Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itscnhlinecirc02plem2 Structured version   Visualization version   GIF version

Theorem itscnhlinecirc02plem2 46096
Description: Lemma 2 for itscnhlinecirc02p 46098. (Contributed by AV, 10-Mar-2023.)
Hypotheses
Ref Expression
itscnhlinecirc02plem2.d 𝐷 = (𝑋𝐴)
itscnhlinecirc02plem2.e 𝐸 = (𝐵𝑌)
itscnhlinecirc02plem2.c 𝐶 = ((𝐵 · 𝑋) − (𝐴 · 𝑌))
Assertion
Ref Expression
itscnhlinecirc02plem2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))

Proof of Theorem itscnhlinecirc02plem2
StepHypRef Expression
1 simpl1l 1223 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝐴 ∈ ℝ)
2 simpl1r 1224 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝐵 ∈ ℝ)
3 simpl2l 1225 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝑋 ∈ ℝ)
4 simpl2r 1226 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝑌 ∈ ℝ)
5 itscnhlinecirc02plem2.d . . 3 𝐷 = (𝑋𝐴)
6 itscnhlinecirc02plem2.e . . 3 𝐸 = (𝐵𝑌)
7 eqid 2740 . . 3 ((𝐷 · 𝐵) + (𝐸 · 𝐴)) = ((𝐷 · 𝐵) + (𝐸 · 𝐴))
8 simprl 768 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝑅 ∈ ℝ)
9 simprr 770 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))
10 simpl3 1192 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝐵𝑌)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10itscnhlinecirc02plem1 46095 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 0 < ((-(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2)))))))
12 simplr 766 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℝ)
1312recnd 11002 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℂ)
14 simprl 768 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑋 ∈ ℝ)
1514recnd 11002 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑋 ∈ ℂ)
1613, 15mulcomd 10995 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · 𝑋) = (𝑋 · 𝐵))
17 simpll 764 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐴 ∈ ℝ)
1817recnd 11002 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐴 ∈ ℂ)
19 simprr 770 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑌 ∈ ℝ)
2019recnd 11002 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑌 ∈ ℂ)
2118, 20mulcomd 10995 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐴 · 𝑌) = (𝑌 · 𝐴))
2216, 21oveq12d 7287 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝑋) − (𝐴 · 𝑌)) = ((𝑋 · 𝐵) − (𝑌 · 𝐴)))
2315, 18, 13subdird 11430 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑋𝐴) · 𝐵) = ((𝑋 · 𝐵) − (𝐴 · 𝐵)))
2413, 20, 18subdird 11430 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵𝑌) · 𝐴) = ((𝐵 · 𝐴) − (𝑌 · 𝐴)))
2523, 24oveq12d 7287 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑋𝐴) · 𝐵) + ((𝐵𝑌) · 𝐴)) = (((𝑋 · 𝐵) − (𝐴 · 𝐵)) + ((𝐵 · 𝐴) − (𝑌 · 𝐴))))
2613, 18mulcomd 10995 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · 𝐴) = (𝐴 · 𝐵))
2726oveq1d 7284 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝐴) − (𝑌 · 𝐴)) = ((𝐴 · 𝐵) − (𝑌 · 𝐴)))
2827oveq2d 7285 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑋 · 𝐵) − (𝐴 · 𝐵)) + ((𝐵 · 𝐴) − (𝑌 · 𝐴))) = (((𝑋 · 𝐵) − (𝐴 · 𝐵)) + ((𝐴 · 𝐵) − (𝑌 · 𝐴))))
2915, 13mulcld 10994 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑋 · 𝐵) ∈ ℂ)
3018, 13mulcld 10994 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐴 · 𝐵) ∈ ℂ)
3120, 18mulcld 10994 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑌 · 𝐴) ∈ ℂ)
3229, 30, 31npncand 11354 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑋 · 𝐵) − (𝐴 · 𝐵)) + ((𝐴 · 𝐵) − (𝑌 · 𝐴))) = ((𝑋 · 𝐵) − (𝑌 · 𝐴)))
3325, 28, 323eqtrd 2784 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑋𝐴) · 𝐵) + ((𝐵𝑌) · 𝐴)) = ((𝑋 · 𝐵) − (𝑌 · 𝐴)))
3422, 33eqtr4d 2783 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝑋) − (𝐴 · 𝑌)) = (((𝑋𝐴) · 𝐵) + ((𝐵𝑌) · 𝐴)))
35 itscnhlinecirc02plem2.c . . . . . . . . . 10 𝐶 = ((𝐵 · 𝑋) − (𝐴 · 𝑌))
365oveq1i 7279 . . . . . . . . . . 11 (𝐷 · 𝐵) = ((𝑋𝐴) · 𝐵)
376oveq1i 7279 . . . . . . . . . . 11 (𝐸 · 𝐴) = ((𝐵𝑌) · 𝐴)
3836, 37oveq12i 7281 . . . . . . . . . 10 ((𝐷 · 𝐵) + (𝐸 · 𝐴)) = (((𝑋𝐴) · 𝐵) + ((𝐵𝑌) · 𝐴))
3934, 35, 383eqtr4g 2805 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴)))
4039oveq2d 7285 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐷 · 𝐶) = (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))
4140oveq2d 7285 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (2 · (𝐷 · 𝐶)) = (2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴)))))
4241negeqd 11213 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → -(2 · (𝐷 · 𝐶)) = -(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴)))))
4342oveq1d 7284 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (-(2 · (𝐷 · 𝐶))↑2) = (-(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2))
4439oveq1d 7284 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐶↑2) = (((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2))
4544oveq1d 7284 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))) = ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2))))
4645oveq2d 7285 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))) = (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2)))))
4746oveq2d 7285 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))) = (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2))))))
4843, 47oveq12d 7287 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))) = ((-(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2)))))))
49483adant3 1131 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) → ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))) = ((-(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2)))))))
5049adantr 481 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))) = ((-(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2)))))))
5111, 50breqtrrd 5107 1 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945   class class class wbr 5079  (class class class)co 7269  cr 10869  0cc0 10870   + caddc 10873   · cmul 10875   < clt 11008  cmin 11203  -cneg 11204  2c2 12026  4c4 12028  cexp 13778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-er 8479  df-en 8715  df-dom 8716  df-sdom 8717  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-n0 12232  df-z 12318  df-uz 12580  df-rp 12728  df-seq 13718  df-exp 13779
This theorem is referenced by:  itscnhlinecirc02plem3  46097
  Copyright terms: Public domain W3C validator