| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl1r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl1r | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜓) | |
| 2 | 1 | 3ad2antl1 1186 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: soisores 7320 tfisi 7854 omopth2 8596 swrdsbslen 14682 swrdspsleq 14683 repswswrd 14802 ramub1lem1 17046 efgsfo 19720 lbspss 21040 maducoeval2 22578 madurid 22582 decpmatmullem 22709 mp2pm2mplem4 22747 llyrest 23423 ptbasin 23515 basqtop 23649 ustuqtop1 24180 mulcxp 26646 noetalem1 27705 sltmul2 28126 elwwlks2ons3im 29936 br8d 32590 isarchi2 33183 archiabllem2c 33193 cvmlift2lem10 35334 5segofs 36024 btwnconn1lem13 36117 2llnjaN 39585 paddasslem12 39850 lhp2lt 40020 lhpexle2lem 40028 lhpmcvr3 40044 lhpat3 40065 trlval3 40206 cdleme17b 40306 cdlemefr27cl 40422 cdlemg11b 40661 tendococl 40791 cdlemj3 40842 cdlemk35s-id 40957 cdlemk39s-id 40959 cdlemk53b 40975 cdlemk35u 40983 cdlemm10N 41137 dihopelvalcpre 41267 dihord6apre 41275 dihord5b 41278 dihglblem5apreN 41310 dihglblem2N 41313 dihmeetlem6 41328 dihmeetlem18N 41343 dvh3dim2 41467 dvh3dim3N 41468 jm2.25lem1 43022 limcleqr 45673 icccncfext 45916 fourierdlem87 46222 sge0seq 46475 smflimsuplem7 46855 fsupdm 46871 finfdm 46875 itscnhlc0xyqsol 48745 itscnhlinecirc02plem2 48763 |
| Copyright terms: Public domain | W3C validator |