Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itscnhlinecirc02plem2 Structured version   Visualization version   GIF version

Theorem itscnhlinecirc02plem2 48633
Description: Lemma 2 for itscnhlinecirc02p 48635. (Contributed by AV, 10-Mar-2023.)
Hypotheses
Ref Expression
itscnhlinecirc02plem2.d 𝐷 = (𝑋𝐴)
itscnhlinecirc02plem2.e 𝐸 = (𝐵𝑌)
itscnhlinecirc02plem2.c 𝐶 = ((𝐵 · 𝑋) − (𝐴 · 𝑌))
Assertion
Ref Expression
itscnhlinecirc02plem2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))

Proof of Theorem itscnhlinecirc02plem2
StepHypRef Expression
1 simpl1l 1223 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝐴 ∈ ℝ)
2 simpl1r 1224 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝐵 ∈ ℝ)
3 simpl2l 1225 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝑋 ∈ ℝ)
4 simpl2r 1226 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝑌 ∈ ℝ)
5 itscnhlinecirc02plem2.d . . 3 𝐷 = (𝑋𝐴)
6 itscnhlinecirc02plem2.e . . 3 𝐸 = (𝐵𝑌)
7 eqid 2735 . . 3 ((𝐷 · 𝐵) + (𝐸 · 𝐴)) = ((𝐷 · 𝐵) + (𝐸 · 𝐴))
8 simprl 771 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝑅 ∈ ℝ)
9 simprr 773 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))
10 simpl3 1192 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝐵𝑌)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10itscnhlinecirc02plem1 48632 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 0 < ((-(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2)))))))
12 simplr 769 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℝ)
1312recnd 11287 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℂ)
14 simprl 771 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑋 ∈ ℝ)
1514recnd 11287 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑋 ∈ ℂ)
1613, 15mulcomd 11280 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · 𝑋) = (𝑋 · 𝐵))
17 simpll 767 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐴 ∈ ℝ)
1817recnd 11287 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐴 ∈ ℂ)
19 simprr 773 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑌 ∈ ℝ)
2019recnd 11287 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑌 ∈ ℂ)
2118, 20mulcomd 11280 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐴 · 𝑌) = (𝑌 · 𝐴))
2216, 21oveq12d 7449 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝑋) − (𝐴 · 𝑌)) = ((𝑋 · 𝐵) − (𝑌 · 𝐴)))
2315, 18, 13subdird 11718 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑋𝐴) · 𝐵) = ((𝑋 · 𝐵) − (𝐴 · 𝐵)))
2413, 20, 18subdird 11718 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵𝑌) · 𝐴) = ((𝐵 · 𝐴) − (𝑌 · 𝐴)))
2523, 24oveq12d 7449 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑋𝐴) · 𝐵) + ((𝐵𝑌) · 𝐴)) = (((𝑋 · 𝐵) − (𝐴 · 𝐵)) + ((𝐵 · 𝐴) − (𝑌 · 𝐴))))
2613, 18mulcomd 11280 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · 𝐴) = (𝐴 · 𝐵))
2726oveq1d 7446 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝐴) − (𝑌 · 𝐴)) = ((𝐴 · 𝐵) − (𝑌 · 𝐴)))
2827oveq2d 7447 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑋 · 𝐵) − (𝐴 · 𝐵)) + ((𝐵 · 𝐴) − (𝑌 · 𝐴))) = (((𝑋 · 𝐵) − (𝐴 · 𝐵)) + ((𝐴 · 𝐵) − (𝑌 · 𝐴))))
2915, 13mulcld 11279 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑋 · 𝐵) ∈ ℂ)
3018, 13mulcld 11279 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐴 · 𝐵) ∈ ℂ)
3120, 18mulcld 11279 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑌 · 𝐴) ∈ ℂ)
3229, 30, 31npncand 11642 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑋 · 𝐵) − (𝐴 · 𝐵)) + ((𝐴 · 𝐵) − (𝑌 · 𝐴))) = ((𝑋 · 𝐵) − (𝑌 · 𝐴)))
3325, 28, 323eqtrd 2779 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑋𝐴) · 𝐵) + ((𝐵𝑌) · 𝐴)) = ((𝑋 · 𝐵) − (𝑌 · 𝐴)))
3422, 33eqtr4d 2778 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝑋) − (𝐴 · 𝑌)) = (((𝑋𝐴) · 𝐵) + ((𝐵𝑌) · 𝐴)))
35 itscnhlinecirc02plem2.c . . . . . . . . . 10 𝐶 = ((𝐵 · 𝑋) − (𝐴 · 𝑌))
365oveq1i 7441 . . . . . . . . . . 11 (𝐷 · 𝐵) = ((𝑋𝐴) · 𝐵)
376oveq1i 7441 . . . . . . . . . . 11 (𝐸 · 𝐴) = ((𝐵𝑌) · 𝐴)
3836, 37oveq12i 7443 . . . . . . . . . 10 ((𝐷 · 𝐵) + (𝐸 · 𝐴)) = (((𝑋𝐴) · 𝐵) + ((𝐵𝑌) · 𝐴))
3934, 35, 383eqtr4g 2800 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴)))
4039oveq2d 7447 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐷 · 𝐶) = (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))
4140oveq2d 7447 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (2 · (𝐷 · 𝐶)) = (2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴)))))
4241negeqd 11500 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → -(2 · (𝐷 · 𝐶)) = -(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴)))))
4342oveq1d 7446 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (-(2 · (𝐷 · 𝐶))↑2) = (-(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2))
4439oveq1d 7446 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐶↑2) = (((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2))
4544oveq1d 7446 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))) = ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2))))
4645oveq2d 7447 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))) = (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2)))))
4746oveq2d 7447 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))) = (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2))))))
4843, 47oveq12d 7449 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))) = ((-(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2)))))))
49483adant3 1131 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) → ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))) = ((-(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2)))))))
5049adantr 480 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))) = ((-(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2)))))))
5111, 50breqtrrd 5176 1 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  (class class class)co 7431  cr 11152  0cc0 11153   + caddc 11156   · cmul 11158   < clt 11293  cmin 11490  -cneg 11491  2c2 12319  4c4 12321  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100
This theorem is referenced by:  itscnhlinecirc02plem3  48634
  Copyright terms: Public domain W3C validator