Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatmullem Structured version   Visualization version   GIF version

Theorem decpmatmullem 21373
 Description: Lemma for decpmatmul 21374. (Contributed by AV, 20-Oct-2019.) (Revised by AV, 3-Dec-2019.)
Hypotheses
Ref Expression
decpmatmul.p 𝑃 = (Poly1𝑅)
decpmatmul.c 𝐶 = (𝑁 Mat 𝑃)
decpmatmul.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
decpmatmullem (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝐽) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))))
Distinct variable groups:   𝑡,𝐵   𝐼,𝑙,𝑡   𝐽,𝑙,𝑡   𝐾,𝑙,𝑡   𝑡,𝑁   𝑡,𝑃   𝑅,𝑙,𝑡   𝑈,𝑙,𝑡   𝑊,𝑙,𝑡
Allowed substitution hints:   𝐵(𝑙)   𝐶(𝑡,𝑙)   𝑃(𝑙)   𝑁(𝑙)

Proof of Theorem decpmatmullem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
213ad2ant1 1129 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑅 ∈ Ring)
3 decpmatmul.p . . . . . . 7 𝑃 = (Poly1𝑅)
4 decpmatmul.c . . . . . . 7 𝐶 = (𝑁 Mat 𝑃)
53, 4pmatring 21295 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
65adantr 483 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝐶 ∈ Ring)
7 simpl 485 . . . . . 6 ((𝑈𝐵𝑊𝐵) → 𝑈𝐵)
87adantl 484 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝑈𝐵)
9 simpr 487 . . . . . 6 ((𝑈𝐵𝑊𝐵) → 𝑊𝐵)
109adantl 484 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝑊𝐵)
11 decpmatmul.b . . . . . 6 𝐵 = (Base‘𝐶)
12 eqid 2821 . . . . . 6 (.r𝐶) = (.r𝐶)
1311, 12ringcl 19305 . . . . 5 ((𝐶 ∈ Ring ∧ 𝑈𝐵𝑊𝐵) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
146, 8, 10, 13syl3anc 1367 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
15143adant3 1128 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
16 simp33 1207 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝐾 ∈ ℕ0)
17 3simpa 1144 . . . 4 ((𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0) → (𝐼𝑁𝐽𝑁))
18173ad2ant3 1131 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼𝑁𝐽𝑁))
193, 4, 11decpmate 21368 . . 3 (((𝑅 ∈ Ring ∧ (𝑈(.r𝐶)𝑊) ∈ 𝐵𝐾 ∈ ℕ0) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝐽) = ((coe1‘(𝐼(𝑈(.r𝐶)𝑊)𝐽))‘𝐾))
202, 15, 16, 18, 19syl31anc 1369 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝐽) = ((coe1‘(𝐼(𝑈(.r𝐶)𝑊)𝐽))‘𝐾))
213ply1ring 20410 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
22 eqid 2821 . . . . . . . . . . 11 (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩)
234, 22matmulr 21041 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐶))
2423eqcomd 2827 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → (.r𝐶) = (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩))
2521, 24sylan2 594 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (.r𝐶) = (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩))
26253ad2ant1 1129 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (.r𝐶) = (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩))
2726oveqd 7167 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝑈(.r𝐶)𝑊) = (𝑈(𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑊))
2827oveqd 7167 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼(𝑈(.r𝐶)𝑊)𝐽) = (𝐼(𝑈(𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑊)𝐽))
29 eqid 2821 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
30 eqid 2821 . . . . . 6 (.r𝑃) = (.r𝑃)
3121adantl 484 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring)
32313ad2ant1 1129 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑃 ∈ Ring)
33 simpl 485 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
34333ad2ant1 1129 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑁 ∈ Fin)
354, 29matbas2 21024 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → ((Base‘𝑃) ↑m (𝑁 × 𝑁)) = (Base‘𝐶))
3635, 11syl6reqr 2875 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐵 = ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
3721, 36sylan2 594 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐵 = ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
3837eleq2d 2898 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑈𝐵𝑈 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁))))
3938biimpcd 251 . . . . . . . . 9 (𝑈𝐵 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑈 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁))))
4039adantr 483 . . . . . . . 8 ((𝑈𝐵𝑊𝐵) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑈 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁))))
4140impcom 410 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝑈 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
42413adant3 1128 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑈 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
4321, 35sylan2 594 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑃) ↑m (𝑁 × 𝑁)) = (Base‘𝐶))
4443, 11syl6reqr 2875 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐵 = ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
4544eleq2d 2898 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑊𝐵𝑊 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁))))
4645biimpcd 251 . . . . . . . . 9 (𝑊𝐵 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑊 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁))))
4746adantl 484 . . . . . . . 8 ((𝑈𝐵𝑊𝐵) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑊 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁))))
4847impcom 410 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝑊 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
49483adant3 1128 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑊 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
