| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl1r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl1r | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜓) | |
| 2 | 1 | 3ad2antl1 1186 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: soisores 7261 tfisi 7789 omopth2 8499 swrdsbslen 14569 swrdspsleq 14570 repswswrd 14688 ramub1lem1 16935 efgsfo 19649 lbspss 21014 maducoeval2 22553 madurid 22557 decpmatmullem 22684 mp2pm2mplem4 22722 llyrest 23398 ptbasin 23490 basqtop 23624 ustuqtop1 24154 mulcxp 26619 noetalem1 27678 sltmul2 28108 elwwlks2ons3im 29930 br8d 32586 isarchi2 33149 archiabllem2c 33159 cvmlift2lem10 35344 5segofs 36039 btwnconn1lem13 36132 2llnjaN 39604 paddasslem12 39869 lhp2lt 40039 lhpexle2lem 40047 lhpmcvr3 40063 lhpat3 40084 trlval3 40225 cdleme17b 40325 cdlemefr27cl 40441 cdlemg11b 40680 tendococl 40810 cdlemj3 40861 cdlemk35s-id 40976 cdlemk39s-id 40978 cdlemk53b 40994 cdlemk35u 41002 cdlemm10N 41156 dihopelvalcpre 41286 dihord6apre 41294 dihord5b 41297 dihglblem5apreN 41329 dihglblem2N 41332 dihmeetlem6 41347 dihmeetlem18N 41362 dvh3dim2 41486 dvh3dim3N 41487 jm2.25lem1 43030 limcleqr 45681 icccncfext 45924 fourierdlem87 46230 sge0seq 46483 smflimsuplem7 46863 fsupdm 46879 finfdm 46883 itscnhlc0xyqsol 48796 itscnhlinecirc02plem2 48814 |
| Copyright terms: Public domain | W3C validator |