Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk39s-id Structured version   Visualization version   GIF version

Theorem cdlemk39s-id 38148
Description: Substitution version of cdlemk39 38124 with non-identity requirement on 𝐺 removed. TODO: Can any commonality with cdlemk35s 38145 be exploited? (Contributed by NM, 26-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdlemk5.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
Assertion
Ref Expression
cdlemk39s-id (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑅𝐺 / 𝑔𝑋) (𝑅𝐺))
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝐺,𝑧   ,𝑏,𝑧   ,𝑏   𝑧,𝑔,   ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝑧,𝐺   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑔,𝑧   𝑧,𝑌   𝐺,𝑏
Allowed substitution hints:   𝑋(𝑧,𝑔,𝑏)   𝑌(𝑔,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk39s-id
StepHypRef Expression
1 simpl1 1188 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp21l 1287 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐹𝑇)
3 simp23 1205 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝑁𝑇)
4 simp3r 1199 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑅𝐹) = (𝑅𝑁))
52, 3, 43jca 1125 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)))
65adantr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)))
7 simpl3l 1225 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8 simpr 488 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → 𝐺 = ( I ↾ 𝐵))
9 cdlemk5.b . . . . . . 7 𝐵 = (Base‘𝐾)
10 cdlemk5.l . . . . . . 7 = (le‘𝐾)
11 cdlemk5.j . . . . . . 7 = (join‘𝐾)
12 cdlemk5.m . . . . . . 7 = (meet‘𝐾)
13 cdlemk5.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
14 cdlemk5.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
15 cdlemk5.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
16 cdlemk5.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
17 cdlemk5.z . . . . . . 7 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
18 cdlemk5.y . . . . . . 7 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
19 cdlemk5.x . . . . . . 7 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
209, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19cdlemkid 38144 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → 𝐺 / 𝑔𝑋 = ( I ↾ 𝐵))
211, 6, 7, 8, 20syl112anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → 𝐺 / 𝑔𝑋 = ( I ↾ 𝐵))
2221fveq2d 6663 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → (𝑅𝐺 / 𝑔𝑋) = (𝑅‘( I ↾ 𝐵)))
23 simpl1l 1221 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → 𝐾 ∈ HL)
24 simpl1r 1222 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → 𝑊𝐻)
25 eqid 2824 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
269, 25, 14, 16trlid0 37384 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾))
2723, 24, 26syl2anc 587 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾))
2822, 27eqtrd 2859 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → (𝑅𝐺 / 𝑔𝑋) = (0.‘𝐾))
29 hlop 36570 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
3023, 29syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → 𝐾 ∈ OP)
31 simpl22 1249 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → 𝐺𝑇)
329, 14, 15, 16trlcl 37372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ 𝐵)
331, 31, 32syl2anc 587 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → (𝑅𝐺) ∈ 𝐵)
349, 10, 25op0le 36394 . . . 4 ((𝐾 ∈ OP ∧ (𝑅𝐺) ∈ 𝐵) → (0.‘𝐾) (𝑅𝐺))
3530, 33, 34syl2anc 587 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → (0.‘𝐾) (𝑅𝐺))
3628, 35eqbrtrd 5075 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 = ( I ↾ 𝐵)) → (𝑅𝐺 / 𝑔𝑋) (𝑅𝐺))
37 simpl1 1188 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 ≠ ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
38 simpl21 1248 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 ≠ ( I ↾ 𝐵)) → (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)))
39 simpl22 1249 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 ≠ ( I ↾ 𝐵)) → 𝐺𝑇)
40 simpr 488 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 ≠ ( I ↾ 𝐵)) → 𝐺 ≠ ( I ↾ 𝐵))
4139, 40jca 515 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 ≠ ( I ↾ 𝐵)) → (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)))
42 simpl23 1250 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 ≠ ( I ↾ 𝐵)) → 𝑁𝑇)
43 simpl3 1190 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 ≠ ( I ↾ 𝐵)) → ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)))
449, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19cdlemk39s 38147 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑅𝐺 / 𝑔𝑋) (𝑅𝐺))
4537, 38, 41, 42, 43, 44syl131anc 1380 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝐺 ≠ ( I ↾ 𝐵)) → (𝑅𝐺 / 𝑔𝑋) (𝑅𝐺))
4636, 45pm2.61dane 3101 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑅𝐺 / 𝑔𝑋) (𝑅𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wral 3133  csb 3866   class class class wbr 5053   I cid 5447  ccnv 5542  cres 5545  ccom 5547  cfv 6344  crio 7103  (class class class)co 7146  Basecbs 16481  lecple 16570  joincjn 17552  meetcmee 17553  0.cp0 17645  OPcops 36380  Atomscatm 36471  HLchlt 36558  LHypclh 37192  LTrncltrn 37309  trLctrl 37366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-riotaBAD 36161
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-iun 4908  df-iin 4909  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-1st 7681  df-2nd 7682  df-undef 7931  df-map 8400  df-proset 17536  df-poset 17554  df-plt 17566  df-lub 17582  df-glb 17583  df-join 17584  df-meet 17585  df-p0 17647  df-p1 17648  df-lat 17654  df-clat 17716  df-oposet 36384  df-ol 36386  df-oml 36387  df-covers 36474  df-ats 36475  df-atl 36506  df-cvlat 36530  df-hlat 36559  df-llines 36706  df-lplanes 36707  df-lvols 36708  df-lines 36709  df-psubsp 36711  df-pmap 36712  df-padd 37004  df-lhyp 37196  df-laut 37197  df-ldil 37312  df-ltrn 37313  df-trl 37367
This theorem is referenced by:  cdlemk39u1  38175
  Copyright terms: Public domain W3C validator