| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hbtlem3 | Structured version Visualization version GIF version | ||
| Description: The leading ideal function is monotone. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| hbtlem.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| hbtlem.u | ⊢ 𝑈 = (LIdeal‘𝑃) |
| hbtlem.s | ⊢ 𝑆 = (ldgIdlSeq‘𝑅) |
| hbtlem3.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| hbtlem3.i | ⊢ (𝜑 → 𝐼 ∈ 𝑈) |
| hbtlem3.j | ⊢ (𝜑 → 𝐽 ∈ 𝑈) |
| hbtlem3.ij | ⊢ (𝜑 → 𝐼 ⊆ 𝐽) |
| hbtlem3.x | ⊢ (𝜑 → 𝑋 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| hbtlem3 | ⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘𝐽)‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbtlem3.ij | . . . 4 ⊢ (𝜑 → 𝐼 ⊆ 𝐽) | |
| 2 | ssrexv 4002 | . . . 4 ⊢ (𝐼 ⊆ 𝐽 → (∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) → ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) → ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)))) |
| 4 | 3 | ss2abdv 4015 | . 2 ⊢ (𝜑 → {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ⊆ {𝑎 ∣ ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 5 | hbtlem3.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 6 | hbtlem3.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑈) | |
| 7 | hbtlem3.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℕ0) | |
| 8 | hbtlem.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 9 | hbtlem.u | . . . 4 ⊢ 𝑈 = (LIdeal‘𝑃) | |
| 10 | hbtlem.s | . . . 4 ⊢ 𝑆 = (ldgIdlSeq‘𝑅) | |
| 11 | eqid 2730 | . . . 4 ⊢ (deg1‘𝑅) = (deg1‘𝑅) | |
| 12 | 8, 9, 10, 11 | hbtlem1 43135 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) = {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 13 | 5, 6, 7, 12 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) = {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 14 | hbtlem3.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝑈) | |
| 15 | 8, 9, 10, 11 | hbtlem1 43135 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐽 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐽)‘𝑋) = {𝑎 ∣ ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 16 | 5, 14, 7, 15 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝑆‘𝐽)‘𝑋) = {𝑎 ∣ ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 17 | 4, 13, 16 | 3sstr4d 3988 | 1 ⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘𝐽)‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 {cab 2708 ∃wrex 3054 ⊆ wss 3900 class class class wbr 5089 ‘cfv 6477 ≤ cle 11139 ℕ0cn0 12373 Ringcrg 20144 LIdealclidl 21136 Poly1cpl1 22082 coe1cco1 22083 deg1cdg1 25979 ldgIdlSeqcldgis 43133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-1cn 11056 ax-addcl 11058 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12118 df-n0 12374 df-ldgis 43134 |
| This theorem is referenced by: hbt 43142 |
| Copyright terms: Public domain | W3C validator |