| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hbtlem3 | Structured version Visualization version GIF version | ||
| Description: The leading ideal function is monotone. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| hbtlem.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| hbtlem.u | ⊢ 𝑈 = (LIdeal‘𝑃) |
| hbtlem.s | ⊢ 𝑆 = (ldgIdlSeq‘𝑅) |
| hbtlem3.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| hbtlem3.i | ⊢ (𝜑 → 𝐼 ∈ 𝑈) |
| hbtlem3.j | ⊢ (𝜑 → 𝐽 ∈ 𝑈) |
| hbtlem3.ij | ⊢ (𝜑 → 𝐼 ⊆ 𝐽) |
| hbtlem3.x | ⊢ (𝜑 → 𝑋 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| hbtlem3 | ⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘𝐽)‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbtlem3.ij | . . . 4 ⊢ (𝜑 → 𝐼 ⊆ 𝐽) | |
| 2 | ssrexv 4018 | . . . 4 ⊢ (𝐼 ⊆ 𝐽 → (∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) → ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) → ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)))) |
| 4 | 3 | ss2abdv 4031 | . 2 ⊢ (𝜑 → {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ⊆ {𝑎 ∣ ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 5 | hbtlem3.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 6 | hbtlem3.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑈) | |
| 7 | hbtlem3.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℕ0) | |
| 8 | hbtlem.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 9 | hbtlem.u | . . . 4 ⊢ 𝑈 = (LIdeal‘𝑃) | |
| 10 | hbtlem.s | . . . 4 ⊢ 𝑆 = (ldgIdlSeq‘𝑅) | |
| 11 | eqid 2730 | . . . 4 ⊢ (deg1‘𝑅) = (deg1‘𝑅) | |
| 12 | 8, 9, 10, 11 | hbtlem1 43105 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) = {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 13 | 5, 6, 7, 12 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) = {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 14 | hbtlem3.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝑈) | |
| 15 | 8, 9, 10, 11 | hbtlem1 43105 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐽 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐽)‘𝑋) = {𝑎 ∣ ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 16 | 5, 14, 7, 15 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝑆‘𝐽)‘𝑋) = {𝑎 ∣ ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 17 | 4, 13, 16 | 3sstr4d 4004 | 1 ⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘𝐽)‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 ⊆ wss 3916 class class class wbr 5109 ‘cfv 6513 ≤ cle 11215 ℕ0cn0 12448 Ringcrg 20148 LIdealclidl 21122 Poly1cpl1 22067 coe1cco1 22068 deg1cdg1 25965 ldgIdlSeqcldgis 43103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-1cn 11132 ax-addcl 11134 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-nn 12188 df-n0 12449 df-ldgis 43104 |
| This theorem is referenced by: hbt 43112 |
| Copyright terms: Public domain | W3C validator |