Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.25lem1 Structured version   Visualization version   GIF version

Theorem jm2.25lem1 41365
Description: Lemma for jm2.26 41369. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
jm2.25lem1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) → ((𝐴 ∥ (𝐷𝐵) ∨ 𝐴 ∥ (𝐷 − -𝐵)) ↔ (𝐴 ∥ (𝐶𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵))))

Proof of Theorem jm2.25lem1
StepHypRef Expression
1 simpl1l 1225 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) ∧ (𝐴 ∥ (𝐷𝐵) ∨ 𝐴 ∥ (𝐷 − -𝐵))) → 𝐴 ∈ ℤ)
2 simpl2l 1227 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) ∧ (𝐴 ∥ (𝐷𝐵) ∨ 𝐴 ∥ (𝐷 − -𝐵))) → 𝐶 ∈ ℤ)
3 simpl2r 1228 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) ∧ (𝐴 ∥ (𝐷𝐵) ∨ 𝐴 ∥ (𝐷 − -𝐵))) → 𝐷 ∈ ℤ)
4 simpl1r 1226 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) ∧ (𝐴 ∥ (𝐷𝐵) ∨ 𝐴 ∥ (𝐷 − -𝐵))) → 𝐵 ∈ ℤ)
5 simpl3 1194 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) ∧ (𝐴 ∥ (𝐷𝐵) ∨ 𝐴 ∥ (𝐷 − -𝐵))) → (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷)))
6 simpr 486 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) ∧ (𝐴 ∥ (𝐷𝐵) ∨ 𝐴 ∥ (𝐷 − -𝐵))) → (𝐴 ∥ (𝐷𝐵) ∨ 𝐴 ∥ (𝐷 − -𝐵)))
7 acongtr 41345 . . 3 (((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷)) ∧ (𝐴 ∥ (𝐷𝐵) ∨ 𝐴 ∥ (𝐷 − -𝐵)))) → (𝐴 ∥ (𝐶𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵)))
81, 2, 3, 4, 5, 6, 7syl222anc 1387 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) ∧ (𝐴 ∥ (𝐷𝐵) ∨ 𝐴 ∥ (𝐷 − -𝐵))) → (𝐴 ∥ (𝐶𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵)))
9 simpl1l 1225 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) ∧ (𝐴 ∥ (𝐶𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵))) → 𝐴 ∈ ℤ)
10 simpl2r 1228 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) ∧ (𝐴 ∥ (𝐶𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵))) → 𝐷 ∈ ℤ)
11 simpl2l 1227 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) ∧ (𝐴 ∥ (𝐶𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵))) → 𝐶 ∈ ℤ)
12 simpl1r 1226 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) ∧ (𝐴 ∥ (𝐶𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵))) → 𝐵 ∈ ℤ)
13 simpl3 1194 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) ∧ (𝐴 ∥ (𝐶𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵))) → (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷)))
14 acongsym 41343 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐷𝐶) ∨ 𝐴 ∥ (𝐷 − -𝐶)))
159, 11, 10, 13, 14syl31anc 1374 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) ∧ (𝐴 ∥ (𝐶𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵))) → (𝐴 ∥ (𝐷𝐶) ∨ 𝐴 ∥ (𝐷 − -𝐶)))
16 simpr 486 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) ∧ (𝐴 ∥ (𝐶𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵))) → (𝐴 ∥ (𝐶𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵)))
17 acongtr 41345 . . 3 (((𝐴 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 ∥ (𝐷𝐶) ∨ 𝐴 ∥ (𝐷 − -𝐶)) ∧ (𝐴 ∥ (𝐶𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵)))) → (𝐴 ∥ (𝐷𝐵) ∨ 𝐴 ∥ (𝐷 − -𝐵)))
189, 10, 11, 12, 15, 16, 17syl222anc 1387 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) ∧ (𝐴 ∥ (𝐶𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵))) → (𝐴 ∥ (𝐷𝐵) ∨ 𝐴 ∥ (𝐷 − -𝐵)))
198, 18impbida 800 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) → ((𝐴 ∥ (𝐷𝐵) ∨ 𝐴 ∥ (𝐷 − -𝐵)) ↔ (𝐴 ∥ (𝐶𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846  w3a 1088  wcel 2107   class class class wbr 5106  (class class class)co 7358  cmin 11390  -cneg 11391  cz 12504  cdvds 16141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-n0 12419  df-z 12505  df-dvds 16142
This theorem is referenced by:  jm2.25  41366
  Copyright terms: Public domain W3C validator