MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatmullem Structured version   Visualization version   GIF version

Theorem decpmatmullem 20904
Description: Lemma for decpmatmul 20905. (Contributed by AV, 20-Oct-2019.) (Revised by AV, 3-Dec-2019.)
Hypotheses
Ref Expression
decpmatmul.p 𝑃 = (Poly1𝑅)
decpmatmul.c 𝐶 = (𝑁 Mat 𝑃)
decpmatmul.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
decpmatmullem (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝐽) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))))
Distinct variable groups:   𝑡,𝐵   𝐼,𝑙,𝑡   𝐽,𝑙,𝑡   𝐾,𝑙,𝑡   𝑡,𝑁   𝑡,𝑃   𝑅,𝑙,𝑡   𝑈,𝑙,𝑡   𝑊,𝑙,𝑡
Allowed substitution hints:   𝐵(𝑙)   𝐶(𝑡,𝑙)   𝑃(𝑙)   𝑁(𝑙)

Proof of Theorem decpmatmullem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpr 478 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
213ad2ant1 1164 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑅 ∈ Ring)
3 decpmatmul.p . . . . . . 7 𝑃 = (Poly1𝑅)
4 decpmatmul.c . . . . . . 7 𝐶 = (𝑁 Mat 𝑃)
53, 4pmatring 20826 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
65adantr 473 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝐶 ∈ Ring)
7 simpl 475 . . . . . 6 ((𝑈𝐵𝑊𝐵) → 𝑈𝐵)
87adantl 474 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝑈𝐵)
9 simpr 478 . . . . . 6 ((𝑈𝐵𝑊𝐵) → 𝑊𝐵)
109adantl 474 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝑊𝐵)
11 decpmatmul.b . . . . . 6 𝐵 = (Base‘𝐶)
12 eqid 2799 . . . . . 6 (.r𝐶) = (.r𝐶)
1311, 12ringcl 18877 . . . . 5 ((𝐶 ∈ Ring ∧ 𝑈𝐵𝑊𝐵) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
146, 8, 10, 13syl3anc 1491 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
15143adant3 1163 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
16 simp33 1269 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝐾 ∈ ℕ0)
17 3simpa 1179 . . . 4 ((𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0) → (𝐼𝑁𝐽𝑁))
18173ad2ant3 1166 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼𝑁𝐽𝑁))
193, 4, 11decpmate 20899 . . 3 (((𝑅 ∈ Ring ∧ (𝑈(.r𝐶)𝑊) ∈ 𝐵𝐾 ∈ ℕ0) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝐽) = ((coe1‘(𝐼(𝑈(.r𝐶)𝑊)𝐽))‘𝐾))
202, 15, 16, 18, 19syl31anc 1493 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝐽) = ((coe1‘(𝐼(𝑈(.r𝐶)𝑊)𝐽))‘𝐾))
213ply1ring 19940 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
22 eqid 2799 . . . . . . . . . . 11 (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩)
234, 22matmulr 20569 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐶))
2423eqcomd 2805 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → (.r𝐶) = (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩))
2521, 24sylan2 587 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (.r𝐶) = (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩))
26253ad2ant1 1164 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (.r𝐶) = (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩))
2726oveqd 6895 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝑈(.r𝐶)𝑊) = (𝑈(𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑊))
2827oveqd 6895 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼(𝑈(.r𝐶)𝑊)𝐽) = (𝐼(𝑈(𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑊)𝐽))
29 eqid 2799 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
30 eqid 2799 . . . . . 6 (.r𝑃) = (.r𝑃)
3121adantl 474 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring)
32313ad2ant1 1164 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑃 ∈ Ring)
33 simpl 475 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
34333ad2ant1 1164 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑁 ∈ Fin)
354, 29matbas2 20552 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐶))
3635, 11syl6reqr 2852 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐵 = ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁)))
3721, 36sylan2 587 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐵 = ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁)))
3837eleq2d 2864 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑈𝐵𝑈 ∈ ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁))))
3938biimpcd 241 . . . . . . . . 9 (𝑈𝐵 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑈 ∈ ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁))))
4039adantr 473 . . . . . . . 8 ((𝑈𝐵𝑊𝐵) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑈 ∈ ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁))))
4140impcom 397 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝑈 ∈ ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁)))
42413adant3 1163 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑈 ∈ ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁)))
4321, 35sylan2 587 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐶))
4443, 11syl6reqr 2852 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐵 = ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁)))
4544eleq2d 2864 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑊𝐵𝑊 ∈ ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁))))
4645biimpcd 241 . . . . . . . . 9 (𝑊𝐵 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑊 ∈ ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁))))
4746adantl 474 . . . . . . . 8 ((𝑈𝐵𝑊𝐵) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑊 ∈ ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁))))
4847impcom 397 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝑊 ∈ ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁)))
49483adant3 1163 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑊 ∈ ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁)))
50 simp31 1267 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝐼𝑁)
51 simp32 1268 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝐽𝑁)
