MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdsbslen Structured version   Visualization version   GIF version

Theorem swrdsbslen 14605
Description: Two subwords with the same bounds have the same length. (Contributed by AV, 4-May-2020.)
Assertion
Ref Expression
swrdsbslen (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩)))

Proof of Theorem swrdsbslen
StepHypRef Expression
1 simpr1 1195 . . . 4 ((𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)))) → (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉))
2 simpr2 1196 . . . 4 ((𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)))) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))
3 simpl 482 . . . 4 ((𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)))) → 𝑁𝑀)
4 swrdsb0eq 14604 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝑀) → (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩))
51, 2, 3, 4syl3anc 1373 . . 3 ((𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)))) → (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩))
65fveq2d 6844 . 2 ((𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)))) → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩)))
7 nn0re 12427 . . . . . 6 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
8 nn0re 12427 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
9 ltnle 11229 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 ↔ ¬ 𝑁𝑀))
10 ltle 11238 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁𝑀𝑁))
119, 10sylbird 260 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (¬ 𝑁𝑀𝑀𝑁))
127, 8, 11syl2an 596 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁𝑀𝑀𝑁))
13123ad2ant2 1134 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (¬ 𝑁𝑀𝑀𝑁))
14 simpl1l 1225 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → 𝑊 ∈ Word 𝑉)
15 simpl2l 1227 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → 𝑀 ∈ ℕ0)
16 nn0z 12530 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
17 nn0z 12530 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
1816, 17anim12i 613 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
19183ad2ant2 1134 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2019anim1i 615 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁))
21 df-3an 1088 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁))
2220, 21sylibr 234 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
23 eluz2 12775 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
2422, 23sylibr 234 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → 𝑁 ∈ (ℤ𝑀))
25 simpl3l 1229 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → 𝑁 ≤ (♯‘𝑊))
26 swrdlen2 14601 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ 𝑁 ≤ (♯‘𝑊)) → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (𝑁𝑀))
2714, 15, 24, 25, 26syl121anc 1377 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (𝑁𝑀))
28 simpl1r 1226 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → 𝑈 ∈ Word 𝑉)
29 simpl3r 1230 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → 𝑁 ≤ (♯‘𝑈))
30 swrdlen2 14601 . . . . . . 7 ((𝑈 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ 𝑁 ≤ (♯‘𝑈)) → (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩)) = (𝑁𝑀))
3128, 15, 24, 29, 30syl121anc 1377 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩)) = (𝑁𝑀))
3227, 31eqtr4d 2767 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩)))
3332ex 412 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑀𝑁 → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩))))
3413, 33syld 47 . . 3 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (¬ 𝑁𝑀 → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩))))
3534impcom 407 . 2 ((¬ 𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)))) → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩)))
366, 35pm2.61ian 811 1 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4591   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043   < clt 11184  cle 11185  cmin 11381  0cn0 12418  cz 12505  cuz 12769  chash 14271  Word cword 14454   substr csubstr 14581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-substr 14582
This theorem is referenced by:  swrdspsleq  14606
  Copyright terms: Public domain W3C validator