Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem4 Structured version   Visualization version   GIF version

Theorem hbtlem4 42472
Description: The leading ideal function goes to increasing sequences. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1β€˜π‘…)
hbtlem.u π‘ˆ = (LIdealβ€˜π‘ƒ)
hbtlem.s 𝑆 = (ldgIdlSeqβ€˜π‘…)
hbtlem4.r (πœ‘ β†’ 𝑅 ∈ Ring)
hbtlem4.i (πœ‘ β†’ 𝐼 ∈ π‘ˆ)
hbtlem4.x (πœ‘ β†’ 𝑋 ∈ β„•0)
hbtlem4.y (πœ‘ β†’ π‘Œ ∈ β„•0)
hbtlem4.xy (πœ‘ β†’ 𝑋 ≀ π‘Œ)
Assertion
Ref Expression
hbtlem4 (πœ‘ β†’ ((π‘†β€˜πΌ)β€˜π‘‹) βŠ† ((π‘†β€˜πΌ)β€˜π‘Œ))

Proof of Theorem hbtlem4
Dummy variables π‘Ž 𝑐 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem4.r . . . . . . . . . 10 (πœ‘ β†’ 𝑅 ∈ Ring)
21ad2antrr 725 . . . . . . . . 9 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ 𝑅 ∈ Ring)
3 hbtlem.p . . . . . . . . . 10 𝑃 = (Poly1β€˜π‘…)
43ply1ring 22153 . . . . . . . . 9 (𝑅 ∈ Ring β†’ 𝑃 ∈ Ring)
52, 4syl 17 . . . . . . . 8 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ 𝑃 ∈ Ring)
6 hbtlem4.i . . . . . . . . 9 (πœ‘ β†’ 𝐼 ∈ π‘ˆ)
76ad2antrr 725 . . . . . . . 8 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ 𝐼 ∈ π‘ˆ)
8 eqid 2727 . . . . . . . . . 10 (mulGrpβ€˜π‘ƒ) = (mulGrpβ€˜π‘ƒ)
9 eqid 2727 . . . . . . . . . 10 (Baseβ€˜π‘ƒ) = (Baseβ€˜π‘ƒ)
108, 9mgpbas 20071 . . . . . . . . 9 (Baseβ€˜π‘ƒ) = (Baseβ€˜(mulGrpβ€˜π‘ƒ))
11 eqid 2727 . . . . . . . . 9 (.gβ€˜(mulGrpβ€˜π‘ƒ)) = (.gβ€˜(mulGrpβ€˜π‘ƒ))
128ringmgp 20170 . . . . . . . . . 10 (𝑃 ∈ Ring β†’ (mulGrpβ€˜π‘ƒ) ∈ Mnd)
135, 12syl 17 . . . . . . . . 9 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ (mulGrpβ€˜π‘ƒ) ∈ Mnd)
14 hbtlem4.x . . . . . . . . . . 11 (πœ‘ β†’ 𝑋 ∈ β„•0)
1514ad2antrr 725 . . . . . . . . . 10 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ 𝑋 ∈ β„•0)
16 hbtlem4.y . . . . . . . . . . 11 (πœ‘ β†’ π‘Œ ∈ β„•0)
1716ad2antrr 725 . . . . . . . . . 10 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ π‘Œ ∈ β„•0)
18 hbtlem4.xy . . . . . . . . . . 11 (πœ‘ β†’ 𝑋 ≀ π‘Œ)
1918ad2antrr 725 . . . . . . . . . 10 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ 𝑋 ≀ π‘Œ)
20 nn0sub2 12645 . . . . . . . . . 10 ((𝑋 ∈ β„•0 ∧ π‘Œ ∈ β„•0 ∧ 𝑋 ≀ π‘Œ) β†’ (π‘Œ βˆ’ 𝑋) ∈ β„•0)
2115, 17, 19, 20syl3anc 1369 . . . . . . . . 9 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ (π‘Œ βˆ’ 𝑋) ∈ β„•0)
22 eqid 2727 . . . . . . . . . . 11 (var1β€˜π‘…) = (var1β€˜π‘…)
2322, 3, 9vr1cl 22123 . . . . . . . . . 10 (𝑅 ∈ Ring β†’ (var1β€˜π‘…) ∈ (Baseβ€˜π‘ƒ))
242, 23syl 17 . . . . . . . . 9 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ (var1β€˜π‘…) ∈ (Baseβ€˜π‘ƒ))
2510, 11, 13, 21, 24mulgnn0cld 19041 . . . . . . . 8 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ ((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)) ∈ (Baseβ€˜π‘ƒ))
26 simplr 768 . . . . . . . 8 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ 𝑐 ∈ 𝐼)
27 hbtlem.u . . . . . . . . 9 π‘ˆ = (LIdealβ€˜π‘ƒ)
28 eqid 2727 . . . . . . . . 9 (.rβ€˜π‘ƒ) = (.rβ€˜π‘ƒ)
2927, 9, 28lidlmcl 21110 . . . . . . . 8 (((𝑃 ∈ Ring ∧ 𝐼 ∈ π‘ˆ) ∧ (((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)) ∈ (Baseβ€˜π‘ƒ) ∧ 𝑐 ∈ 𝐼)) β†’ (((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐) ∈ 𝐼)
305, 7, 25, 26, 29syl22anc 838 . . . . . . 7 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ (((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐) ∈ 𝐼)
31 eqid 2727 . . . . . . . . 9 ( deg1 β€˜π‘…) = ( deg1 β€˜π‘…)
329, 27lidlss 21097 . . . . . . . . . . 11 (𝐼 ∈ π‘ˆ β†’ 𝐼 βŠ† (Baseβ€˜π‘ƒ))
337, 32syl 17 . . . . . . . . . 10 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ 𝐼 βŠ† (Baseβ€˜π‘ƒ))
3433, 26sseldd 3979 . . . . . . . . 9 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ 𝑐 ∈ (Baseβ€˜π‘ƒ))
3531, 3, 22, 8, 11deg1pwle 26042 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (π‘Œ βˆ’ 𝑋) ∈ β„•0) β†’ (( deg1 β€˜π‘…)β€˜((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) ≀ (π‘Œ βˆ’ 𝑋))
362, 21, 35syl2anc 583 . . . . . . . . 9 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ (( deg1 β€˜π‘…)β€˜((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) ≀ (π‘Œ βˆ’ 𝑋))
37 simpr 484 . . . . . . . . 9 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋)
383, 31, 2, 9, 28, 25, 34, 21, 15, 36, 37deg1mulle2 26032 . . . . . . . 8 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ (( deg1 β€˜π‘…)β€˜(((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐)) ≀ ((π‘Œ βˆ’ 𝑋) + 𝑋))
3917nn0cnd 12556 . . . . . . . . 9 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ π‘Œ ∈ β„‚)
4015nn0cnd 12556 . . . . . . . . 9 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ 𝑋 ∈ β„‚)
4139, 40npcand 11597 . . . . . . . 8 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ ((π‘Œ βˆ’ 𝑋) + 𝑋) = π‘Œ)
4238, 41breqtrd 5168 . . . . . . 7 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ (( deg1 β€˜π‘…)β€˜(((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐)) ≀ π‘Œ)
43 eqid 2727 . . . . . . . . 9 (0gβ€˜π‘…) = (0gβ€˜π‘…)
4443, 3, 22, 8, 11, 9, 28, 2, 34, 21, 15coe1pwmulfv 22186 . . . . . . . 8 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ ((coe1β€˜(((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐))β€˜((π‘Œ βˆ’ 𝑋) + 𝑋)) = ((coe1β€˜π‘)β€˜π‘‹))
4541fveq2d 6895 . . . . . . . 8 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ ((coe1β€˜(((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐))β€˜((π‘Œ βˆ’ 𝑋) + 𝑋)) = ((coe1β€˜(((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐))β€˜π‘Œ))
4644, 45eqtr3d 2769 . . . . . . 7 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ ((coe1β€˜π‘)β€˜π‘‹) = ((coe1β€˜(((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐))β€˜π‘Œ))
47 fveq2 6891 . . . . . . . . . 10 (𝑏 = (((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐) β†’ (( deg1 β€˜π‘…)β€˜π‘) = (( deg1 β€˜π‘…)β€˜(((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐)))
4847breq1d 5152 . . . . . . . . 9 (𝑏 = (((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐) β†’ ((( deg1 β€˜π‘…)β€˜π‘) ≀ π‘Œ ↔ (( deg1 β€˜π‘…)β€˜(((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐)) ≀ π‘Œ))
49 fveq2 6891 . . . . . . . . . . 11 (𝑏 = (((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐) β†’ (coe1β€˜π‘) = (coe1β€˜(((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐)))
5049fveq1d 6893 . . . . . . . . . 10 (𝑏 = (((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐) β†’ ((coe1β€˜π‘)β€˜π‘Œ) = ((coe1β€˜(((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐))β€˜π‘Œ))
5150eqeq2d 2738 . . . . . . . . 9 (𝑏 = (((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐) β†’ (((coe1β€˜π‘)β€˜π‘‹) = ((coe1β€˜π‘)β€˜π‘Œ) ↔ ((coe1β€˜π‘)β€˜π‘‹) = ((coe1β€˜(((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐))β€˜π‘Œ)))
5248, 51anbi12d 630 . . . . . . . 8 (𝑏 = (((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐) β†’ (((( deg1 β€˜π‘…)β€˜π‘) ≀ π‘Œ ∧ ((coe1β€˜π‘)β€˜π‘‹) = ((coe1β€˜π‘)β€˜π‘Œ)) ↔ ((( deg1 β€˜π‘…)β€˜(((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐)) ≀ π‘Œ ∧ ((coe1β€˜π‘)β€˜π‘‹) = ((coe1β€˜(((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐))β€˜π‘Œ))))
5352rspcev 3607 . . . . . . 7 (((((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐) ∈ 𝐼 ∧ ((( deg1 β€˜π‘…)β€˜(((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐)) ≀ π‘Œ ∧ ((coe1β€˜π‘)β€˜π‘‹) = ((coe1β€˜(((π‘Œ βˆ’ 𝑋)(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))(.rβ€˜π‘ƒ)𝑐))β€˜π‘Œ))) β†’ βˆƒπ‘ ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘) ≀ π‘Œ ∧ ((coe1β€˜π‘)β€˜π‘‹) = ((coe1β€˜π‘)β€˜π‘Œ)))
5430, 42, 46, 53syl12anc 836 . . . . . 6 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ βˆƒπ‘ ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘) ≀ π‘Œ ∧ ((coe1β€˜π‘)β€˜π‘‹) = ((coe1β€˜π‘)β€˜π‘Œ)))
55 eqeq1 2731 . . . . . . . 8 (π‘Ž = ((coe1β€˜π‘)β€˜π‘‹) β†’ (π‘Ž = ((coe1β€˜π‘)β€˜π‘Œ) ↔ ((coe1β€˜π‘)β€˜π‘‹) = ((coe1β€˜π‘)β€˜π‘Œ)))
5655anbi2d 628 . . . . . . 7 (π‘Ž = ((coe1β€˜π‘)β€˜π‘‹) β†’ (((( deg1 β€˜π‘…)β€˜π‘) ≀ π‘Œ ∧ π‘Ž = ((coe1β€˜π‘)β€˜π‘Œ)) ↔ ((( deg1 β€˜π‘…)β€˜π‘) ≀ π‘Œ ∧ ((coe1β€˜π‘)β€˜π‘‹) = ((coe1β€˜π‘)β€˜π‘Œ))))
5756rexbidv 3173 . . . . . 6 (π‘Ž = ((coe1β€˜π‘)β€˜π‘‹) β†’ (βˆƒπ‘ ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘) ≀ π‘Œ ∧ π‘Ž = ((coe1β€˜π‘)β€˜π‘Œ)) ↔ βˆƒπ‘ ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘) ≀ π‘Œ ∧ ((coe1β€˜π‘)β€˜π‘‹) = ((coe1β€˜π‘)β€˜π‘Œ))))
5854, 57syl5ibrcom 246 . . . . 5 (((πœ‘ ∧ 𝑐 ∈ 𝐼) ∧ (( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋) β†’ (π‘Ž = ((coe1β€˜π‘)β€˜π‘‹) β†’ βˆƒπ‘ ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘) ≀ π‘Œ ∧ π‘Ž = ((coe1β€˜π‘)β€˜π‘Œ))))
5958expimpd 453 . . . 4 ((πœ‘ ∧ 𝑐 ∈ 𝐼) β†’ (((( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋 ∧ π‘Ž = ((coe1β€˜π‘)β€˜π‘‹)) β†’ βˆƒπ‘ ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘) ≀ π‘Œ ∧ π‘Ž = ((coe1β€˜π‘)β€˜π‘Œ))))
