Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem3 Structured version   Visualization version   GIF version

Theorem hbtlem3 43117
Description: The leading ideal function is monotone. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem3.r (𝜑𝑅 ∈ Ring)
hbtlem3.i (𝜑𝐼𝑈)
hbtlem3.j (𝜑𝐽𝑈)
hbtlem3.ij (𝜑𝐼𝐽)
hbtlem3.x (𝜑𝑋 ∈ ℕ0)
Assertion
Ref Expression
hbtlem3 (𝜑 → ((𝑆𝐼)‘𝑋) ⊆ ((𝑆𝐽)‘𝑋))

Proof of Theorem hbtlem3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem3.ij . . . 4 (𝜑𝐼𝐽)
2 ssrexv 4052 . . . 4 (𝐼𝐽 → (∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) → ∃𝑏𝐽 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))))
31, 2syl 17 . . 3 (𝜑 → (∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) → ∃𝑏𝐽 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))))
43ss2abdv 4065 . 2 (𝜑 → {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ⊆ {𝑎 ∣ ∃𝑏𝐽 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
5 hbtlem3.r . . 3 (𝜑𝑅 ∈ Ring)
6 hbtlem3.i . . 3 (𝜑𝐼𝑈)
7 hbtlem3.x . . 3 (𝜑𝑋 ∈ ℕ0)
8 hbtlem.p . . . 4 𝑃 = (Poly1𝑅)
9 hbtlem.u . . . 4 𝑈 = (LIdeal‘𝑃)
10 hbtlem.s . . . 4 𝑆 = (ldgIdlSeq‘𝑅)
11 eqid 2736 . . . 4 (deg1𝑅) = (deg1𝑅)
128, 9, 10, 11hbtlem1 43113 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
135, 6, 7, 12syl3anc 1373 . 2 (𝜑 → ((𝑆𝐼)‘𝑋) = {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
14 hbtlem3.j . . 3 (𝜑𝐽𝑈)
158, 9, 10, 11hbtlem1 43113 . . 3 ((𝑅 ∈ Ring ∧ 𝐽𝑈𝑋 ∈ ℕ0) → ((𝑆𝐽)‘𝑋) = {𝑎 ∣ ∃𝑏𝐽 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
165, 14, 7, 15syl3anc 1373 . 2 (𝜑 → ((𝑆𝐽)‘𝑋) = {𝑎 ∣ ∃𝑏𝐽 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
174, 13, 163sstr4d 4038 1 (𝜑 → ((𝑆𝐼)‘𝑋) ⊆ ((𝑆𝐽)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {cab 2713  wrex 3069  wss 3950   class class class wbr 5141  cfv 6559  cle 11292  0cn0 12522  Ringcrg 20226  LIdealclidl 21208  Poly1cpl1 22168  coe1cco1 22169  deg1cdg1 26083  ldgIdlSeqcldgis 43111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pr 5430  ax-un 7751  ax-cnex 11207  ax-1cn 11209  ax-addcl 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-ov 7432  df-om 7884  df-2nd 8011  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-nn 12263  df-n0 12523  df-ldgis 43112
This theorem is referenced by:  hbt  43120
  Copyright terms: Public domain W3C validator