Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itscnhlinecirc02plem2 Structured version   Visualization version   GIF version

Theorem itscnhlinecirc02plem2 48704
Description: Lemma 2 for itscnhlinecirc02p 48706. (Contributed by AV, 10-Mar-2023.)
Hypotheses
Ref Expression
itscnhlinecirc02plem2.d 𝐷 = (𝑋𝐴)
itscnhlinecirc02plem2.e 𝐸 = (𝐵𝑌)
itscnhlinecirc02plem2.c 𝐶 = ((𝐵 · 𝑋) − (𝐴 · 𝑌))
Assertion
Ref Expression
itscnhlinecirc02plem2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))

Proof of Theorem itscnhlinecirc02plem2
StepHypRef Expression
1 simpl1l 1225 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝐴 ∈ ℝ)
2 simpl1r 1226 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝐵 ∈ ℝ)
3 simpl2l 1227 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝑋 ∈ ℝ)
4 simpl2r 1228 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝑌 ∈ ℝ)
5 itscnhlinecirc02plem2.d . . 3 𝐷 = (𝑋𝐴)
6 itscnhlinecirc02plem2.e . . 3 𝐸 = (𝐵𝑌)
7 eqid 2737 . . 3 ((𝐷 · 𝐵) + (𝐸 · 𝐴)) = ((𝐷 · 𝐵) + (𝐸 · 𝐴))
8 simprl 771 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝑅 ∈ ℝ)
9 simprr 773 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))
10 simpl3 1194 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝐵𝑌)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10itscnhlinecirc02plem1 48703 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 0 < ((-(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2)))))))
12 simplr 769 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℝ)
1312recnd 11289 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℂ)
14 simprl 771 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑋 ∈ ℝ)
1514recnd 11289 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑋 ∈ ℂ)
1613, 15mulcomd 11282 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · 𝑋) = (𝑋 · 𝐵))
17 simpll 767 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐴 ∈ ℝ)
1817recnd 11289 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐴 ∈ ℂ)
19 simprr 773 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑌 ∈ ℝ)
2019recnd 11289 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑌 ∈ ℂ)
2118, 20mulcomd 11282 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐴 · 𝑌) = (𝑌 · 𝐴))
2216, 21oveq12d 7449 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝑋) − (𝐴 · 𝑌)) = ((𝑋 · 𝐵) − (𝑌 · 𝐴)))
2315, 18, 13subdird 11720 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑋𝐴) · 𝐵) = ((𝑋 · 𝐵) − (𝐴 · 𝐵)))
2413, 20, 18subdird 11720 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵𝑌) · 𝐴) = ((𝐵 · 𝐴) − (𝑌 · 𝐴)))
2523, 24oveq12d 7449 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑋𝐴) · 𝐵) + ((𝐵𝑌) · 𝐴)) = (((𝑋 · 𝐵) − (𝐴 · 𝐵)) + ((𝐵 · 𝐴) − (𝑌 · 𝐴))))
2613, 18mulcomd 11282 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · 𝐴) = (𝐴 · 𝐵))
2726oveq1d 7446 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝐴) − (𝑌 · 𝐴)) = ((𝐴 · 𝐵) − (𝑌 · 𝐴)))
2827oveq2d 7447 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑋 · 𝐵) − (𝐴 · 𝐵)) + ((𝐵 · 𝐴) − (𝑌 · 𝐴))) = (((𝑋 · 𝐵) − (𝐴 · 𝐵)) + ((𝐴 · 𝐵) − (𝑌 · 𝐴))))
2915, 13mulcld 11281 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑋 · 𝐵) ∈ ℂ)
3018, 13mulcld 11281 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐴 · 𝐵) ∈ ℂ)
3120, 18mulcld 11281 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑌 · 𝐴) ∈ ℂ)
3229, 30, 31npncand 11644 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑋 · 𝐵) − (𝐴 · 𝐵)) + ((𝐴 · 𝐵) − (𝑌 · 𝐴))) = ((𝑋 · 𝐵) − (𝑌 · 𝐴)))
3325, 28, 323eqtrd 2781 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑋𝐴) · 𝐵) + ((𝐵𝑌) · 𝐴)) = ((𝑋 · 𝐵) − (𝑌 · 𝐴)))
3422, 33eqtr4d 2780 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝑋) − (𝐴 · 𝑌)) = (((𝑋𝐴) · 𝐵) + ((𝐵𝑌) · 𝐴)))
35 itscnhlinecirc02plem2.c . . . . . . . . . 10 𝐶 = ((𝐵 · 𝑋) − (𝐴 · 𝑌))
365oveq1i 7441 . . . . . . . . . . 11 (𝐷 · 𝐵) = ((𝑋𝐴) · 𝐵)
376oveq1i 7441 . . . . . . . . . . 11 (𝐸 · 𝐴) = ((𝐵𝑌) · 𝐴)
3836, 37oveq12i 7443 . . . . . . . . . 10 ((𝐷 · 𝐵) + (𝐸 · 𝐴)) = (((𝑋𝐴) · 𝐵) + ((𝐵𝑌) · 𝐴))
3934, 35, 383eqtr4g 2802 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴)))
4039oveq2d 7447 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐷 · 𝐶) = (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))
4140oveq2d 7447 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (2 · (𝐷 · 𝐶)) = (2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴)))))
4241negeqd 11502 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → -(2 · (𝐷 · 𝐶)) = -(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴)))))
4342oveq1d 7446 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (-(2 · (𝐷 · 𝐶))↑2) = (-(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2))
4439oveq1d 7446 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐶↑2) = (((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2))
4544oveq1d 7446 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))) = ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2))))
4645oveq2d 7447 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))) = (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2)))))
4746oveq2d 7447 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))) = (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2))))))
4843, 47oveq12d 7449 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))) = ((-(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2)))))))
49483adant3 1133 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) → ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))) = ((-(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2)))))))
5049adantr 480 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))) = ((-(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2)))))))
5111, 50breqtrrd 5171 1 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  (class class class)co 7431  cr 11154  0cc0 11155   + caddc 11158   · cmul 11160   < clt 11295  cmin 11492  -cneg 11493  2c2 12321  4c4 12323  cexp 14102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103
This theorem is referenced by:  itscnhlinecirc02plem3  48705
  Copyright terms: Public domain W3C validator