Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem4 Structured version   Visualization version   GIF version

Theorem hbtlem4 43099
Description: The leading ideal function goes to increasing sequences. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem4.r (𝜑𝑅 ∈ Ring)
hbtlem4.i (𝜑𝐼𝑈)
hbtlem4.x (𝜑𝑋 ∈ ℕ0)
hbtlem4.y (𝜑𝑌 ∈ ℕ0)
hbtlem4.xy (𝜑𝑋𝑌)
Assertion
Ref Expression
hbtlem4 (𝜑 → ((𝑆𝐼)‘𝑋) ⊆ ((𝑆𝐼)‘𝑌))

Proof of Theorem hbtlem4
Dummy variables 𝑎 𝑐 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem4.r . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
21ad2antrr 726 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑅 ∈ Ring)
3 hbtlem.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
43ply1ring 22148 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
52, 4syl 17 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑃 ∈ Ring)
6 hbtlem4.i . . . . . . . . 9 (𝜑𝐼𝑈)
76ad2antrr 726 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → 𝐼𝑈)
8 eqid 2729 . . . . . . . . . 10 (mulGrp‘𝑃) = (mulGrp‘𝑃)
9 eqid 2729 . . . . . . . . . 10 (Base‘𝑃) = (Base‘𝑃)
108, 9mgpbas 20048 . . . . . . . . 9 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
11 eqid 2729 . . . . . . . . 9 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
128ringmgp 20142 . . . . . . . . . 10 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
135, 12syl 17 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → (mulGrp‘𝑃) ∈ Mnd)
14 hbtlem4.x . . . . . . . . . . 11 (𝜑𝑋 ∈ ℕ0)
1514ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑋 ∈ ℕ0)
16 hbtlem4.y . . . . . . . . . . 11 (𝜑𝑌 ∈ ℕ0)
1716ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑌 ∈ ℕ0)
18 hbtlem4.xy . . . . . . . . . . 11 (𝜑𝑋𝑌)
1918ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑋𝑌)
20 nn0sub2 12555 . . . . . . . . . 10 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) → (𝑌𝑋) ∈ ℕ0)
2115, 17, 19, 20syl3anc 1373 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → (𝑌𝑋) ∈ ℕ0)
22 eqid 2729 . . . . . . . . . . 11 (var1𝑅) = (var1𝑅)
2322, 3, 9vr1cl 22118 . . . . . . . . . 10 (𝑅 ∈ Ring → (var1𝑅) ∈ (Base‘𝑃))
242, 23syl 17 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → (var1𝑅) ∈ (Base‘𝑃))
2510, 11, 13, 21, 24mulgnn0cld 18992 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → ((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
26 simplr 768 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑐𝐼)
27 hbtlem.u . . . . . . . . 9 𝑈 = (LIdeal‘𝑃)
28 eqid 2729 . . . . . . . . 9 (.r𝑃) = (.r𝑃)
2927, 9, 28lidlmcl 21150 . . . . . . . 8 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃) ∧ 𝑐𝐼)) → (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) ∈ 𝐼)
305, 7, 25, 26, 29syl22anc 838 . . . . . . 7 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) ∈ 𝐼)
31 eqid 2729 . . . . . . . . 9 (deg1𝑅) = (deg1𝑅)
329, 27lidlss 21137 . . . . . . . . . . 11 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
337, 32syl 17 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → 𝐼 ⊆ (Base‘𝑃))
3433, 26sseldd 3938 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑐 ∈ (Base‘𝑃))
3531, 3, 22, 8, 11deg1pwle 26041 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑌𝑋) ∈ ℕ0) → ((deg1𝑅)‘((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ (𝑌𝑋))
362, 21, 35syl2anc 584 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → ((deg1𝑅)‘((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ (𝑌𝑋))
37 simpr 484 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → ((deg1𝑅)‘𝑐) ≤ 𝑋)
383, 31, 2, 9, 28, 25, 34, 21, 15, 36, 37deg1mulle2 26030 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → ((deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ ((𝑌𝑋) + 𝑋))
3917nn0cnd 12465 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑌 ∈ ℂ)
4015nn0cnd 12465 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑋 ∈ ℂ)
4139, 40npcand 11497 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → ((𝑌𝑋) + 𝑋) = 𝑌)
4238, 41breqtrd 5121 . . . . . . 7 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → ((deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ 𝑌)
43 eqid 2729 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
4443, 3, 22, 8, 11, 9, 28, 2, 34, 21, 15coe1pwmulfv 22182 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘((𝑌𝑋) + 𝑋)) = ((coe1𝑐)‘𝑋))
