Proof of Theorem itscnhlinecirc02plem2
Step | Hyp | Ref
| Expression |
1 | | simpl1l 1223 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵 ≠ 𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝐴 ∈ ℝ) |
2 | | simpl1r 1224 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵 ≠ 𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝐵 ∈ ℝ) |
3 | | simpl2l 1225 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵 ≠ 𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝑋 ∈ ℝ) |
4 | | simpl2r 1226 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵 ≠ 𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝑌 ∈ ℝ) |
5 | | itscnhlinecirc02plem2.d |
. . 3
⊢ 𝐷 = (𝑋 − 𝐴) |
6 | | itscnhlinecirc02plem2.e |
. . 3
⊢ 𝐸 = (𝐵 − 𝑌) |
7 | | eqid 2740 |
. . 3
⊢ ((𝐷 · 𝐵) + (𝐸 · 𝐴)) = ((𝐷 · 𝐵) + (𝐸 · 𝐴)) |
8 | | simprl 768 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵 ≠ 𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝑅 ∈ ℝ) |
9 | | simprr 770 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵 ≠ 𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2)) |
10 | | simpl3 1192 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵 ≠ 𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 𝐵 ≠ 𝑌) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | itscnhlinecirc02plem1 46095 |
. 2
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵 ≠ 𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 0 < ((-(2 ·
(𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2))))))) |
12 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈
ℝ) |
13 | 12 | recnd 11002 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈
ℂ) |
14 | | simprl 768 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑋 ∈
ℝ) |
15 | 14 | recnd 11002 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑋 ∈
ℂ) |
16 | 13, 15 | mulcomd 10995 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · 𝑋) = (𝑋 · 𝐵)) |
17 | | simpll 764 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐴 ∈
ℝ) |
18 | 17 | recnd 11002 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐴 ∈
ℂ) |
19 | | simprr 770 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑌 ∈
ℝ) |
20 | 19 | recnd 11002 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑌 ∈
ℂ) |
21 | 18, 20 | mulcomd 10995 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐴 · 𝑌) = (𝑌 · 𝐴)) |
22 | 16, 21 | oveq12d 7287 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝑋) − (𝐴 · 𝑌)) = ((𝑋 · 𝐵) − (𝑌 · 𝐴))) |
23 | 15, 18, 13 | subdird 11430 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑋 − 𝐴) · 𝐵) = ((𝑋 · 𝐵) − (𝐴 · 𝐵))) |
24 | 13, 20, 18 | subdird 11430 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 − 𝑌) · 𝐴) = ((𝐵 · 𝐴) − (𝑌 · 𝐴))) |
25 | 23, 24 | oveq12d 7287 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) →
(((𝑋 − 𝐴) · 𝐵) + ((𝐵 − 𝑌) · 𝐴)) = (((𝑋 · 𝐵) − (𝐴 · 𝐵)) + ((𝐵 · 𝐴) − (𝑌 · 𝐴)))) |
26 | 13, 18 | mulcomd 10995 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · 𝐴) = (𝐴 · 𝐵)) |
27 | 26 | oveq1d 7284 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝐴) − (𝑌 · 𝐴)) = ((𝐴 · 𝐵) − (𝑌 · 𝐴))) |
28 | 27 | oveq2d 7285 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) →
(((𝑋 · 𝐵) − (𝐴 · 𝐵)) + ((𝐵 · 𝐴) − (𝑌 · 𝐴))) = (((𝑋 · 𝐵) − (𝐴 · 𝐵)) + ((𝐴 · 𝐵) − (𝑌 · 𝐴)))) |
29 | 15, 13 | mulcld 10994 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑋 · 𝐵) ∈ ℂ) |
30 | 18, 13 | mulcld 10994 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐴 · 𝐵) ∈ ℂ) |
31 | 20, 18 | mulcld 10994 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑌 · 𝐴) ∈ ℂ) |
32 | 29, 30, 31 | npncand 11354 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) →
(((𝑋 · 𝐵) − (𝐴 · 𝐵)) + ((𝐴 · 𝐵) − (𝑌 · 𝐴))) = ((𝑋 · 𝐵) − (𝑌 · 𝐴))) |
33 | 25, 28, 32 | 3eqtrd 2784 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) →
(((𝑋 − 𝐴) · 𝐵) + ((𝐵 − 𝑌) · 𝐴)) = ((𝑋 · 𝐵) − (𝑌 · 𝐴))) |
34 | 22, 33 | eqtr4d 2783 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝑋) − (𝐴 · 𝑌)) = (((𝑋 − 𝐴) · 𝐵) + ((𝐵 − 𝑌) · 𝐴))) |
35 | | itscnhlinecirc02plem2.c |
. . . . . . . . . 10
⊢ 𝐶 = ((𝐵 · 𝑋) − (𝐴 · 𝑌)) |
36 | 5 | oveq1i 7279 |
. . . . . . . . . . 11
⊢ (𝐷 · 𝐵) = ((𝑋 − 𝐴) · 𝐵) |
37 | 6 | oveq1i 7279 |
. . . . . . . . . . 11
⊢ (𝐸 · 𝐴) = ((𝐵 − 𝑌) · 𝐴) |
38 | 36, 37 | oveq12i 7281 |
. . . . . . . . . 10
⊢ ((𝐷 · 𝐵) + (𝐸 · 𝐴)) = (((𝑋 − 𝐴) · 𝐵) + ((𝐵 − 𝑌) · 𝐴)) |
39 | 34, 35, 38 | 3eqtr4g 2805 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴))) |
40 | 39 | oveq2d 7285 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐷 · 𝐶) = (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴)))) |
41 | 40 | oveq2d 7285 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (2
· (𝐷 · 𝐶)) = (2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))) |
42 | 41 | negeqd 11213 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → -(2
· (𝐷 · 𝐶)) = -(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))) |
43 | 42 | oveq1d 7284 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (-(2
· (𝐷 · 𝐶))↑2) = (-(2 ·
(𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2)) |
44 | 39 | oveq1d 7284 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐶↑2) = (((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2)) |
45 | 44 | oveq1d 7284 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))) = ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2)))) |
46 | 45 | oveq2d 7285 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) →
(((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))) = (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2))))) |
47 | 46 | oveq2d 7285 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (4
· (((𝐸↑2) +
(𝐷↑2)) ·
((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))) = (4 ·
(((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2)))))) |
48 | 43, 47 | oveq12d 7287 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((-(2
· (𝐷 · 𝐶))↑2) − (4 ·
(((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))) = ((-(2 ·
(𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2))))))) |
49 | 48 | 3adant3 1131 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵 ≠ 𝑌) → ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))) = ((-(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2))))))) |
50 | 49 | adantr 481 |
. 2
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵 ≠ 𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))) = ((-(2 · (𝐷 · ((𝐷 · 𝐵) + (𝐸 · 𝐴))))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) − ((𝐸↑2) · (𝑅↑2))))))) |
51 | 11, 50 | breqtrrd 5107 |
1
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵 ≠ 𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 0 < ((-(2 ·
(𝐷 · 𝐶))↑2) − (4 ·
(((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))))) |