| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hbtlem3 | Structured version Visualization version GIF version | ||
| Description: The leading ideal function is monotone. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| hbtlem.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| hbtlem.u | ⊢ 𝑈 = (LIdeal‘𝑃) |
| hbtlem.s | ⊢ 𝑆 = (ldgIdlSeq‘𝑅) |
| hbtlem3.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| hbtlem3.i | ⊢ (𝜑 → 𝐼 ∈ 𝑈) |
| hbtlem3.j | ⊢ (𝜑 → 𝐽 ∈ 𝑈) |
| hbtlem3.ij | ⊢ (𝜑 → 𝐼 ⊆ 𝐽) |
| hbtlem3.x | ⊢ (𝜑 → 𝑋 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| hbtlem3 | ⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘𝐽)‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbtlem3.ij | . . . 4 ⊢ (𝜑 → 𝐼 ⊆ 𝐽) | |
| 2 | ssrexv 4033 | . . . 4 ⊢ (𝐼 ⊆ 𝐽 → (∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) → ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) → ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)))) |
| 4 | 3 | ss2abdv 4046 | . 2 ⊢ (𝜑 → {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ⊆ {𝑎 ∣ ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 5 | hbtlem3.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 6 | hbtlem3.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑈) | |
| 7 | hbtlem3.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℕ0) | |
| 8 | hbtlem.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 9 | hbtlem.u | . . . 4 ⊢ 𝑈 = (LIdeal‘𝑃) | |
| 10 | hbtlem.s | . . . 4 ⊢ 𝑆 = (ldgIdlSeq‘𝑅) | |
| 11 | eqid 2734 | . . . 4 ⊢ (deg1‘𝑅) = (deg1‘𝑅) | |
| 12 | 8, 9, 10, 11 | hbtlem1 43113 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) = {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 13 | 5, 6, 7, 12 | syl3anc 1372 | . 2 ⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) = {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 14 | hbtlem3.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝑈) | |
| 15 | 8, 9, 10, 11 | hbtlem1 43113 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐽 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐽)‘𝑋) = {𝑎 ∣ ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 16 | 5, 14, 7, 15 | syl3anc 1372 | . 2 ⊢ (𝜑 → ((𝑆‘𝐽)‘𝑋) = {𝑎 ∣ ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 17 | 4, 13, 16 | 3sstr4d 4019 | 1 ⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘𝐽)‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2712 ∃wrex 3059 ⊆ wss 3931 class class class wbr 5123 ‘cfv 6541 ≤ cle 11278 ℕ0cn0 12509 Ringcrg 20199 LIdealclidl 21179 Poly1cpl1 22127 coe1cco1 22128 deg1cdg1 26030 ldgIdlSeqcldgis 43111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-1cn 11195 ax-addcl 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-nn 12249 df-n0 12510 df-ldgis 43112 |
| This theorem is referenced by: hbt 43120 |
| Copyright terms: Public domain | W3C validator |