Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefr27cl Structured version   Visualization version   GIF version

Theorem cdlemefr27cl 38895
Description: Part of proof of Lemma E in [Crawley] p. 113. Closure of 𝑁. (Contributed by NM, 23-Mar-2013.)
Hypotheses
Ref Expression
cdlemefr27.b 𝐡 = (Baseβ€˜πΎ)
cdlemefr27.l ≀ = (leβ€˜πΎ)
cdlemefr27.j ∨ = (joinβ€˜πΎ)
cdlemefr27.m ∧ = (meetβ€˜πΎ)
cdlemefr27.a 𝐴 = (Atomsβ€˜πΎ)
cdlemefr27.h 𝐻 = (LHypβ€˜πΎ)
cdlemefr27.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdlemefr27.c 𝐢 = ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š)))
cdlemefr27.n 𝑁 = if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, 𝐢)
Assertion
Ref Expression
cdlemefr27cl ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ 𝑁 ∈ 𝐡)

Proof of Theorem cdlemefr27cl
StepHypRef Expression
1 cdlemefr27.n . . 3 𝑁 = if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, 𝐢)
2 simpr2 1196 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄))
32iffalsed 4502 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, 𝐢) = 𝐢)
41, 3eqtrid 2789 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ 𝑁 = 𝐢)
5 simpl1l 1225 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ 𝐾 ∈ HL)
6 simpl1r 1226 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ π‘Š ∈ 𝐻)
7 simpl2 1193 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ 𝑃 ∈ 𝐴)
8 simpl3 1194 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ 𝑄 ∈ 𝐴)
9 simpr1 1195 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ 𝑠 ∈ 𝐴)
10 cdlemefr27.l . . . 4 ≀ = (leβ€˜πΎ)
11 cdlemefr27.j . . . 4 ∨ = (joinβ€˜πΎ)
12 cdlemefr27.m . . . 4 ∧ = (meetβ€˜πΎ)
13 cdlemefr27.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
14 cdlemefr27.h . . . 4 𝐻 = (LHypβ€˜πΎ)
15 cdlemefr27.u . . . 4 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
16 cdlemefr27.c . . . 4 𝐢 = ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š)))
17 cdlemefr27.b . . . 4 𝐡 = (Baseβ€˜πΎ)
1810, 11, 12, 13, 14, 15, 16, 17cdleme1b 38718 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) β†’ 𝐢 ∈ 𝐡)
195, 6, 7, 8, 9, 18syl23anc 1378 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ 𝐢 ∈ 𝐡)
204, 19eqeltrd 2838 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ 𝑁 ∈ 𝐡)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2944  ifcif 4491   class class class wbr 5110  β€˜cfv 6501  (class class class)co 7362  Basecbs 17090  lecple 17147  joincjn 18207  meetcmee 18208  Atomscatm 37754  HLchlt 37841  LHypclh 38476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-lub 18242  df-glb 18243  df-join 18244  df-meet 18245  df-lat 18328  df-ats 37758  df-atl 37789  df-cvlat 37813  df-hlat 37842  df-lhyp 38480
This theorem is referenced by:  cdlemefr29bpre0N  38898  cdlemefr29clN  38899  cdlemefr32fvaN  38901  cdlemefr32fva1  38902
  Copyright terms: Public domain W3C validator