Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem4 Structured version   Visualization version   GIF version

Theorem hbtlem4 39733
Description: The leading ideal function goes to increasing sequences. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem4.r (𝜑𝑅 ∈ Ring)
hbtlem4.i (𝜑𝐼𝑈)
hbtlem4.x (𝜑𝑋 ∈ ℕ0)
hbtlem4.y (𝜑𝑌 ∈ ℕ0)
hbtlem4.xy (𝜑𝑋𝑌)
Assertion
Ref Expression
hbtlem4 (𝜑 → ((𝑆𝐼)‘𝑋) ⊆ ((𝑆𝐼)‘𝑌))

Proof of Theorem hbtlem4
Dummy variables 𝑎 𝑐 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem4.r . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
21ad2antrr 724 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑅 ∈ Ring)
3 hbtlem.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
43ply1ring 20418 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
52, 4syl 17 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑃 ∈ Ring)
6 hbtlem4.i . . . . . . . . 9 (𝜑𝐼𝑈)
76ad2antrr 724 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝐼𝑈)
8 eqid 2823 . . . . . . . . . . 11 (mulGrp‘𝑃) = (mulGrp‘𝑃)
98ringmgp 19305 . . . . . . . . . 10 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
105, 9syl 17 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (mulGrp‘𝑃) ∈ Mnd)
11 hbtlem4.x . . . . . . . . . . 11 (𝜑𝑋 ∈ ℕ0)
1211ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑋 ∈ ℕ0)
13 hbtlem4.y . . . . . . . . . . 11 (𝜑𝑌 ∈ ℕ0)
1413ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑌 ∈ ℕ0)
15 hbtlem4.xy . . . . . . . . . . 11 (𝜑𝑋𝑌)
1615ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑋𝑌)
17 nn0sub2 12046 . . . . . . . . . 10 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) → (𝑌𝑋) ∈ ℕ0)
1812, 14, 16, 17syl3anc 1367 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (𝑌𝑋) ∈ ℕ0)
19 eqid 2823 . . . . . . . . . . 11 (var1𝑅) = (var1𝑅)
20 eqid 2823 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝑃)
2119, 3, 20vr1cl 20387 . . . . . . . . . 10 (𝑅 ∈ Ring → (var1𝑅) ∈ (Base‘𝑃))
222, 21syl 17 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (var1𝑅) ∈ (Base‘𝑃))
238, 20mgpbas 19247 . . . . . . . . . 10 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
24 eqid 2823 . . . . . . . . . 10 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
2523, 24mulgnn0cl 18246 . . . . . . . . 9 (((mulGrp‘𝑃) ∈ Mnd ∧ (𝑌𝑋) ∈ ℕ0 ∧ (var1𝑅) ∈ (Base‘𝑃)) → ((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
2610, 18, 22, 25syl3anc 1367 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → ((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
27 simplr 767 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑐𝐼)
28 hbtlem.u . . . . . . . . 9 𝑈 = (LIdeal‘𝑃)
29 eqid 2823 . . . . . . . . 9 (.r𝑃) = (.r𝑃)
3028, 20, 29lidlmcl 19992 . . . . . . . 8 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃) ∧ 𝑐𝐼)) → (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) ∈ 𝐼)
315, 7, 26, 27, 30syl22anc 836 . . . . . . 7 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) ∈ 𝐼)
32 eqid 2823 . . . . . . . . 9 ( deg1𝑅) = ( deg1𝑅)
3320, 28lidlss 19985 . . . . . . . . . . 11 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
347, 33syl 17 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝐼 ⊆ (Base‘𝑃))
3534, 27sseldd 3970 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑐 ∈ (Base‘𝑃))
3632, 3, 19, 8, 24deg1pwle 24715 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑌𝑋) ∈ ℕ0) → (( deg1𝑅)‘((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ (𝑌𝑋))
372, 18, 36syl2anc 586 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (( deg1𝑅)‘((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ (𝑌𝑋))
38 simpr 487 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (( deg1𝑅)‘𝑐) ≤ 𝑋)
393, 32, 2, 20, 29, 26, 35, 18, 12, 37, 38deg1mulle2 24705 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (( deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ ((𝑌𝑋) + 𝑋))
4014nn0cnd 11960 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑌 ∈ ℂ)
4112nn0cnd 11960 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑋 ∈ ℂ)
4240, 41npcand 11003 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → ((𝑌𝑋) + 𝑋) = 𝑌)
4339, 42breqtrd 5094 . . . . . . 7 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (( deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ 𝑌)
44 eqid 2823 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
4544, 3, 19, 8, 24, 20, 29, 2, 35, 18, 12coe1pwmulfv 20450 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘((𝑌𝑋) + 𝑋)) = ((coe1𝑐)‘𝑋))
