Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem4 Structured version   Visualization version   GIF version

Theorem hbtlem4 43083
Description: The leading ideal function goes to increasing sequences. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem4.r (𝜑𝑅 ∈ Ring)
hbtlem4.i (𝜑𝐼𝑈)
hbtlem4.x (𝜑𝑋 ∈ ℕ0)
hbtlem4.y (𝜑𝑌 ∈ ℕ0)
hbtlem4.xy (𝜑𝑋𝑌)
Assertion
Ref Expression
hbtlem4 (𝜑 → ((𝑆𝐼)‘𝑋) ⊆ ((𝑆𝐼)‘𝑌))

Proof of Theorem hbtlem4
Dummy variables 𝑎 𝑐 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem4.r . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
21ad2antrr 725 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑅 ∈ Ring)
3 hbtlem.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
43ply1ring 22270 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
52, 4syl 17 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑃 ∈ Ring)
6 hbtlem4.i . . . . . . . . 9 (𝜑𝐼𝑈)
76ad2antrr 725 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → 𝐼𝑈)
8 eqid 2740 . . . . . . . . . 10 (mulGrp‘𝑃) = (mulGrp‘𝑃)
9 eqid 2740 . . . . . . . . . 10 (Base‘𝑃) = (Base‘𝑃)
108, 9mgpbas 20167 . . . . . . . . 9 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
11 eqid 2740 . . . . . . . . 9 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
128ringmgp 20266 . . . . . . . . . 10 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
135, 12syl 17 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → (mulGrp‘𝑃) ∈ Mnd)
14 hbtlem4.x . . . . . . . . . . 11 (𝜑𝑋 ∈ ℕ0)
1514ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑋 ∈ ℕ0)
16 hbtlem4.y . . . . . . . . . . 11 (𝜑𝑌 ∈ ℕ0)
1716ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑌 ∈ ℕ0)
18 hbtlem4.xy . . . . . . . . . . 11 (𝜑𝑋𝑌)
1918ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑋𝑌)
20 nn0sub2 12704 . . . . . . . . . 10 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) → (𝑌𝑋) ∈ ℕ0)
2115, 17, 19, 20syl3anc 1371 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → (𝑌𝑋) ∈ ℕ0)
22 eqid 2740 . . . . . . . . . . 11 (var1𝑅) = (var1𝑅)
2322, 3, 9vr1cl 22240 . . . . . . . . . 10 (𝑅 ∈ Ring → (var1𝑅) ∈ (Base‘𝑃))
242, 23syl 17 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → (var1𝑅) ∈ (Base‘𝑃))
2510, 11, 13, 21, 24mulgnn0cld 19135 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → ((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
26 simplr 768 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑐𝐼)
27 hbtlem.u . . . . . . . . 9 𝑈 = (LIdeal‘𝑃)
28 eqid 2740 . . . . . . . . 9 (.r𝑃) = (.r𝑃)
2927, 9, 28lidlmcl 21258 . . . . . . . 8 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃) ∧ 𝑐𝐼)) → (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) ∈ 𝐼)
305, 7, 25, 26, 29syl22anc 838 . . . . . . 7 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) ∈ 𝐼)
31 eqid 2740 . . . . . . . . 9 (deg1𝑅) = (deg1𝑅)
329, 27lidlss 21245 . . . . . . . . . . 11 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
337, 32syl 17 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → 𝐼 ⊆ (Base‘𝑃))
3433, 26sseldd 4009 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑐 ∈ (Base‘𝑃))
3531, 3, 22, 8, 11deg1pwle 26179 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑌𝑋) ∈ ℕ0) → ((deg1𝑅)‘((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ (𝑌𝑋))
362, 21, 35syl2anc 583 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → ((deg1𝑅)‘((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ (𝑌𝑋))
37 simpr 484 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → ((deg1𝑅)‘𝑐) ≤ 𝑋)
383, 31, 2, 9, 28, 25, 34, 21, 15, 36, 37deg1mulle2 26168 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → ((deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ ((𝑌𝑋) + 𝑋))
3917nn0cnd 12615 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑌 ∈ ℂ)
4015nn0cnd 12615 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑋 ∈ ℂ)
4139, 40npcand 11651 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → ((𝑌𝑋) + 𝑋) = 𝑌)
4238, 41breqtrd 5192 . . . . . . 7 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → ((deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ 𝑌)
43 eqid 2740 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
4443, 3, 22, 8, 11, 9, 28, 2, 34, 21, 15coe1pwmulfv 22304 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘((𝑌𝑋) + 𝑋)) = ((coe1𝑐)‘𝑋))
4541fveq2d 6924 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘((𝑌𝑋) + 𝑋)) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))
4644, 45eqtr3d 2782 . . . . . . 7 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → ((coe1𝑐)‘𝑋) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))
47 fveq2 6920 . . . . . . . . . 10 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → ((deg1𝑅)‘𝑏) = ((deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)))
4847breq1d 5176 . . . . . . . . 9 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → (((deg1𝑅)‘𝑏) ≤ 𝑌 ↔ ((deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ 𝑌))
49 fveq2 6920 . . . . . . . . . . 11 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → (coe1𝑏) = (coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)))
5049fveq1d 6922 . . . . . . . . . 10 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → ((coe1𝑏)‘𝑌) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))
5150eqeq2d 2751 . . . . . . . . 9 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → (((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌) ↔ ((coe1𝑐)‘𝑋) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌)))
5248, 51anbi12d 631 . . . . . . . 8 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → ((((deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌)) ↔ (((deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))))
5352rspcev 3635 . . . . . . 7 (((((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) ∈ 𝐼 ∧ (((deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))) → ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌)))
5430, 42, 46, 53syl12anc 836 . . . . . 6 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌)))
55 eqeq1 2744 . . . . . . . 8 (𝑎 = ((coe1𝑐)‘𝑋) → (𝑎 = ((coe1𝑏)‘𝑌) ↔ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌)))
5655anbi2d 629 . . . . . . 7 (𝑎 = ((coe1𝑐)‘𝑋) → ((((deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌)) ↔ (((deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌))))
5756rexbidv 3185 . . . . . 6 (𝑎 = ((coe1𝑐)‘𝑋) → (∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌)) ↔ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌))))
5854, 57syl5ibrcom 247 . . . . 5 (((𝜑𝑐𝐼) ∧ ((deg1𝑅)‘𝑐) ≤ 𝑋) → (𝑎 = ((coe1𝑐)‘𝑋) → ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))))
5958expimpd 453 . . . 4 ((𝜑𝑐𝐼) → ((((deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋)) → ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))))
6059rexlimdva 3161 . . 3 (𝜑 → (∃𝑐𝐼 (((deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋)) → ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))))
6160ss2abdv 4089 . 2 (𝜑 → {𝑎 ∣ ∃𝑐𝐼 (((deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋))} ⊆ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))})
62 hbtlem.s . . . 4 𝑆 = (ldgIdlSeq‘𝑅)
633, 27, 62, 31hbtlem1 43080 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑎 ∣ ∃𝑐𝐼 (((deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋))})
641, 6, 14, 63syl3anc 1371 . 2 (𝜑 → ((𝑆𝐼)‘𝑋) = {𝑎 ∣ ∃𝑐𝐼 (((deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋))})
653, 27, 62, 31hbtlem1 43080 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑌 ∈ ℕ0) → ((𝑆𝐼)‘𝑌) = {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))})
661, 6, 16, 65syl3anc 1371 . 2 (𝜑 → ((𝑆𝐼)‘𝑌) = {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))})
6761, 64, 663sstr4d 4056 1 (𝜑 → ((𝑆𝐼)‘𝑋) ⊆ ((𝑆𝐼)‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448   + caddc 11187  cle 11325  cmin 11520  0cn0 12553  Basecbs 17258  .rcmulr 17312  0gc0g 17499  Mndcmnd 18772  .gcmg 19107  mulGrpcmgp 20161  Ringcrg 20260  LIdealclidl 21239  var1cv1 22198  Poly1cpl1 22199  coe1cco1 22200  deg1cdg1 26113  ldgIdlSeqcldgis 43078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-cnfld 21388  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-mdeg 26114  df-deg1 26115  df-ldgis 43079
This theorem is referenced by:  hbt  43087
  Copyright terms: Public domain W3C validator