MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatmullem Structured version   Visualization version   GIF version

Theorem decpmatmullem 22793
Description: Lemma for decpmatmul 22794. (Contributed by AV, 20-Oct-2019.) (Revised by AV, 3-Dec-2019.)
Hypotheses
Ref Expression
decpmatmul.p 𝑃 = (Poly1𝑅)
decpmatmul.c 𝐶 = (𝑁 Mat 𝑃)
decpmatmul.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
decpmatmullem (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝐽) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))))
Distinct variable groups:   𝑡,𝐵   𝐼,𝑙,𝑡   𝐽,𝑙,𝑡   𝐾,𝑙,𝑡   𝑡,𝑁   𝑡,𝑃   𝑅,𝑙,𝑡   𝑈,𝑙,𝑡   𝑊,𝑙,𝑡
Allowed substitution hints:   𝐵(𝑙)   𝐶(𝑡,𝑙)   𝑃(𝑙)   𝑁(𝑙)

Proof of Theorem decpmatmullem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
213ad2ant1 1132 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑅 ∈ Ring)
3 decpmatmul.p . . . . . . 7 𝑃 = (Poly1𝑅)
4 decpmatmul.c . . . . . . 7 𝐶 = (𝑁 Mat 𝑃)
53, 4pmatring 22714 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
65adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝐶 ∈ Ring)
7 simpl 482 . . . . . 6 ((𝑈𝐵𝑊𝐵) → 𝑈𝐵)
87adantl 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝑈𝐵)
9 simpr 484 . . . . . 6 ((𝑈𝐵𝑊𝐵) → 𝑊𝐵)
109adantl 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝑊𝐵)
11 decpmatmul.b . . . . . 6 𝐵 = (Base‘𝐶)
12 eqid 2735 . . . . . 6 (.r𝐶) = (.r𝐶)
1311, 12ringcl 20268 . . . . 5 ((𝐶 ∈ Ring ∧ 𝑈𝐵𝑊𝐵) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
146, 8, 10, 13syl3anc 1370 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
15143adant3 1131 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
16 simp33 1210 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝐾 ∈ ℕ0)
17 3simpa 1147 . . . 4 ((𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0) → (𝐼𝑁𝐽𝑁))
18173ad2ant3 1134 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼𝑁𝐽𝑁))
193, 4, 11decpmate 22788 . . 3 (((𝑅 ∈ Ring ∧ (𝑈(.r𝐶)𝑊) ∈ 𝐵𝐾 ∈ ℕ0) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝐽) = ((coe1‘(𝐼(𝑈(.r𝐶)𝑊)𝐽))‘𝐾))
202, 15, 16, 18, 19syl31anc 1372 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝐽) = ((coe1‘(𝐼(𝑈(.r𝐶)𝑊)𝐽))‘𝐾))
213ply1ring 22265 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
22 eqid 2735 . . . . . . . . . . 11 (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩)
234, 22matmulr 22460 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐶))
2423eqcomd 2741 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → (.r𝐶) = (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩))
2521, 24sylan2 593 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (.r𝐶) = (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩))
26253ad2ant1 1132 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (.r𝐶) = (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩))
2726oveqd 7448 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝑈(.r𝐶)𝑊) = (𝑈(𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑊))
2827oveqd 7448 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼(𝑈(.r𝐶)𝑊)𝐽) = (𝐼(𝑈(𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑊)𝐽))
29 eqid 2735 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
30 eqid 2735 . . . . . 6 (.r𝑃) = (.r𝑃)
3121adantl 481 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring)
32313ad2ant1 1132 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑃 ∈ Ring)
33 simpl 482 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
34333ad2ant1 1132 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑁 ∈ Fin)
354, 29matbas2 22443 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → ((Base‘𝑃) ↑m (𝑁 × 𝑁)) = (Base‘𝐶))
3611, 35eqtr4id 2794 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐵 = ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
3721, 36sylan2 593 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐵 = ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
3837eleq2d 2825 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑈𝐵𝑈 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁))))
3938biimpcd 249 . . . . . . . . 9 (𝑈𝐵 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑈 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁))))
4039adantr 480 . . . . . . . 8 ((𝑈𝐵𝑊𝐵) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑈 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁))))
4140impcom 407 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝑈 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
42413adant3 1131 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑈 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
4321, 35sylan2 593 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑃) ↑m (𝑁 × 𝑁)) = (Base‘𝐶))
4411, 43eqtr4id 2794 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐵 = ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
4544eleq2d 2825 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑊𝐵𝑊 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁))))
4645biimpcd 249 . . . . . . . . 9 (𝑊𝐵 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑊 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁))))
4746adantl 481 . . . . . . . 8 ((𝑈𝐵𝑊𝐵) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑊 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁))))
4847impcom 407 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝑊 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
