![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl1r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simpl1r | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜓) | |
2 | 1 | 3ad2antl1 1186 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: soisores 7324 tfisi 7848 omopth2 8584 swrdsbslen 14614 swrdspsleq 14615 repswswrd 14734 ramub1lem1 16959 efgsfo 19607 lbspss 20693 maducoeval2 22142 madurid 22146 decpmatmullem 22273 mp2pm2mplem4 22311 llyrest 22989 ptbasin 23081 basqtop 23215 ustuqtop1 23746 mulcxp 26193 noetalem1 27244 sltmul2 27623 elwwlks2ons3im 29208 br8d 31839 isarchi2 32331 archiabllem2c 32341 cvmlift2lem10 34303 5segofs 34978 btwnconn1lem13 35071 2llnjaN 38437 paddasslem12 38702 lhp2lt 38872 lhpexle2lem 38880 lhpmcvr3 38896 lhpat3 38917 trlval3 39058 cdleme17b 39158 cdlemefr27cl 39274 cdlemg11b 39513 tendococl 39643 cdlemj3 39694 cdlemk35s-id 39809 cdlemk39s-id 39811 cdlemk53b 39827 cdlemk35u 39835 cdlemm10N 39989 dihopelvalcpre 40119 dihord6apre 40127 dihord5b 40130 dihglblem5apreN 40162 dihglblem2N 40165 dihmeetlem6 40180 dihmeetlem18N 40195 dvh3dim2 40319 dvh3dim3N 40320 jm2.25lem1 41737 limcleqr 44360 icccncfext 44603 fourierdlem87 44909 sge0seq 45162 smflimsuplem7 45542 fsupdm 45558 finfdm 45562 itscnhlc0xyqsol 47451 itscnhlinecirc02plem2 47469 |
Copyright terms: Public domain | W3C validator |