MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatmullem Structured version   Visualization version   GIF version

Theorem decpmatmullem 22674
Description: Lemma for decpmatmul 22675. (Contributed by AV, 20-Oct-2019.) (Revised by AV, 3-Dec-2019.)
Hypotheses
Ref Expression
decpmatmul.p 𝑃 = (Poly1𝑅)
decpmatmul.c 𝐶 = (𝑁 Mat 𝑃)
decpmatmul.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
decpmatmullem (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝐽) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))))
Distinct variable groups:   𝑡,𝐵   𝐼,𝑙,𝑡   𝐽,𝑙,𝑡   𝐾,𝑙,𝑡   𝑡,𝑁   𝑡,𝑃   𝑅,𝑙,𝑡   𝑈,𝑙,𝑡   𝑊,𝑙,𝑡
Allowed substitution hints:   𝐵(𝑙)   𝐶(𝑡,𝑙)   𝑃(𝑙)   𝑁(𝑙)

Proof of Theorem decpmatmullem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
213ad2ant1 1133 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑅 ∈ Ring)
3 decpmatmul.p . . . . . . 7 𝑃 = (Poly1𝑅)
4 decpmatmul.c . . . . . . 7 𝐶 = (𝑁 Mat 𝑃)
53, 4pmatring 22595 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
65adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝐶 ∈ Ring)
7 simpl 482 . . . . . 6 ((𝑈𝐵𝑊𝐵) → 𝑈𝐵)
87adantl 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝑈𝐵)
9 simpr 484 . . . . . 6 ((𝑈𝐵𝑊𝐵) → 𝑊𝐵)
109adantl 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝑊𝐵)
11 decpmatmul.b . . . . . 6 𝐵 = (Base‘𝐶)
12 eqid 2729 . . . . . 6 (.r𝐶) = (.r𝐶)
1311, 12ringcl 20153 . . . . 5 ((𝐶 ∈ Ring ∧ 𝑈𝐵𝑊𝐵) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
146, 8, 10, 13syl3anc 1373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
15143adant3 1132 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
16 simp33 1212 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝐾 ∈ ℕ0)
17 3simpa 1148 . . . 4 ((𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0) → (𝐼𝑁𝐽𝑁))
18173ad2ant3 1135 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼𝑁𝐽𝑁))
193, 4, 11decpmate 22669 . . 3 (((𝑅 ∈ Ring ∧ (𝑈(.r𝐶)𝑊) ∈ 𝐵𝐾 ∈ ℕ0) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝐽) = ((coe1‘(𝐼(𝑈(.r𝐶)𝑊)𝐽))‘𝐾))
202, 15, 16, 18, 19syl31anc 1375 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝐽) = ((coe1‘(𝐼(𝑈(.r𝐶)𝑊)𝐽))‘𝐾))
213ply1ring 22148 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
22 eqid 2729 . . . . . . . . . . 11 (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩)
234, 22matmulr 22341 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐶))
2423eqcomd 2735 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → (.r𝐶) = (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩))
2521, 24sylan2 593 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (.r𝐶) = (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩))
26253ad2ant1 1133 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (.r𝐶) = (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩))
2726oveqd 7370 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝑈(.r𝐶)𝑊) = (𝑈(𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑊))
2827oveqd 7370 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼(𝑈(.r𝐶)𝑊)𝐽) = (𝐼(𝑈(𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑊)𝐽))
29 eqid 2729 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
30 eqid 2729 . . . . . 6 (.r𝑃) = (.r𝑃)
3121adantl 481 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring)
32313ad2ant1 1133 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑃 ∈ Ring)
33 simpl 482 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
34333ad2ant1 1133 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑁 ∈ Fin)
354, 29matbas2 22324 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → ((Base‘𝑃) ↑m (𝑁 × 𝑁)) = (Base‘𝐶))
3611, 35eqtr4id 2783 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐵 = ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
3721, 36sylan2 593 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐵 = ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
3837eleq2d 2814 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑈𝐵𝑈 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁))))
3938biimpcd 249 . . . . . . . . 9 (𝑈𝐵 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑈 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁))))
4039adantr 480 . . . . . . . 8 ((𝑈𝐵𝑊𝐵) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑈 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁))))
4140impcom 407 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝑈 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
42413adant3 1132 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑈 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
4321, 35sylan2 593 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑃) ↑m (𝑁 × 𝑁)) = (Base‘𝐶))
4411, 43eqtr4id 2783 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐵 = ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
4544eleq2d 2814 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑊𝐵𝑊 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁))))
4645biimpcd 249 . . . . . . . . 9 (𝑊𝐵 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑊 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁))))
4746adantl 481 . . . . . . . 8 ((𝑈𝐵𝑊𝐵) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑊 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁))))
4847impcom 407 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝑊 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
