Proof of Theorem dihmeetlem6
| Step | Hyp | Ref
| Expression |
| 1 | | simprlr 779 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑄 ≤ 𝑋)) → ¬ 𝑄 ≤ 𝑊) |
| 2 | | simpl1l 1224 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑄 ≤ 𝑋)) → 𝐾 ∈ HL) |
| 3 | 2 | hllatd 39366 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑄 ≤ 𝑋)) → 𝐾 ∈ Lat) |
| 4 | | simpl2 1192 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑄 ≤ 𝑋)) → 𝑋 ∈ 𝐵) |
| 5 | | simpl3 1193 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑄 ≤ 𝑋)) → 𝑌 ∈ 𝐵) |
| 6 | | dihmeetlem6.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
| 7 | | dihmeetlem6.m |
. . . . . . 7
⊢ ∧ =
(meet‘𝐾) |
| 8 | 6, 7 | latmcl 18486 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
| 9 | 3, 4, 5, 8 | syl3anc 1372 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑄 ≤ 𝑋)) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
| 10 | | simprll 778 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑄 ≤ 𝑋)) → 𝑄 ∈ 𝐴) |
| 11 | | dihmeetlem6.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
| 12 | 6, 11 | atbase 39291 |
. . . . . 6
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
| 13 | 10, 12 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑄 ≤ 𝑋)) → 𝑄 ∈ 𝐵) |
| 14 | | simpl1r 1225 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑄 ≤ 𝑋)) → 𝑊 ∈ 𝐻) |
| 15 | | dihmeetlem6.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
| 16 | 6, 15 | lhpbase 40001 |
. . . . . 6
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 17 | 14, 16 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑄 ≤ 𝑋)) → 𝑊 ∈ 𝐵) |
| 18 | | dihmeetlem6.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
| 19 | | dihmeetlem6.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
| 20 | 6, 18, 19 | latjle12 18496 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ ((𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (((𝑋 ∧ 𝑌) ≤ 𝑊 ∧ 𝑄 ≤ 𝑊) ↔ ((𝑋 ∧ 𝑌) ∨ 𝑄) ≤ 𝑊)) |
| 21 | 3, 9, 13, 17, 20 | syl13anc 1373 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑄 ≤ 𝑋)) → (((𝑋 ∧ 𝑌) ≤ 𝑊 ∧ 𝑄 ≤ 𝑊) ↔ ((𝑋 ∧ 𝑌) ∨ 𝑄) ≤ 𝑊)) |
| 22 | | simpr 484 |
. . . 4
⊢ (((𝑋 ∧ 𝑌) ≤ 𝑊 ∧ 𝑄 ≤ 𝑊) → 𝑄 ≤ 𝑊) |
| 23 | 21, 22 | biimtrrdi 254 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑄 ≤ 𝑋)) → (((𝑋 ∧ 𝑌) ∨ 𝑄) ≤ 𝑊 → 𝑄 ≤ 𝑊)) |
| 24 | 1, 23 | mtod 198 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑄 ≤ 𝑋)) → ¬ ((𝑋 ∧ 𝑌) ∨ 𝑄) ≤ 𝑊) |
| 25 | | simprr 772 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑄 ≤ 𝑋)) → 𝑄 ≤ 𝑋) |
| 26 | 6, 18, 19, 7, 11 | dihmeetlem5 41311 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑋)) → (𝑋 ∧ (𝑌 ∨ 𝑄)) = ((𝑋 ∧ 𝑌) ∨ 𝑄)) |
| 27 | 2, 4, 5, 10, 25, 26 | syl32anc 1379 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑄 ≤ 𝑋)) → (𝑋 ∧ (𝑌 ∨ 𝑄)) = ((𝑋 ∧ 𝑌) ∨ 𝑄)) |
| 28 | 27 | breq1d 5152 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑄 ≤ 𝑋)) → ((𝑋 ∧ (𝑌 ∨ 𝑄)) ≤ 𝑊 ↔ ((𝑋 ∧ 𝑌) ∨ 𝑄) ≤ 𝑊)) |
| 29 | 24, 28 | mtbird 325 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑄 ≤ 𝑋)) → ¬ (𝑋 ∧ (𝑌 ∨ 𝑄)) ≤ 𝑊) |