Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem6 Structured version   Visualization version   GIF version

Theorem dihmeetlem6 41297
Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.)
Hypotheses
Ref Expression
dihmeetlem6.b 𝐵 = (Base‘𝐾)
dihmeetlem6.l = (le‘𝐾)
dihmeetlem6.h 𝐻 = (LHyp‘𝐾)
dihmeetlem6.j = (join‘𝐾)
dihmeetlem6.m = (meet‘𝐾)
dihmeetlem6.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
dihmeetlem6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → ¬ (𝑋 (𝑌 𝑄)) 𝑊)

Proof of Theorem dihmeetlem6
StepHypRef Expression
1 simprlr 779 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → ¬ 𝑄 𝑊)
2 simpl1l 1225 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → 𝐾 ∈ HL)
32hllatd 39351 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → 𝐾 ∈ Lat)
4 simpl2 1193 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → 𝑋𝐵)
5 simpl3 1194 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → 𝑌𝐵)
6 dihmeetlem6.b . . . . . . 7 𝐵 = (Base‘𝐾)
7 dihmeetlem6.m . . . . . . 7 = (meet‘𝐾)
86, 7latmcl 18382 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
93, 4, 5, 8syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → (𝑋 𝑌) ∈ 𝐵)
10 simprll 778 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → 𝑄𝐴)
11 dihmeetlem6.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
126, 11atbase 39276 . . . . . 6 (𝑄𝐴𝑄𝐵)
1310, 12syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → 𝑄𝐵)
14 simpl1r 1226 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → 𝑊𝐻)
15 dihmeetlem6.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
166, 15lhpbase 39986 . . . . . 6 (𝑊𝐻𝑊𝐵)
1714, 16syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → 𝑊𝐵)
18 dihmeetlem6.l . . . . . 6 = (le‘𝐾)
19 dihmeetlem6.j . . . . . 6 = (join‘𝐾)
206, 18, 19latjle12 18392 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑋 𝑌) ∈ 𝐵𝑄𝐵𝑊𝐵)) → (((𝑋 𝑌) 𝑊𝑄 𝑊) ↔ ((𝑋 𝑌) 𝑄) 𝑊))
213, 9, 13, 17, 20syl13anc 1374 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → (((𝑋 𝑌) 𝑊𝑄 𝑊) ↔ ((𝑋 𝑌) 𝑄) 𝑊))
22 simpr 484 . . . 4 (((𝑋 𝑌) 𝑊𝑄 𝑊) → 𝑄 𝑊)
2321, 22biimtrrdi 254 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → (((𝑋 𝑌) 𝑄) 𝑊𝑄 𝑊))
241, 23mtod 198 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → ¬ ((𝑋 𝑌) 𝑄) 𝑊)
25 simprr 772 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → 𝑄 𝑋)
266, 18, 19, 7, 11dihmeetlem5 41296 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑄𝐴𝑄 𝑋)) → (𝑋 (𝑌 𝑄)) = ((𝑋 𝑌) 𝑄))
272, 4, 5, 10, 25, 26syl32anc 1380 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → (𝑋 (𝑌 𝑄)) = ((𝑋 𝑌) 𝑄))
2827breq1d 5112 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → ((𝑋 (𝑌 𝑄)) 𝑊 ↔ ((𝑋 𝑌) 𝑄) 𝑊))
2924, 28mtbird 325 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → ¬ (𝑋 (𝑌 𝑄)) 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17156  lecple 17204  joincjn 18253  meetcmee 18254  Latclat 18373  Atomscatm 39250  HLchlt 39337  LHypclh 39972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-proset 18236  df-poset 18255  df-plt 18270  df-lub 18286  df-glb 18287  df-join 18288  df-meet 18289  df-p0 18365  df-lat 18374  df-clat 18441  df-oposet 39163  df-ol 39165  df-oml 39166  df-covers 39253  df-ats 39254  df-atl 39285  df-cvlat 39309  df-hlat 39338  df-psubsp 39491  df-pmap 39492  df-padd 39784  df-lhyp 39976
This theorem is referenced by:  dihjatc1  41299  dihmeetlem10N  41304
  Copyright terms: Public domain W3C validator