49483adant3 1132 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑊 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
50 simp31 1210 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝐼𝑁)
51 simp32 1211 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝐽𝑁)
5222, 29, 30, 32, 34, 34, 34, 42, 49, 50, 51mamufv 22297 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼(𝑈(𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑊)𝐽) = (𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))
5328, 52eqtrd 2764 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼(𝑈(.r𝐶)𝑊)𝐽) = (𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))
5453fveq2d 6830 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (coe1‘(𝐼(𝑈(.r𝐶)𝑊)𝐽)) = (coe1‘(𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽))))))
5554fveq1d 6828 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → ((coe1‘(𝐼(𝑈(.r𝐶)𝑊)𝐽))‘𝐾) = ((coe1‘(𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))‘𝐾))
5632adantr 480 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑃 ∈ Ring)
5750adantr 480 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝐼𝑁)
58 simpr 484 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑡𝑁)
59 simpl2l 1227 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑈𝐵)
604, 29, 11, 57, 58, 59matecld 22329 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → (𝐼𝑈𝑡) ∈ (Base‘𝑃))
6151adantr 480 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝐽𝑁)
62 simpl2r 1228 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑊𝐵)
634, 29, 11, 58, 61, 62matecld 22329 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → (𝑡𝑊𝐽) ∈ (Base‘𝑃))
6429, 30ringcl 20153 . . . . . 6 ((𝑃 ∈ Ring ∧ (𝐼𝑈𝑡) ∈ (Base‘𝑃) ∧ (𝑡𝑊𝐽) ∈ (Base‘𝑃)) → ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)) ∈ (Base‘𝑃))
6556, 60, 63, 64syl3anc 1373 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)) ∈ (Base‘𝑃))
6665ralrimiva 3121 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → ∀𝑡𝑁 ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)) ∈ (Base‘𝑃))
673, 29, 2, 16, 66, 34coe1fzgsumd 22207 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → ((coe1‘(𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))‘𝐾) = (𝑅 Σg (𝑡𝑁 ↦ ((coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))‘𝐾))))
68 simpl1r 1226 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑅 ∈ Ring)
69 eqid 2729 . . . . . . . 8 (.r𝑅) = (.r𝑅)
703, 30, 69, 29coe1mul 22172 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐼𝑈𝑡) ∈ (Base‘𝑃) ∧ (𝑡𝑊𝐽) ∈ (Base‘𝑃)) → (coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙)))))))
7168, 60, 63, 70syl3anc 1373 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → (coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙)))))))
72 oveq2 7361 . . . . . . . . 9 (𝑘 = 𝐾 → (0...𝑘) = (0...𝐾))
73 fvoveq1 7376 . . . . . . . . . 10 (𝑘 = 𝐾 → ((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙)) = ((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙)))
7473oveq2d 7369 . . . . . . . . 9 (𝑘 = 𝐾 → (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙))) = (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))
7572, 74mpteq12dv 5182 . . . . . . . 8 (𝑘 = 𝐾 → (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙)))))
7675oveq2d 7369 . . . . . . 7 (𝑘 = 𝐾 → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))
7776adantl 481 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) ∧ 𝑘 = 𝐾) → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))
7816adantr 480 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝐾 ∈ ℕ0)
79 ovexd 7388 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))) ∈ V)
8071, 77, 78, 79fvmptd 6941 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → ((coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))‘𝐾) = (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))
8180mpteq2dva 5188 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝑡𝑁 ↦ ((coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))‘𝐾)) = (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙)))))))
8281oveq2d 7369 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝑅 Σg (𝑡𝑁 ↦ ((coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))‘𝐾))) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))))
8367, 82eqtrd 2764 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → ((coe1‘(𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))‘𝐾) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))))
8420, 55, 833eqtrd 2768 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝐽) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  cotp 4587  cmpt 5176   × cxp 5621  cfv 6486  (class class class)co 7353  m cmap 8760  Fincfn 8879  0cc0 11028  cmin 11365  0cn0 12402  ...cfz 13428  Basecbs 17138  .rcmulr 17180   Σg cgsu 17362  Ringcrg 20136  Poly1cpl1 22077  coe1cco1 22078   maMul cmmul 22293   Mat cmat 22310   decompPMat cdecpmat 22665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-subrng 20449  df-subrg 20473  df-lmod 20783  df-lss 20853  df-sra 21095  df-rgmod 21096  df-dsmm 21657  df-frlm 21672  df-psr 21834  df-mpl 21836  df-opsr 21838  df-psr1 22080  df-ply1 22082  df-coe1 22083  df-mamu 22294  df-mat 22311  df-decpmat 22666
This theorem is referenced by:  decpmatmul  22675
  Copyright terms: Public domain W3C validator