Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem3 Structured version   Visualization version   GIF version

Theorem hbtlem3 39747
Description: The leading ideal function is monotone. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem3.r (𝜑𝑅 ∈ Ring)
hbtlem3.i (𝜑𝐼𝑈)
hbtlem3.j (𝜑𝐽𝑈)
hbtlem3.ij (𝜑𝐼𝐽)
hbtlem3.x (𝜑𝑋 ∈ ℕ0)
Assertion
Ref Expression
hbtlem3 (𝜑 → ((𝑆𝐼)‘𝑋) ⊆ ((𝑆𝐽)‘𝑋))

Proof of Theorem hbtlem3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem3.ij . . . 4 (𝜑𝐼𝐽)
2 ssrexv 4034 . . . 4 (𝐼𝐽 → (∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) → ∃𝑏𝐽 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))))
31, 2syl 17 . . 3 (𝜑 → (∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) → ∃𝑏𝐽 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))))
43ss2abdv 4044 . 2 (𝜑 → {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ⊆ {𝑎 ∣ ∃𝑏𝐽 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
5 hbtlem3.r . . 3 (𝜑𝑅 ∈ Ring)
6 hbtlem3.i . . 3 (𝜑𝐼𝑈)
7 hbtlem3.x . . 3 (𝜑𝑋 ∈ ℕ0)
8 hbtlem.p . . . 4 𝑃 = (Poly1𝑅)
9 hbtlem.u . . . 4 𝑈 = (LIdeal‘𝑃)
10 hbtlem.s . . . 4 𝑆 = (ldgIdlSeq‘𝑅)
11 eqid 2821 . . . 4 ( deg1𝑅) = ( deg1𝑅)
128, 9, 10, 11hbtlem1 39743 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
135, 6, 7, 12syl3anc 1367 . 2 (𝜑 → ((𝑆𝐼)‘𝑋) = {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
14 hbtlem3.j . . 3 (𝜑𝐽𝑈)
158, 9, 10, 11hbtlem1 39743 . . 3 ((𝑅 ∈ Ring ∧ 𝐽𝑈𝑋 ∈ ℕ0) → ((𝑆𝐽)‘𝑋) = {𝑎 ∣ ∃𝑏𝐽 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
165, 14, 7, 15syl3anc 1367 . 2 (𝜑 → ((𝑆𝐽)‘𝑋) = {𝑎 ∣ ∃𝑏𝐽 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
174, 13, 163sstr4d 4014 1 (𝜑 → ((𝑆𝐼)‘𝑋) ⊆ ((𝑆𝐽)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {cab 2799  wrex 3139  wss 3936   class class class wbr 5066  cfv 6355  cle 10676  0cn0 11898  Ringcrg 19297  LIdealclidl 19942  Poly1cpl1 20345  coe1cco1 20346   deg1 cdg1 24648  ldgIdlSeqcldgis 39741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-1cn 10595  ax-addcl 10597
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-nn 11639  df-n0 11899  df-ldgis 39742
This theorem is referenced by:  hbt  39750
  Copyright terms: Public domain W3C validator