4642fveq2d 6676 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘((𝑌𝑋) + 𝑋)) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))
4745, 46eqtr3d 2860 . . . . . . 7 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → ((coe1𝑐)‘𝑋) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))
48 fveq2 6672 . . . . . . . . . 10 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → (( deg1𝑅)‘𝑏) = (( deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)))
4948breq1d 5078 . . . . . . . . 9 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → ((( deg1𝑅)‘𝑏) ≤ 𝑌 ↔ (( deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ 𝑌))
50 fveq2 6672 . . . . . . . . . . 11 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → (coe1𝑏) = (coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)))
5150fveq1d 6674 . . . . . . . . . 10 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → ((coe1𝑏)‘𝑌) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))
5251eqeq2d 2834 . . . . . . . . 9 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → (((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌) ↔ ((coe1𝑐)‘𝑋) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌)))
5349, 52anbi12d 632 . . . . . . . 8 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → (((( deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌)) ↔ ((( deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))))
5453rspcev 3625 . . . . . . 7 (((((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) ∈ 𝐼 ∧ ((( deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))) → ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌)))
5531, 43, 47, 54syl12anc 834 . . . . . 6 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌)))
56 eqeq1 2827 . . . . . . . 8 (𝑎 = ((coe1𝑐)‘𝑋) → (𝑎 = ((coe1𝑏)‘𝑌) ↔ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌)))
5756anbi2d 630 . . . . . . 7 (𝑎 = ((coe1𝑐)‘𝑋) → (((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌)) ↔ ((( deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌))))
5857rexbidv 3299 . . . . . 6 (𝑎 = ((coe1𝑐)‘𝑋) → (∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌)) ↔ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌))))
5955, 58syl5ibrcom 249 . . . . 5 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (𝑎 = ((coe1𝑐)‘𝑋) → ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))))
6059expimpd 456 . . . 4 ((𝜑𝑐𝐼) → (((( deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋)) → ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))))
6160rexlimdva 3286 . . 3 (𝜑 → (∃𝑐𝐼 ((( deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋)) → ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))))
6261ss2abdv 4046 . 2 (𝜑 → {𝑎 ∣ ∃𝑐𝐼 ((( deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋))} ⊆ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))})
63 hbtlem.s . . . 4 𝑆 = (ldgIdlSeq‘𝑅)
643, 28, 63, 32hbtlem1 39730 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑎 ∣ ∃𝑐𝐼 ((( deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋))})
651, 6, 11, 64syl3anc 1367 . 2 (𝜑 → ((𝑆𝐼)‘𝑋) = {𝑎 ∣ ∃𝑐𝐼 ((( deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋))})
663, 28, 63, 32hbtlem1 39730 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑌 ∈ ℕ0) → ((𝑆𝐼)‘𝑌) = {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))})
671, 6, 13, 66syl3anc 1367 . 2 (𝜑 → ((𝑆𝐼)‘𝑌) = {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))})
6862, 65, 673sstr4d 4016 1 (𝜑 → ((𝑆𝐼)‘𝑋) ⊆ ((𝑆𝐼)‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {cab 2801  wrex 3141  wss 3938   class class class wbr 5068  cfv 6357  (class class class)co 7158   + caddc 10542  cle 10678  cmin 10872  0cn0 11900  Basecbs 16485  .rcmulr 16568  0gc0g 16715  Mndcmnd 17913  .gcmg 18226  mulGrpcmgp 19241  Ringcrg 19299  LIdealclidl 19944  var1cv1 20346  Poly1cpl1 20347  coe1cco1 20348   deg1 cdg1 24650  ldgIdlSeqcldgis 39728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-0g 16717  df-gsum 16718  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-ghm 18358  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-subrg 19535  df-lmod 19638  df-lss 19706  df-sra 19946  df-rgmod 19947  df-lidl 19948  df-psr 20138  df-mvr 20139  df-mpl 20140  df-opsr 20142  df-psr1 20350  df-vr1 20351  df-ply1 20352  df-coe1 20353  df-cnfld 20548  df-mdeg 24651  df-deg1 24652  df-ldgis 39729
This theorem is referenced by:  hbt  39737
  Copyright terms: Public domain W3C validator