Proof of Theorem lhpmcvr3
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl1l 1224 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → 𝐾 ∈ HL) | 
| 2 |  | simpl3l 1228 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → 𝑃 ∈ 𝐴) | 
| 3 |  | simpl2l 1226 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → 𝑋 ∈ 𝐵) | 
| 4 |  | simpl1r 1225 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → 𝑊 ∈ 𝐻) | 
| 5 |  | lhpmcvr2.b | . . . . . 6
⊢ 𝐵 = (Base‘𝐾) | 
| 6 |  | lhpmcvr2.h | . . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) | 
| 7 | 5, 6 | lhpbase 40001 | . . . . 5
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) | 
| 8 | 4, 7 | syl 17 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → 𝑊 ∈ 𝐵) | 
| 9 |  | simpr 484 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → 𝑃 ≤ 𝑋) | 
| 10 |  | lhpmcvr2.l | . . . . 5
⊢  ≤ =
(le‘𝐾) | 
| 11 |  | lhpmcvr2.j | . . . . 5
⊢  ∨ =
(join‘𝐾) | 
| 12 |  | lhpmcvr2.m | . . . . 5
⊢  ∧ =
(meet‘𝐾) | 
| 13 |  | lhpmcvr2.a | . . . . 5
⊢ 𝐴 = (Atoms‘𝐾) | 
| 14 | 5, 10, 11, 12, 13 | atmod3i1 39867 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑋 ∧ 𝑊)) = (𝑋 ∧ (𝑃 ∨ 𝑊))) | 
| 15 | 1, 2, 3, 8, 9, 14 | syl131anc 1384 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑋 ∧ 𝑊)) = (𝑋 ∧ (𝑃 ∨ 𝑊))) | 
| 16 |  | simpl1 1191 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 17 |  | simpl3 1193 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 18 |  | eqid 2736 | . . . . . 6
⊢
(1.‘𝐾) =
(1.‘𝐾) | 
| 19 | 10, 11, 18, 13, 6 | lhpjat2 40024 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ 𝑊) = (1.‘𝐾)) | 
| 20 | 16, 17, 19 | syl2anc 584 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ 𝑊) = (1.‘𝐾)) | 
| 21 | 20 | oveq2d 7448 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → (𝑋 ∧ (𝑃 ∨ 𝑊)) = (𝑋 ∧ (1.‘𝐾))) | 
| 22 |  | hlol 39363 | . . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | 
| 23 | 1, 22 | syl 17 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → 𝐾 ∈ OL) | 
| 24 | 5, 12, 18 | olm11 39229 | . . . 4
⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ (1.‘𝐾)) = 𝑋) | 
| 25 | 23, 3, 24 | syl2anc 584 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → (𝑋 ∧ (1.‘𝐾)) = 𝑋) | 
| 26 | 15, 21, 25 | 3eqtrd 2780 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) | 
| 27 |  | simpl1l 1224 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝐾 ∈ HL) | 
| 28 | 27 | hllatd 39366 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝐾 ∈ Lat) | 
| 29 |  | simpl3l 1228 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑃 ∈ 𝐴) | 
| 30 | 5, 13 | atbase 39291 | . . . . 5
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) | 
| 31 | 29, 30 | syl 17 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑃 ∈ 𝐵) | 
| 32 |  | simpl2l 1226 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑋 ∈ 𝐵) | 
| 33 |  | simpl1r 1225 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑊 ∈ 𝐻) | 
| 34 | 33, 7 | syl 17 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑊 ∈ 𝐵) | 
| 35 | 5, 12 | latmcl 18486 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) | 
| 36 | 28, 32, 34, 35 | syl3anc 1372 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → (𝑋 ∧ 𝑊) ∈ 𝐵) | 
| 37 | 5, 10, 11 | latlej1 18494 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ∈ 𝐵) → 𝑃 ≤ (𝑃 ∨ (𝑋 ∧ 𝑊))) | 
| 38 | 28, 31, 36, 37 | syl3anc 1372 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑃 ≤ (𝑃 ∨ (𝑋 ∧ 𝑊))) | 
| 39 |  | simpr 484 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) | 
| 40 | 38, 39 | breqtrd 5168 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑃 ≤ 𝑋) | 
| 41 | 26, 40 | impbida 800 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ≤ 𝑋 ↔ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |