Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem3 Structured version   Visualization version   GIF version

Theorem hbtlem3 40952
Description: The leading ideal function is monotone. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem3.r (𝜑𝑅 ∈ Ring)
hbtlem3.i (𝜑𝐼𝑈)
hbtlem3.j (𝜑𝐽𝑈)
hbtlem3.ij (𝜑𝐼𝐽)
hbtlem3.x (𝜑𝑋 ∈ ℕ0)
Assertion
Ref Expression
hbtlem3 (𝜑 → ((𝑆𝐼)‘𝑋) ⊆ ((𝑆𝐽)‘𝑋))

Proof of Theorem hbtlem3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem3.ij . . . 4 (𝜑𝐼𝐽)
2 ssrexv 3988 . . . 4 (𝐼𝐽 → (∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) → ∃𝑏𝐽 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))))
31, 2syl 17 . . 3 (𝜑 → (∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) → ∃𝑏𝐽 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))))
43ss2abdv 3997 . 2 (𝜑 → {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ⊆ {𝑎 ∣ ∃𝑏𝐽 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
5 hbtlem3.r . . 3 (𝜑𝑅 ∈ Ring)
6 hbtlem3.i . . 3 (𝜑𝐼𝑈)
7 hbtlem3.x . . 3 (𝜑𝑋 ∈ ℕ0)
8 hbtlem.p . . . 4 𝑃 = (Poly1𝑅)
9 hbtlem.u . . . 4 𝑈 = (LIdeal‘𝑃)
10 hbtlem.s . . . 4 𝑆 = (ldgIdlSeq‘𝑅)
11 eqid 2738 . . . 4 ( deg1𝑅) = ( deg1𝑅)
128, 9, 10, 11hbtlem1 40948 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
135, 6, 7, 12syl3anc 1370 . 2 (𝜑 → ((𝑆𝐼)‘𝑋) = {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
14 hbtlem3.j . . 3 (𝜑𝐽𝑈)
158, 9, 10, 11hbtlem1 40948 . . 3 ((𝑅 ∈ Ring ∧ 𝐽𝑈𝑋 ∈ ℕ0) → ((𝑆𝐽)‘𝑋) = {𝑎 ∣ ∃𝑏𝐽 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
165, 14, 7, 15syl3anc 1370 . 2 (𝜑 → ((𝑆𝐽)‘𝑋) = {𝑎 ∣ ∃𝑏𝐽 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
174, 13, 163sstr4d 3968 1 (𝜑 → ((𝑆𝐼)‘𝑋) ⊆ ((𝑆𝐽)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {cab 2715  wrex 3065  wss 3887   class class class wbr 5074  cfv 6433  cle 11010  0cn0 12233  Ringcrg 19783  LIdealclidl 20432  Poly1cpl1 21348  coe1cco1 21349   deg1 cdg1 25216  ldgIdlSeqcldgis 40946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-1cn 10929  ax-addcl 10931
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-nn 11974  df-n0 12234  df-ldgis 40947
This theorem is referenced by:  hbt  40955
  Copyright terms: Public domain W3C validator