![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hbtlem3 | Structured version Visualization version GIF version |
Description: The leading ideal function is monotone. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
Ref | Expression |
---|---|
hbtlem.p | ⊢ 𝑃 = (Poly1‘𝑅) |
hbtlem.u | ⊢ 𝑈 = (LIdeal‘𝑃) |
hbtlem.s | ⊢ 𝑆 = (ldgIdlSeq‘𝑅) |
hbtlem3.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
hbtlem3.i | ⊢ (𝜑 → 𝐼 ∈ 𝑈) |
hbtlem3.j | ⊢ (𝜑 → 𝐽 ∈ 𝑈) |
hbtlem3.ij | ⊢ (𝜑 → 𝐼 ⊆ 𝐽) |
hbtlem3.x | ⊢ (𝜑 → 𝑋 ∈ ℕ0) |
Ref | Expression |
---|---|
hbtlem3 | ⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘𝐽)‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbtlem3.ij | . . . 4 ⊢ (𝜑 → 𝐼 ⊆ 𝐽) | |
2 | ssrexv 4078 | . . . 4 ⊢ (𝐼 ⊆ 𝐽 → (∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) → ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) → ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)))) |
4 | 3 | ss2abdv 4089 | . 2 ⊢ (𝜑 → {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ⊆ {𝑎 ∣ ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
5 | hbtlem3.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
6 | hbtlem3.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑈) | |
7 | hbtlem3.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℕ0) | |
8 | hbtlem.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
9 | hbtlem.u | . . . 4 ⊢ 𝑈 = (LIdeal‘𝑃) | |
10 | hbtlem.s | . . . 4 ⊢ 𝑆 = (ldgIdlSeq‘𝑅) | |
11 | eqid 2740 | . . . 4 ⊢ (deg1‘𝑅) = (deg1‘𝑅) | |
12 | 8, 9, 10, 11 | hbtlem1 43075 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) = {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
13 | 5, 6, 7, 12 | syl3anc 1371 | . 2 ⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) = {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
14 | hbtlem3.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝑈) | |
15 | 8, 9, 10, 11 | hbtlem1 43075 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐽 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐽)‘𝑋) = {𝑎 ∣ ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
16 | 5, 14, 7, 15 | syl3anc 1371 | . 2 ⊢ (𝜑 → ((𝑆‘𝐽)‘𝑋) = {𝑎 ∣ ∃𝑏 ∈ 𝐽 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
17 | 4, 13, 16 | 3sstr4d 4056 | 1 ⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘𝐽)‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 ⊆ wss 3976 class class class wbr 5166 ‘cfv 6568 ≤ cle 11319 ℕ0cn0 12547 Ringcrg 20254 LIdealclidl 21233 Poly1cpl1 22191 coe1cco1 22192 deg1cdg1 26105 ldgIdlSeqcldgis 43073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7764 ax-cnex 11234 ax-1cn 11236 ax-addcl 11238 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-ov 7446 df-om 7898 df-2nd 8025 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-nn 12288 df-n0 12548 df-ldgis 43074 |
This theorem is referenced by: hbt 43082 |
Copyright terms: Public domain | W3C validator |