Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemefr27cl | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. Closure of 𝑁. (Contributed by NM, 23-Mar-2013.) |
Ref | Expression |
---|---|
cdlemefr27.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemefr27.l | ⊢ ≤ = (le‘𝐾) |
cdlemefr27.j | ⊢ ∨ = (join‘𝐾) |
cdlemefr27.m | ⊢ ∧ = (meet‘𝐾) |
cdlemefr27.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemefr27.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemefr27.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
cdlemefr27.c | ⊢ 𝐶 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
cdlemefr27.n | ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐶) |
Ref | Expression |
---|---|
cdlemefr27cl | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) → 𝑁 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemefr27.n | . . 3 ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐶) | |
2 | simpr2 1197 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) → ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) | |
3 | 2 | iffalsed 4450 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) → if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐶) = 𝐶) |
4 | 1, 3 | syl5eq 2790 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) → 𝑁 = 𝐶) |
5 | simpl1l 1226 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) → 𝐾 ∈ HL) | |
6 | simpl1r 1227 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) → 𝑊 ∈ 𝐻) | |
7 | simpl2 1194 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) → 𝑃 ∈ 𝐴) | |
8 | simpl3 1195 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) → 𝑄 ∈ 𝐴) | |
9 | simpr1 1196 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) → 𝑠 ∈ 𝐴) | |
10 | cdlemefr27.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
11 | cdlemefr27.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
12 | cdlemefr27.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
13 | cdlemefr27.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
14 | cdlemefr27.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
15 | cdlemefr27.u | . . . 4 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
16 | cdlemefr27.c | . . . 4 ⊢ 𝐶 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) | |
17 | cdlemefr27.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
18 | 10, 11, 12, 13, 14, 15, 16, 17 | cdleme1b 37977 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) → 𝐶 ∈ 𝐵) |
19 | 5, 6, 7, 8, 9, 18 | syl23anc 1379 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) → 𝐶 ∈ 𝐵) |
20 | 4, 19 | eqeltrd 2838 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) → 𝑁 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ifcif 4439 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 lecple 16809 joincjn 17818 meetcmee 17819 Atomscatm 37014 HLchlt 37101 LHypclh 37735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-lub 17852 df-glb 17853 df-join 17854 df-meet 17855 df-lat 17938 df-ats 37018 df-atl 37049 df-cvlat 37073 df-hlat 37102 df-lhyp 37739 |
This theorem is referenced by: cdlemefr29bpre0N 38157 cdlemefr29clN 38158 cdlemefr32fvaN 38160 cdlemefr32fva1 38161 |
Copyright terms: Public domain | W3C validator |