![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl1r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simpl1r | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜓) | |
2 | 1 | 3ad2antl1 1185 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: soisores 7363 tfisi 7896 omopth2 8640 swrdsbslen 14712 swrdspsleq 14713 repswswrd 14832 ramub1lem1 17073 efgsfo 19781 lbspss 21104 maducoeval2 22667 madurid 22671 decpmatmullem 22798 mp2pm2mplem4 22836 llyrest 23514 ptbasin 23606 basqtop 23740 ustuqtop1 24271 mulcxp 26745 noetalem1 27804 sltmul2 28215 elwwlks2ons3im 29987 br8d 32632 isarchi2 33165 archiabllem2c 33175 cvmlift2lem10 35280 5segofs 35970 btwnconn1lem13 36063 2llnjaN 39523 paddasslem12 39788 lhp2lt 39958 lhpexle2lem 39966 lhpmcvr3 39982 lhpat3 40003 trlval3 40144 cdleme17b 40244 cdlemefr27cl 40360 cdlemg11b 40599 tendococl 40729 cdlemj3 40780 cdlemk35s-id 40895 cdlemk39s-id 40897 cdlemk53b 40913 cdlemk35u 40921 cdlemm10N 41075 dihopelvalcpre 41205 dihord6apre 41213 dihord5b 41216 dihglblem5apreN 41248 dihglblem2N 41251 dihmeetlem6 41266 dihmeetlem18N 41281 dvh3dim2 41405 dvh3dim3N 41406 jm2.25lem1 42955 limcleqr 45565 icccncfext 45808 fourierdlem87 46114 sge0seq 46367 smflimsuplem7 46747 fsupdm 46763 finfdm 46767 itscnhlc0xyqsol 48499 itscnhlinecirc02plem2 48517 |
Copyright terms: Public domain | W3C validator |