Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem6 Structured version   Visualization version   GIF version

Theorem dihmeetlem6 37117
Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.)
Hypotheses
Ref Expression
dihmeetlem6.b 𝐵 = (Base‘𝐾)
dihmeetlem6.l = (le‘𝐾)
dihmeetlem6.h 𝐻 = (LHyp‘𝐾)
dihmeetlem6.j = (join‘𝐾)
dihmeetlem6.m = (meet‘𝐾)
dihmeetlem6.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
dihmeetlem6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → ¬ (𝑋 (𝑌 𝑄)) 𝑊)

Proof of Theorem dihmeetlem6
StepHypRef Expression
1 simprlr 765 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → ¬ 𝑄 𝑊)
2 simpl1l 1278 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → 𝐾 ∈ HL)
32hllatd 35171 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → 𝐾 ∈ Lat)
4 simpl2 1229 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → 𝑋𝐵)
5 simpl3 1231 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → 𝑌𝐵)
6 dihmeetlem6.b . . . . . . 7 𝐵 = (Base‘𝐾)
7 dihmeetlem6.m . . . . . . 7 = (meet‘𝐾)
86, 7latmcl 17260 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
93, 4, 5, 8syl3anc 1476 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → (𝑋 𝑌) ∈ 𝐵)
10 simprll 764 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → 𝑄𝐴)
11 dihmeetlem6.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
126, 11atbase 35096 . . . . . 6 (𝑄𝐴𝑄𝐵)
1310, 12syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → 𝑄𝐵)
14 simpl1r 1280 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → 𝑊𝐻)
15 dihmeetlem6.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
166, 15lhpbase 35805 . . . . . 6 (𝑊𝐻𝑊𝐵)
1714, 16syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → 𝑊𝐵)
18 dihmeetlem6.l . . . . . 6 = (le‘𝐾)
19 dihmeetlem6.j . . . . . 6 = (join‘𝐾)
206, 18, 19latjle12 17270 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑋 𝑌) ∈ 𝐵𝑄𝐵𝑊𝐵)) → (((𝑋 𝑌) 𝑊𝑄 𝑊) ↔ ((𝑋 𝑌) 𝑄) 𝑊))
213, 9, 13, 17, 20syl13anc 1478 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → (((𝑋 𝑌) 𝑊𝑄 𝑊) ↔ ((𝑋 𝑌) 𝑄) 𝑊))
22 simpr 471 . . . 4 (((𝑋 𝑌) 𝑊𝑄 𝑊) → 𝑄 𝑊)
2321, 22syl6bir 244 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → (((𝑋 𝑌) 𝑄) 𝑊𝑄 𝑊))
241, 23mtod 189 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → ¬ ((𝑋 𝑌) 𝑄) 𝑊)
25 simprr 756 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → 𝑄 𝑋)
266, 18, 19, 7, 11dihmeetlem5 37116 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑄𝐴𝑄 𝑋)) → (𝑋 (𝑌 𝑄)) = ((𝑋 𝑌) 𝑄))
272, 4, 5, 10, 25, 26syl32anc 1484 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → (𝑋 (𝑌 𝑄)) = ((𝑋 𝑌) 𝑄))
2827breq1d 4797 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → ((𝑋 (𝑌 𝑄)) 𝑊 ↔ ((𝑋 𝑌) 𝑄) 𝑊))
2924, 28mtbird 314 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → ¬ (𝑋 (𝑌 𝑄)) 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145   class class class wbr 4787  cfv 6030  (class class class)co 6796  Basecbs 16064  lecple 16156  joincjn 17152  meetcmee 17153  Latclat 17253  Atomscatm 35070  HLchlt 35157  LHypclh 35791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-lat 17254  df-clat 17316  df-oposet 34983  df-ol 34985  df-oml 34986  df-covers 35073  df-ats 35074  df-atl 35105  df-cvlat 35129  df-hlat 35158  df-psubsp 35310  df-pmap 35311  df-padd 35603  df-lhyp 35795
This theorem is referenced by:  dihjatc1  37119  dihmeetlem10N  37124
  Copyright terms: Public domain W3C validator