6059rexlimdva 3150 . . 3 (πœ‘ β†’ (βˆƒπ‘ ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋 ∧ π‘Ž = ((coe1β€˜π‘)β€˜π‘‹)) β†’ βˆƒπ‘ ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘) ≀ π‘Œ ∧ π‘Ž = ((coe1β€˜π‘)β€˜π‘Œ))))
6160ss2abdv 4056 . 2 (πœ‘ β†’ {π‘Ž ∣ βˆƒπ‘ ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋 ∧ π‘Ž = ((coe1β€˜π‘)β€˜π‘‹))} βŠ† {π‘Ž ∣ βˆƒπ‘ ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘) ≀ π‘Œ ∧ π‘Ž = ((coe1β€˜π‘)β€˜π‘Œ))})
62 hbtlem.s . . . 4 𝑆 = (ldgIdlSeqβ€˜π‘…)
633, 27, 62, 31hbtlem1 42469 . . 3 ((𝑅 ∈ Ring ∧ 𝐼 ∈ π‘ˆ ∧ 𝑋 ∈ β„•0) β†’ ((π‘†β€˜πΌ)β€˜π‘‹) = {π‘Ž ∣ βˆƒπ‘ ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋 ∧ π‘Ž = ((coe1β€˜π‘)β€˜π‘‹))})
641, 6, 14, 63syl3anc 1369 . 2 (πœ‘ β†’ ((π‘†β€˜πΌ)β€˜π‘‹) = {π‘Ž ∣ βˆƒπ‘ ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘) ≀ 𝑋 ∧ π‘Ž = ((coe1β€˜π‘)β€˜π‘‹))})
653, 27, 62, 31hbtlem1 42469 . . 3 ((𝑅 ∈ Ring ∧ 𝐼 ∈ π‘ˆ ∧ π‘Œ ∈ β„•0) β†’ ((π‘†β€˜πΌ)β€˜π‘Œ) = {π‘Ž ∣ βˆƒπ‘ ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘) ≀ π‘Œ ∧ π‘Ž = ((coe1β€˜π‘)β€˜π‘Œ))})
661, 6, 16, 65syl3anc 1369 . 2 (πœ‘ β†’ ((π‘†β€˜πΌ)β€˜π‘Œ) = {π‘Ž ∣ βˆƒπ‘ ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘) ≀ π‘Œ ∧ π‘Ž = ((coe1β€˜π‘)β€˜π‘Œ))})
6761, 64, 663sstr4d 4025 1 (πœ‘ β†’ ((π‘†β€˜πΌ)β€˜π‘‹) βŠ† ((π‘†β€˜πΌ)β€˜π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534   ∈ wcel 2099  {cab 2704  βˆƒwrex 3065   βŠ† wss 3944   class class class wbr 5142  β€˜cfv 6542  (class class class)co 7414   + caddc 11133   ≀ cle 11271   βˆ’ cmin 11466  β„•0cn0 12494  Basecbs 17171  .rcmulr 17225  0gc0g 17412  Mndcmnd 18685  .gcmg 19014  mulGrpcmgp 20065  Ringcrg 20164  LIdealclidl 21091  var1cv1 22082  Poly1cpl1 22083  coe1cco1 22084   deg1 cdg1 25974  ldgIdlSeqcldgis 42467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208  ax-addf 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-pm 8839  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-sup 9457  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-fz 13509  df-fzo 13652  df-seq 13991  df-hash 14314  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-starv 17239  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-unif 17247  df-hom 17248  df-cco 17249  df-0g 17414  df-gsum 17415  df-prds 17420  df-pws 17422  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-mhm 18731  df-submnd 18732  df-grp 18884  df-minusg 18885  df-sbg 18886  df-mulg 19015  df-subg 19069  df-ghm 19159  df-cntz 19259  df-cmn 19728  df-abl 19729  df-mgp 20066  df-rng 20084  df-ur 20113  df-ring 20166  df-cring 20167  df-subrng 20472  df-subrg 20497  df-lmod 20734  df-lss 20805  df-sra 21047  df-rgmod 21048  df-lidl 21093  df-cnfld 21267  df-psr 21829  df-mvr 21830  df-mpl 21831  df-opsr 21833  df-psr1 22086  df-vr1 22087  df-ply1 22088  df-coe1 22089  df-mdeg 25975  df-deg1 25976  df-ldgis 42468
This theorem is referenced by:  hbt  42476
  Copyright terms: Public domain W3C validator