![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl1r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simpl1r | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 767 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜓) | |
2 | 1 | 3ad2antl1 1185 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: soisores 7320 tfisi 7844 omopth2 8580 swrdsbslen 14610 swrdspsleq 14611 repswswrd 14730 ramub1lem1 16955 efgsfo 19601 lbspss 20685 maducoeval2 22133 madurid 22137 decpmatmullem 22264 mp2pm2mplem4 22302 llyrest 22980 ptbasin 23072 basqtop 23206 ustuqtop1 23737 mulcxp 26184 noetalem1 27233 sltmul2 27612 elwwlks2ons3im 29197 br8d 31826 isarchi2 32318 archiabllem2c 32328 cvmlift2lem10 34291 5segofs 34966 btwnconn1lem13 35059 2llnjaN 38425 paddasslem12 38690 lhp2lt 38860 lhpexle2lem 38868 lhpmcvr3 38884 lhpat3 38905 trlval3 39046 cdleme17b 39146 cdlemefr27cl 39262 cdlemg11b 39501 tendococl 39631 cdlemj3 39682 cdlemk35s-id 39797 cdlemk39s-id 39799 cdlemk53b 39815 cdlemk35u 39823 cdlemm10N 39977 dihopelvalcpre 40107 dihord6apre 40115 dihord5b 40118 dihglblem5apreN 40150 dihglblem2N 40153 dihmeetlem6 40168 dihmeetlem18N 40183 dvh3dim2 40307 dvh3dim3N 40308 jm2.25lem1 41722 limcleqr 44346 icccncfext 44589 fourierdlem87 44895 sge0seq 45148 smflimsuplem7 45528 fsupdm 45544 finfdm 45548 itscnhlc0xyqsol 47404 itscnhlinecirc02plem2 47422 |
Copyright terms: Public domain | W3C validator |