49483adant3 1131 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑊 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
50 simp31 1208 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝐼𝑁)
51 simp32 1209 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝐽𝑁)
5222, 29, 30, 32, 34, 34, 34, 42, 49, 50, 51mamufv 22414 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼(𝑈(𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑊)𝐽) = (𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))
5328, 52eqtrd 2775 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼(𝑈(.r𝐶)𝑊)𝐽) = (𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))
5453fveq2d 6911 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (coe1‘(𝐼(𝑈(.r𝐶)𝑊)𝐽)) = (coe1‘(𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽))))))
5554fveq1d 6909 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → ((coe1‘(𝐼(𝑈(.r𝐶)𝑊)𝐽))‘𝐾) = ((coe1‘(𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))‘𝐾))
5632adantr 480 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑃 ∈ Ring)
5750adantr 480 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝐼𝑁)
58 simpr 484 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑡𝑁)
59 simpl2l 1225 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑈𝐵)
604, 29, 11, 57, 58, 59matecld 22448 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → (𝐼𝑈𝑡) ∈ (Base‘𝑃))
6151adantr 480 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝐽𝑁)
62 simpl2r 1226 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑊𝐵)
634, 29, 11, 58, 61, 62matecld 22448 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → (𝑡𝑊𝐽) ∈ (Base‘𝑃))
6429, 30ringcl 20268 . . . . . 6 ((𝑃 ∈ Ring ∧ (𝐼𝑈𝑡) ∈ (Base‘𝑃) ∧ (𝑡𝑊𝐽) ∈ (Base‘𝑃)) → ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)) ∈ (Base‘𝑃))
6556, 60, 63, 64syl3anc 1370 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)) ∈ (Base‘𝑃))
6665ralrimiva 3144 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → ∀𝑡𝑁 ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)) ∈ (Base‘𝑃))
673, 29, 2, 16, 66, 34coe1fzgsumd 22324 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → ((coe1‘(𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))‘𝐾) = (𝑅 Σg (𝑡𝑁 ↦ ((coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))‘𝐾))))
68 simpl1r 1224 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑅 ∈ Ring)
69 eqid 2735 . . . . . . . 8 (.r𝑅) = (.r𝑅)
703, 30, 69, 29coe1mul 22289 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐼𝑈𝑡) ∈ (Base‘𝑃) ∧ (𝑡𝑊𝐽) ∈ (Base‘𝑃)) → (coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙)))))))
7168, 60, 63, 70syl3anc 1370 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → (coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙)))))))
72 oveq2 7439 . . . . . . . . 9 (𝑘 = 𝐾 → (0...𝑘) = (0...𝐾))
73 fvoveq1 7454 . . . . . . . . . 10 (𝑘 = 𝐾 → ((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙)) = ((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙)))
7473oveq2d 7447 . . . . . . . . 9 (𝑘 = 𝐾 → (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙))) = (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))
7572, 74mpteq12dv 5239 . . . . . . . 8 (𝑘 = 𝐾 → (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙)))))
7675oveq2d 7447 . . . . . . 7 (𝑘 = 𝐾 → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))
7776adantl 481 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) ∧ 𝑘 = 𝐾) → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))
7816adantr 480 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝐾 ∈ ℕ0)
79 ovexd 7466 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))) ∈ V)
8071, 77, 78, 79fvmptd 7023 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → ((coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))‘𝐾) = (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))
8180mpteq2dva 5248 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝑡𝑁 ↦ ((coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))‘𝐾)) = (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙)))))))
8281oveq2d 7447 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝑅 Σg (𝑡𝑁 ↦ ((coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))‘𝐾))) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))))
8367, 82eqtrd 2775 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → ((coe1‘(𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))‘𝐾) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))))
8420, 55, 833eqtrd 2779 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝐽) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  cotp 4639  cmpt 5231   × cxp 5687  cfv 6563  (class class class)co 7431  m cmap 8865  Fincfn 8984  0cc0 11153  cmin 11490  0cn0 12524  ...cfz 13544  Basecbs 17245  .rcmulr 17299   Σg cgsu 17487  Ringcrg 20251  Poly1cpl1 22194  coe1cco1 22195   maMul cmmul 22410   Mat cmat 22427   decompPMat cdecpmat 22784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-subrng 20563  df-subrg 20587  df-lmod 20877  df-lss 20948  df-sra 21190  df-rgmod 21191  df-dsmm 21770  df-frlm 21785  df-psr 21947  df-mpl 21949  df-opsr 21951  df-psr1 22197  df-ply1 22199  df-coe1 22200  df-mamu 22411  df-mat 22428  df-decpmat 22785
This theorem is referenced by:  decpmatmul  22794
  Copyright terms: Public domain W3C validator