4541fveq2d 6830 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘((𝑌𝑋) + 𝑋)) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))
4644, 45eqtr3d 2766 . . . . . . 7 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → ((coe1𝑐)‘𝑋) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))
47 fveq2 6826 . . . . . . . . . 10 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → ((deg1𝑅)‘𝑏) = ((deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)))
4847breq1d 5105 . . . . . . . . 9 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → (((deg1𝑅)‘𝑏) ≤ 𝑌 ↔ ((deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ 𝑌))
49 fveq2 6826 . . . . . . . . . . 11 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → (coe1𝑏) = (coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)))
5049fveq1d 6828 . . . . . . . . . 10 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → ((coe1𝑏)‘𝑌) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))
5150eqeq2d 2740 . . . . . . . . 9 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → (((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌) ↔ ((coe1𝑐)‘𝑋) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌)))
5248, 51anbi12d 632 . . . . . . . 8 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → ((((deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌)) ↔ (((deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))))
5352rspcev 3579 . . . . . . 7 (((((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) ∈ 𝐼 ∧ (((deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))) → ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌)))
5430, 42, 46, 53syl12anc 836 . . . . . 6 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌)))
55 eqeq1 2733 . . . . . . . 8 (𝑎 = ((coe1𝑐)‘𝑋) → (𝑎 = ((coe1𝑏)‘𝑌) ↔ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌)))
5655anbi2d 630 . . . . . . 7 (𝑎 = ((coe1𝑐)‘𝑋) → ((((deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌)) ↔ (((deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌))))
5756rexbidv 3153 . . . . . 6 (𝑎 = ((coe1𝑐)‘𝑋) → (∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌)) ↔ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌))))
5854, 57syl5ibrcom 247 . . . . 5 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → (𝑎 = ((coe1𝑐)‘𝑋) → ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))))
5958expimpd 453 . . . 4 ((𝜑𝑐𝐼) → ((((deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋)) → ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))))
6059rexlimdva 3130 . . 3 (𝜑 → (∃𝑐𝐼 (((deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋)) → ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))))
6160ss2abdv 4020 . 2 (𝜑 → {𝑎 ∣ ∃𝑐𝐼 (((deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋))} ⊆ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))})
62 hbtlem.s . . . 4 𝑆 = (ldgIdlSeq‘𝑅)
633, 27, 62, 31hbtlem1 43096 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑎 ∣ ∃𝑐𝐼 (((deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋))})
641, 6, 14, 63syl3anc 1373 . 2 (𝜑 → ((𝑆𝐼)‘𝑋) = {𝑎 ∣ ∃𝑐𝐼 (((deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋))})
653, 27, 62, 31hbtlem1 43096 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑌 ∈ ℕ0) → ((𝑆𝐼)‘𝑌) = {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))})
661, 6, 16, 65syl3anc 1373 . 2 (𝜑 → ((𝑆𝐼)‘𝑌) = {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))})
6761, 64, 663sstr4d 3993 1 (𝜑 → ((𝑆𝐼)‘𝑋) ⊆ ((𝑆𝐼)‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  wss 3905   class class class wbr 5095  cfv 6486  (class class class)co 7353   + caddc 11031  cle 11169  cmin 11365  0cn0 12402  Basecbs 17138  .rcmulr 17180  0gc0g 17361  Mndcmnd 18626  .gcmg 18964  mulGrpcmgp 20043  Ringcrg 20136  LIdealclidl 21131  var1cv1 22076  Poly1cpl1 22077  coe1cco1 22078  deg1cdg1 25975  ldgIdlSeqcldgis 43094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-subrng 20449  df-subrg 20473  df-lmod 20783  df-lss 20853  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-cnfld 21280  df-psr 21834  df-mvr 21835  df-mpl 21836  df-opsr 21838  df-psr1 22080  df-vr1 22081  df-ply1 22082  df-coe1 22083  df-mdeg 25976  df-deg1 25977  df-ldgis 43095
This theorem is referenced by:  hbt  43103
  Copyright terms: Public domain W3C validator