Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itscnhlinecirc02plem2 Structured version   Visualization version   GIF version

Theorem itscnhlinecirc02plem2 46859
Description: Lemma 2 for itscnhlinecirc02p 46861. (Contributed by AV, 10-Mar-2023.)
Hypotheses
Ref Expression
itscnhlinecirc02plem2.d 𝐷 = (𝑋𝐴)
itscnhlinecirc02plem2.e 𝐸 = (𝐵𝑌)
itscnhlinecirc02plem2.c 𝐶 = ((𝐵 · 𝑋) − (𝐴 · 𝑌))
Assertion
Ref Expression
itscnhlinecirc02plem2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))

Proof of Theorem itscnhlinecirc02plem2
StepHypRef Expression
1 simpl1l 1224 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝐴 ∈ ℝ)
2 simpl1r 1225 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝐵 ∈ ℝ)
3 simpl2l 1226 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝑋 ∈ ℝ)
4 simpl2r 1227 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝑌 ∈ ℝ)
5 itscnhlinecirc02plem2.d . . 3 𝐷 = (𝑋𝐴)
6 itscnhlinecirc02plem2.e . . 3 𝐸 = (𝐵𝑌)
7 eqid 2736 . . 3 ((𝐷 · 𝐵) + (𝐸 · 𝐴)) = ((𝐷 · 𝐵) + (𝐸 · 𝐴))
8 simprl 769 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝑅 ∈ ℝ)
9 simprr 771 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))
10 simpl3 1193 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝐵𝑌)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10itscnhlinecirc02plem1 46858 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 0 < ((-(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2)))))))
12 simplr 767 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℝ)
1312recnd 11183 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℂ)
14 simprl 769 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑋 ∈ ℝ)
1514recnd 11183 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑋 ∈ ℂ)
1613, 15mulcomd 11176 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · 𝑋) = (𝑋 · 𝐵))
17 simpll 765 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐴 ∈ ℝ)
1817recnd 11183 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐴 ∈ ℂ)
19 simprr 771 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑌 ∈ ℝ)
2019recnd 11183 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑌 ∈ ℂ)
2118, 20mulcomd 11176 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐴 · 𝑌) = (𝑌 · 𝐴))
2216, 21oveq12d 7375 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝑋) − (𝐴 · 𝑌)) = ((𝑋 · 𝐵) − (𝑌 · 𝐴)))
2315, 18, 13subdird 11612 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑋𝐴) · 𝐵) = ((𝑋 · 𝐵) − (𝐴 · 𝐵)))
2413, 20, 18subdird 11612 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵𝑌) · 𝐴) = ((𝐵 · 𝐴) − (𝑌 · 𝐴)))
2523, 24oveq12d 7375 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑋𝐴) · 𝐵) + ((𝐵𝑌) · 𝐴)) = (((𝑋 · 𝐵) − (𝐴 · 𝐵)) + ((𝐵 · 𝐴) − (𝑌 · 𝐴))))
2613, 18mulcomd 11176 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · 𝐴) = (𝐴 · 𝐵))
2726oveq1d 7372 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝐴) − (𝑌 · 𝐴)) = ((𝐴 · 𝐵) − (𝑌 · 𝐴)))
2827oveq2d 7373 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑋 · 𝐵) − (𝐴 · 𝐵)) + ((𝐵 · 𝐴) − (𝑌 · 𝐴))) = (((𝑋 · 𝐵) − (𝐴 · 𝐵)) + ((𝐴 · 𝐵) − (𝑌 · 𝐴))))
2915, 13mulcld 11175 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑋 · 𝐵) ∈ ℂ)
3018, 13mulcld 11175 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐴 · 𝐵) ∈ ℂ)
3120, 18mulcld 11175 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑌 · 𝐴) ∈ ℂ)
3229, 30, 31npncand 11536 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑋 · 𝐵) − (𝐴 · 𝐵)) + ((𝐴 · 𝐵) − (𝑌 · 𝐴))) = ((𝑋 · 𝐵) − (𝑌 · 𝐴)))
3325, 28, 323eqtrd 2780 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑋𝐴) · 𝐵) + ((𝐵𝑌) · 𝐴)) = ((𝑋 · 𝐵) − (𝑌 · 𝐴)))
3422, 33eqtr4d 2779 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝑋) − (𝐴 · 𝑌)) = (((𝑋𝐴) · 𝐵) + ((𝐵𝑌) · 𝐴)))
35 itscnhlinecirc02plem2.c . . . . . . . . . 10 𝐶 = ((𝐵 · 𝑋) − (𝐴 · 𝑌))
365oveq1i 7367 . . . . . . . . . . 11 (𝐷 · 𝐵) = ((𝑋𝐴) · 𝐵)
376oveq1i 7367 . . . . . . . . . . 11 (𝐸 · 𝐴) = ((𝐵𝑌) · 𝐴)
3836, 37oveq12i 7369 . . . . . . . . . 10 ((𝐷 · 𝐵) + (𝐸 · 𝐴)) = (((𝑋𝐴) · 𝐵) + ((𝐵𝑌) · 𝐴))
3934, 35, 383eqtr4g 2801 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴)))
4039oveq2d 7373 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐷 · 𝐶) = (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))
4140oveq2d 7373 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (2 · (𝐷 · 𝐶)) = (2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴)))))
4241negeqd 11395 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → -(2 · (𝐷 · 𝐶)) = -(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴)))))
4342oveq1d 7372 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (-(2 · (𝐷 · 𝐶))↑2) = (-(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2))
4439oveq1d 7372 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐶↑2) = (((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2))
4544oveq1d 7372 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))) = ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2))))
4645oveq2d 7373 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))) = (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2)))))
4746oveq2d 7373 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))) = (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2))))))
4843, 47oveq12d 7375 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))) = ((-(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2)))))))
49483adant3 1132 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) → ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))) = ((-(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2)))))))
5049adantr 481 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))) = ((-(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2)))))))
5111, 50breqtrrd 5133 1 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  (class class class)co 7357  cr 11050  0cc0 11051   + caddc 11054   · cmul 11056   < clt 11189  cmin 11385  -cneg 11386  2c2 12208  4c4 12210  cexp 13967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968
This theorem is referenced by:  itscnhlinecirc02plem3  46860
  Copyright terms: Public domain W3C validator