| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hbtlem3 | Structured version Visualization version GIF version | ||
| Description: The leading ideal function is monotone. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| hbtlem.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| hbtlem.u | ⊢ 𝑈 = (LIdeal‘𝑃) |
| hbtlem.s | ⊢ 𝑆 = (ldgIdlSeq‘𝑅) |
| hbtlem3.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| hbtlem3.i | ⊢ (𝜑 → 𝐼 ∈ 𝑈) |
| hbtlem3.j | ⊢ (𝜑 → 𝐽 ∈ 𝑈) |
| hbtlem3.ij | ⊢ (𝜑 → 𝐼 ⊆ 𝐽) |
| hbtlem3.x | ⊢ (𝜑 → 𝑋 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| hbtlem3 | ⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘𝐽)‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbtlem3.ij | . . . 4 ⊢ (𝜑 → 𝐼 ⊆ 𝐽) | |
| 2 | ssrexv 3999 | . . . 4 ⊢ (𝐼 ⊆ 𝐽 → (∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) → ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) → ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)))) |
| 4 | 3 | ss2abdv 4013 | . 2 ⊢ (𝜑 → {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ⊆ {𝑎 ∣ ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 5 | hbtlem3.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 6 | hbtlem3.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑈) | |
| 7 | hbtlem3.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℕ0) | |
| 8 | hbtlem.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 9 | hbtlem.u | . . . 4 ⊢ 𝑈 = (LIdeal‘𝑃) | |
| 10 | hbtlem.s | . . . 4 ⊢ 𝑆 = (ldgIdlSeq‘𝑅) | |
| 11 | eqid 2731 | . . . 4 ⊢ (deg1‘𝑅) = (deg1‘𝑅) | |
| 12 | 8, 9, 10, 11 | hbtlem1 43221 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) = {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 13 | 5, 6, 7, 12 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) = {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 14 | hbtlem3.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝑈) | |
| 15 | 8, 9, 10, 11 | hbtlem1 43221 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐽 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐽)‘𝑋) = {𝑎 ∣ ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 16 | 5, 14, 7, 15 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝑆‘𝐽)‘𝑋) = {𝑎 ∣ ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 17 | 4, 13, 16 | 3sstr4d 3985 | 1 ⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘𝐽)‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 ⊆ wss 3897 class class class wbr 5093 ‘cfv 6487 ≤ cle 11153 ℕ0cn0 12387 Ringcrg 20157 LIdealclidl 21149 Poly1cpl1 22095 coe1cco1 22096 deg1cdg1 25992 ldgIdlSeqcldgis 43219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-1cn 11070 ax-addcl 11072 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-nn 12132 df-n0 12388 df-ldgis 43220 |
| This theorem is referenced by: hbt 43228 |
| Copyright terms: Public domain | W3C validator |