| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl1r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl1r | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜓) | |
| 2 | 1 | 3ad2antl1 1186 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: soisores 7305 tfisi 7838 omopth2 8551 swrdsbslen 14636 swrdspsleq 14637 repswswrd 14756 ramub1lem1 17004 efgsfo 19676 lbspss 20996 maducoeval2 22534 madurid 22538 decpmatmullem 22665 mp2pm2mplem4 22703 llyrest 23379 ptbasin 23471 basqtop 23605 ustuqtop1 24136 mulcxp 26601 noetalem1 27660 sltmul2 28081 elwwlks2ons3im 29891 br8d 32545 isarchi2 33146 archiabllem2c 33156 cvmlift2lem10 35306 5segofs 36001 btwnconn1lem13 36094 2llnjaN 39567 paddasslem12 39832 lhp2lt 40002 lhpexle2lem 40010 lhpmcvr3 40026 lhpat3 40047 trlval3 40188 cdleme17b 40288 cdlemefr27cl 40404 cdlemg11b 40643 tendococl 40773 cdlemj3 40824 cdlemk35s-id 40939 cdlemk39s-id 40941 cdlemk53b 40957 cdlemk35u 40965 cdlemm10N 41119 dihopelvalcpre 41249 dihord6apre 41257 dihord5b 41260 dihglblem5apreN 41292 dihglblem2N 41295 dihmeetlem6 41310 dihmeetlem18N 41325 dvh3dim2 41449 dvh3dim3N 41450 jm2.25lem1 42994 limcleqr 45649 icccncfext 45892 fourierdlem87 46198 sge0seq 46451 smflimsuplem7 46831 fsupdm 46847 finfdm 46851 itscnhlc0xyqsol 48758 itscnhlinecirc02plem2 48776 |
| Copyright terms: Public domain | W3C validator |