50 simp31 1205 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝐼𝑁)
51 simp32 1206 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝐽𝑁)
5222, 29, 30, 32, 34, 34, 34, 42, 49, 50, 51mamufv 20992 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼(𝑈(𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑊)𝐽) = (𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))
5328, 52eqtrd 2856 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼(𝑈(.r𝐶)𝑊)𝐽) = (𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))
5453fveq2d 6668 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (coe1‘(𝐼(𝑈(.r𝐶)𝑊)𝐽)) = (coe1‘(𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽))))))
5554fveq1d 6666 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → ((coe1‘(𝐼(𝑈(.r𝐶)𝑊)𝐽))‘𝐾) = ((coe1‘(𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))‘𝐾))
5632adantr 483 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑃 ∈ Ring)
5750adantr 483 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝐼𝑁)
58 simpr 487 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑡𝑁)
59 simpl2l 1222 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑈𝐵)
604, 29, 11, 57, 58, 59matecld 21029 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → (𝐼𝑈𝑡) ∈ (Base‘𝑃))
6151adantr 483 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝐽𝑁)
62 simpl2r 1223 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑊𝐵)
634, 29, 11, 58, 61, 62matecld 21029 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → (𝑡𝑊𝐽) ∈ (Base‘𝑃))
6429, 30ringcl 19305 . . . . . 6 ((𝑃 ∈ Ring ∧ (𝐼𝑈𝑡) ∈ (Base‘𝑃) ∧ (𝑡𝑊𝐽) ∈ (Base‘𝑃)) → ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)) ∈ (Base‘𝑃))
6556, 60, 63, 64syl3anc 1367 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)) ∈ (Base‘𝑃))
6665ralrimiva 3182 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → ∀𝑡𝑁 ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)) ∈ (Base‘𝑃))
673, 29, 2, 16, 66, 34coe1fzgsumd 20464 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → ((coe1‘(𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))‘𝐾) = (𝑅 Σg (𝑡𝑁 ↦ ((coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))‘𝐾))))
68 simpl1r 1221 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑅 ∈ Ring)
69 eqid 2821 . . . . . . . 8 (.r𝑅) = (.r𝑅)
703, 30, 69, 29coe1mul 20432 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐼𝑈𝑡) ∈ (Base‘𝑃) ∧ (𝑡𝑊𝐽) ∈ (Base‘𝑃)) → (coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙)))))))
7168, 60, 63, 70syl3anc 1367 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → (coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙)))))))
72 oveq2 7158 . . . . . . . . 9 (𝑘 = 𝐾 → (0...𝑘) = (0...𝐾))
73 fvoveq1 7173 . . . . . . . . . 10 (𝑘 = 𝐾 → ((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙)) = ((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙)))
7473oveq2d 7166 . . . . . . . . 9 (𝑘 = 𝐾 → (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙))) = (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))
7572, 74mpteq12dv 5143 . . . . . . . 8 (𝑘 = 𝐾 → (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙)))))
7675oveq2d 7166 . . . . . . 7 (𝑘 = 𝐾 → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))
7776adantl 484 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) ∧ 𝑘 = 𝐾) → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))
7816adantr 483 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝐾 ∈ ℕ0)
79 ovexd 7185 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))) ∈ V)
8071, 77, 78, 79fvmptd 6769 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → ((coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))‘𝐾) = (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))
8180mpteq2dva 5153 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝑡𝑁 ↦ ((coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))‘𝐾)) = (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙)))))))
8281oveq2d 7166 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝑅 Σg (𝑡𝑁 ↦ ((coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))‘𝐾))) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))))
8367, 82eqtrd 2856 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → ((coe1‘(𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))‘𝐾) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))))
8420, 55, 833eqtrd 2860 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝐽) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   ∧ w3a 1083   = wceq 1533   ∈ wcel 2110  Vcvv 3494  ⟨cotp 4568   ↦ cmpt 5138   × cxp 5547  ‘cfv 6349  (class class class)co 7150   ↑m cmap 8400  Fincfn 8503  0cc0 10531   − cmin 10864  ℕ0cn0 11891  ...cfz 12886  Basecbs 16477  .rcmulr 16560   Σg cgsu 16708  Ringcrg 19291  Poly1cpl1 20339  coe1cco1 20340   maMul cmmul 20988   Mat cmat 21010   decompPMat cdecpmat 21364 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-ot 4569  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-ofr 7404  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-hom 16583  df-cco 16584  df-0g 16709  df-gsum 16710  df-prds 16715  df-pws 16717  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-ghm 18350  df-cntz 18441  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-subrg 19527  df-lmod 19630  df-lss 19698  df-sra 19938  df-rgmod 19939  df-psr 20130  df-mpl 20132  df-opsr 20134  df-psr1 20342  df-ply1 20344  df-coe1 20345  df-dsmm 20870  df-frlm 20885  df-mamu 20989  df-mat 21011  df-decpmat 21365 This theorem is referenced by:  decpmatmul  21374
 Copyright terms: Public domain W3C validator