5222, 29, 30, 32, 34, 34, 34, 42, 49, 50, 51mamufv 20518 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼(𝑈(𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑊)𝐽) = (𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))
5328, 52eqtrd 2833 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼(𝑈(.r𝐶)𝑊)𝐽) = (𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))
5453fveq2d 6415 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (coe1‘(𝐼(𝑈(.r𝐶)𝑊)𝐽)) = (coe1‘(𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽))))))
5554fveq1d 6413 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → ((coe1‘(𝐼(𝑈(.r𝐶)𝑊)𝐽))‘𝐾) = ((coe1‘(𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))‘𝐾))
5632adantr 473 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑃 ∈ Ring)
5750adantr 473 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝐼𝑁)
58 simpr 478 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑡𝑁)
59 simpl2l 1298 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑈𝐵)
604, 29, 11, 57, 58, 59matecld 20557 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → (𝐼𝑈𝑡) ∈ (Base‘𝑃))
6151adantr 473 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝐽𝑁)
62 simpl2r 1300 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑊𝐵)
634, 29, 11, 58, 61, 62matecld 20557 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → (𝑡𝑊𝐽) ∈ (Base‘𝑃))
6429, 30ringcl 18877 . . . . . 6 ((𝑃 ∈ Ring ∧ (𝐼𝑈𝑡) ∈ (Base‘𝑃) ∧ (𝑡𝑊𝐽) ∈ (Base‘𝑃)) → ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)) ∈ (Base‘𝑃))
6556, 60, 63, 64syl3anc 1491 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)) ∈ (Base‘𝑃))
6665ralrimiva 3147 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → ∀𝑡𝑁 ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)) ∈ (Base‘𝑃))
673, 29, 2, 16, 66, 34coe1fzgsumd 19994 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → ((coe1‘(𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))‘𝐾) = (𝑅 Σg (𝑡𝑁 ↦ ((coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))‘𝐾))))
68 simpl1r 1296 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑅 ∈ Ring)
69 eqid 2799 . . . . . . . 8 (.r𝑅) = (.r𝑅)
703, 30, 69, 29coe1mul 19962 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐼𝑈𝑡) ∈ (Base‘𝑃) ∧ (𝑡𝑊𝐽) ∈ (Base‘𝑃)) → (coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙)))))))
7168, 60, 63, 70syl3anc 1491 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → (coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙)))))))
72 oveq2 6886 . . . . . . . . 9 (𝑘 = 𝐾 → (0...𝑘) = (0...𝐾))
73 fvoveq1 6901 . . . . . . . . . 10 (𝑘 = 𝐾 → ((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙)) = ((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙)))
7473oveq2d 6894 . . . . . . . . 9 (𝑘 = 𝐾 → (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙))) = (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))
7572, 74mpteq12dv 4926 . . . . . . . 8 (𝑘 = 𝐾 → (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙)))))
7675oveq2d 6894 . . . . . . 7 (𝑘 = 𝐾 → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))
7776adantl 474 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) ∧ 𝑘 = 𝐾) → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))
7816adantr 473 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝐾 ∈ ℕ0)
79 ovexd 6912 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))) ∈ V)
8071, 77, 78, 79fvmptd 6513 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → ((coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))‘𝐾) = (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))
8180mpteq2dva 4937 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝑡𝑁 ↦ ((coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))‘𝐾)) = (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙)))))))
8281oveq2d 6894 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝑅 Σg (𝑡𝑁 ↦ ((coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))‘𝐾))) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))))
8367, 82eqtrd 2833 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → ((coe1‘(𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))‘𝐾) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))))
8420, 55, 833eqtrd 2837 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝐽) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  Vcvv 3385  cotp 4376  cmpt 4922   × cxp 5310  cfv 6101  (class class class)co 6878  𝑚 cmap 8095  Fincfn 8195  0cc0 10224  cmin 10556  0cn0 11580  ...cfz 12580  Basecbs 16184  .rcmulr 16268   Σg cgsu 16416  Ringcrg 18863  Poly1cpl1 19869  coe1cco1 19870   maMul cmmul 20514   Mat cmat 20538   decompPMat cdecpmat 20895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-ot 4377  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-ofr 7132  df-om 7300  df-1st 7401  df-2nd 7402  df-supp 7533  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-map 8097  df-pm 8098  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-sup 8590  df-oi 8657  df-card 9051  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-fz 12581  df-fzo 12721  df-seq 13056  df-hash 13371  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-sca 16283  df-vsca 16284  df-ip 16285  df-tset 16286  df-ple 16287  df-ds 16289  df-hom 16291  df-cco 16292  df-0g 16417  df-gsum 16418  df-prds 16423  df-pws 16425  df-mre 16561  df-mrc 16562  df-acs 16564  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-mhm 17650  df-submnd 17651  df-grp 17741  df-minusg 17742  df-sbg 17743  df-mulg 17857  df-subg 17904  df-ghm 17971  df-cntz 18062  df-cmn 18510  df-abl 18511  df-mgp 18806  df-ur 18818  df-ring 18865  df-subrg 19096  df-lmod 19183  df-lss 19251  df-sra 19495  df-rgmod 19496  df-psr 19679  df-mpl 19681  df-opsr 19683  df-psr1 19872  df-ply1 19874  df-coe1 19875  df-dsmm 20401  df-frlm 20416  df-mamu 20515  df-mat 20539  df-decpmat 20896
This theorem is referenced by:  decpmatmul  20905
  Copyright terms: Public domain W3C validator