk35s-id 40932 cdlemk39s-id 40934 cdlemk53b 40950 cdlemk35u 40958 cdlemm10N 41112 dihopelvalcpre 41242 dihord6apre 41250 dihord5b 41253 dihglblem5apreN 41285 dihglblem2N 41288 dihmeetlem6 41303 dihmeetlem18N 41318 dvh3dim2 41442 dvh3dim3N 41443 jm2.25lem1 42987 limcleqr 45642 icccncfext 45885 fourierdlem87 46191 sge0seq 46444 smflimsuplem7 46824 fsupdm 46840 finfdm 46844 itscnhlc0xyqsol 48754 itscnhlinecirc02plem2 48772 |
| Copyright terms: Public domain | W3C validator |