Proof of Theorem lhpmcvr3
Step | Hyp | Ref
| Expression |
1 | | simpl1l 1223 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → 𝐾 ∈ HL) |
2 | | simpl3l 1227 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → 𝑃 ∈ 𝐴) |
3 | | simpl2l 1225 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → 𝑋 ∈ 𝐵) |
4 | | simpl1r 1224 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → 𝑊 ∈ 𝐻) |
5 | | lhpmcvr2.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
6 | | lhpmcvr2.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
7 | 5, 6 | lhpbase 38012 |
. . . . 5
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
8 | 4, 7 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → 𝑊 ∈ 𝐵) |
9 | | simpr 485 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → 𝑃 ≤ 𝑋) |
10 | | lhpmcvr2.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
11 | | lhpmcvr2.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
12 | | lhpmcvr2.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
13 | | lhpmcvr2.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
14 | 5, 10, 11, 12, 13 | atmod3i1 37878 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑋 ∧ 𝑊)) = (𝑋 ∧ (𝑃 ∨ 𝑊))) |
15 | 1, 2, 3, 8, 9, 14 | syl131anc 1382 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑋 ∧ 𝑊)) = (𝑋 ∧ (𝑃 ∨ 𝑊))) |
16 | | simpl1 1190 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
17 | | simpl3 1192 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
18 | | eqid 2738 |
. . . . . 6
⊢
(1.‘𝐾) =
(1.‘𝐾) |
19 | 10, 11, 18, 13, 6 | lhpjat2 38035 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ 𝑊) = (1.‘𝐾)) |
20 | 16, 17, 19 | syl2anc 584 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ 𝑊) = (1.‘𝐾)) |
21 | 20 | oveq2d 7291 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → (𝑋 ∧ (𝑃 ∨ 𝑊)) = (𝑋 ∧ (1.‘𝐾))) |
22 | | hlol 37375 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
23 | 1, 22 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → 𝐾 ∈ OL) |
24 | 5, 12, 18 | olm11 37241 |
. . . 4
⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ (1.‘𝐾)) = 𝑋) |
25 | 23, 3, 24 | syl2anc 584 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → (𝑋 ∧ (1.‘𝐾)) = 𝑋) |
26 | 15, 21, 25 | 3eqtrd 2782 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) |
27 | | simpl1l 1223 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝐾 ∈ HL) |
28 | 27 | hllatd 37378 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝐾 ∈ Lat) |
29 | | simpl3l 1227 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑃 ∈ 𝐴) |
30 | 5, 13 | atbase 37303 |
. . . . 5
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
31 | 29, 30 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑃 ∈ 𝐵) |
32 | | simpl2l 1225 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑋 ∈ 𝐵) |
33 | | simpl1r 1224 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑊 ∈ 𝐻) |
34 | 33, 7 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑊 ∈ 𝐵) |
35 | 5, 12 | latmcl 18158 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
36 | 28, 32, 34, 35 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
37 | 5, 10, 11 | latlej1 18166 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ∈ 𝐵) → 𝑃 ≤ (𝑃 ∨ (𝑋 ∧ 𝑊))) |
38 | 28, 31, 36, 37 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑃 ≤ (𝑃 ∨ (𝑋 ∧ 𝑊))) |
39 | | simpr 485 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) |
40 | 38, 39 | breqtrd 5100 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑃 ≤ 𝑋) |
41 | 26, 40 | impbida 798 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ≤ 𝑋 ↔ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |