Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem4 Structured version   Visualization version   GIF version

Theorem hbtlem4 39926
Description: The leading ideal function goes to increasing sequences. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem4.r (𝜑𝑅 ∈ Ring)
hbtlem4.i (𝜑𝐼𝑈)
hbtlem4.x (𝜑𝑋 ∈ ℕ0)
hbtlem4.y (𝜑𝑌 ∈ ℕ0)
hbtlem4.xy (𝜑𝑋𝑌)
Assertion
Ref Expression
hbtlem4 (𝜑 → ((𝑆𝐼)‘𝑋) ⊆ ((𝑆𝐼)‘𝑌))

Proof of Theorem hbtlem4
Dummy variables 𝑎 𝑐 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem4.r . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
21ad2antrr 725 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑅 ∈ Ring)
3 hbtlem.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
43ply1ring 20411 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
52, 4syl 17 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑃 ∈ Ring)
6 hbtlem4.i . . . . . . . . 9 (𝜑𝐼𝑈)
76ad2antrr 725 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝐼𝑈)
8 eqid 2824 . . . . . . . . . . 11 (mulGrp‘𝑃) = (mulGrp‘𝑃)
98ringmgp 19301 . . . . . . . . . 10 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
105, 9syl 17 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (mulGrp‘𝑃) ∈ Mnd)
11 hbtlem4.x . . . . . . . . . . 11 (𝜑𝑋 ∈ ℕ0)
1211ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑋 ∈ ℕ0)
13 hbtlem4.y . . . . . . . . . . 11 (𝜑𝑌 ∈ ℕ0)
1413ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑌 ∈ ℕ0)
15 hbtlem4.xy . . . . . . . . . . 11 (𝜑𝑋𝑌)
1615ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑋𝑌)
17 nn0sub2 12038 . . . . . . . . . 10 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) → (𝑌𝑋) ∈ ℕ0)
1812, 14, 16, 17syl3anc 1368 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (𝑌𝑋) ∈ ℕ0)
19 eqid 2824 . . . . . . . . . . 11 (var1𝑅) = (var1𝑅)
20 eqid 2824 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝑃)
2119, 3, 20vr1cl 20380 . . . . . . . . . 10 (𝑅 ∈ Ring → (var1𝑅) ∈ (Base‘𝑃))
222, 21syl 17 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (var1𝑅) ∈ (Base‘𝑃))
238, 20mgpbas 19243 . . . . . . . . . 10 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
24 eqid 2824 . . . . . . . . . 10 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
2523, 24mulgnn0cl 18242 . . . . . . . . 9 (((mulGrp‘𝑃) ∈ Mnd ∧ (𝑌𝑋) ∈ ℕ0 ∧ (var1𝑅) ∈ (Base‘𝑃)) → ((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
2610, 18, 22, 25syl3anc 1368 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → ((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
27 simplr 768 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑐𝐼)
28 hbtlem.u . . . . . . . . 9 𝑈 = (LIdeal‘𝑃)
29 eqid 2824 . . . . . . . . 9 (.r𝑃) = (.r𝑃)
3028, 20, 29lidlmcl 19985 . . . . . . . 8 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃) ∧ 𝑐𝐼)) → (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) ∈ 𝐼)
315, 7, 26, 27, 30syl22anc 837 . . . . . . 7 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) ∈ 𝐼)
32 eqid 2824 . . . . . . . . 9 ( deg1𝑅) = ( deg1𝑅)
3320, 28lidlss 19978 . . . . . . . . . . 11 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
347, 33syl 17 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝐼 ⊆ (Base‘𝑃))
3534, 27sseldd 3954 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑐 ∈ (Base‘𝑃))
3632, 3, 19, 8, 24deg1pwle 24718 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑌𝑋) ∈ ℕ0) → (( deg1𝑅)‘((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ (𝑌𝑋))
372, 18, 36syl2anc 587 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (( deg1𝑅)‘((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ (𝑌𝑋))
38 simpr 488 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (( deg1𝑅)‘𝑐) ≤ 𝑋)
393, 32, 2, 20, 29, 26, 35, 18, 12, 37, 38deg1mulle2 24708 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (( deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ ((𝑌𝑋) + 𝑋))
4014nn0cnd 11952 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑌 ∈ ℂ)
4112nn0cnd 11952 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑋 ∈ ℂ)
4240, 41npcand 10995 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → ((𝑌𝑋) + 𝑋) = 𝑌)
4339, 42breqtrd 5079 . . . . . . 7 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (( deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ 𝑌)
44 eqid 2824 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
4544, 3, 19, 8, 24, 20, 29, 2, 35, 18, 12coe1pwmulfv 20443 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘((𝑌𝑋) + 𝑋)) = ((coe1𝑐)‘𝑋))
4642fveq2d 6663 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘((𝑌𝑋) + 𝑋)) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))
4745, 46eqtr3d 2861 . . . . . . 7 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → ((coe1𝑐)‘𝑋) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))
48 fveq2 6659 . . . . . . . . . 10 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → (( deg1𝑅)‘𝑏) = (( deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)))
4948breq1d 5063 . . . . . . . . 9 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → ((( deg1𝑅)‘𝑏) ≤ 𝑌 ↔ (( deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ 𝑌))
50 fveq2 6659 . . . . . . . . . . 11 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → (coe1𝑏) = (coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)))
5150fveq1d 6661 . . . . . . . . . 10 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → ((coe1𝑏)‘𝑌) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))
5251eqeq2d 2835 . . . . . . . . 9 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → (((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌) ↔ ((coe1𝑐)‘𝑋) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌)))
5349, 52anbi12d 633 . . . . . . . 8 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → (((( deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌)) ↔ ((( deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))))
5453rspcev 3609 . . . . . . 7 (((((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) ∈ 𝐼 ∧ ((( deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))) → ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌)))
5531, 43, 47, 54syl12anc 835 . . . . . 6 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌)))
56 eqeq1 2828 . . . . . . . 8 (𝑎 = ((coe1𝑐)‘𝑋) → (𝑎 = ((coe1𝑏)‘𝑌) ↔ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌)))
5756anbi2d 631 . . . . . . 7 (𝑎 = ((coe1𝑐)‘𝑋) → (((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌)) ↔ ((( deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌))))
5857rexbidv 3290 . . . . . 6 (𝑎 = ((coe1𝑐)‘𝑋) → (∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌)) ↔ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌))))
5955, 58syl5ibrcom 250 . . . . 5 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (𝑎 = ((coe1𝑐)‘𝑋) → ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))))
6059expimpd 457 . . . 4 ((𝜑𝑐𝐼) → (((( deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋)) → ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))))
6160rexlimdva 3277 . . 3 (𝜑 → (∃𝑐𝐼 ((( deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋)) → ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))))
6261ss2abdv 4030 . 2 (𝜑 → {𝑎 ∣ ∃𝑐𝐼 ((( deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋))} ⊆ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))})
63 hbtlem.s . . . 4 𝑆 = (ldgIdlSeq‘𝑅)
643, 28, 63, 32hbtlem1 39923 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑎 ∣ ∃𝑐𝐼 ((( deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋))})
651, 6, 11, 64syl3anc 1368 . 2 (𝜑 → ((𝑆𝐼)‘𝑋) = {𝑎 ∣ ∃𝑐𝐼 ((( deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋))})
663, 28, 63, 32hbtlem1 39923 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑌 ∈ ℕ0) → ((𝑆𝐼)‘𝑌) = {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))})
671, 6, 13, 66syl3anc 1368 . 2 (𝜑 → ((𝑆𝐼)‘𝑌) = {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))})
6862, 65, 673sstr4d 4000 1 (𝜑 → ((𝑆𝐼)‘𝑋) ⊆ ((𝑆𝐼)‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  {cab 2802  wrex 3134  wss 3919   class class class wbr 5053  cfv 6344  (class class class)co 7146   + caddc 10534  cle 10670  cmin 10864  0cn0 11892  Basecbs 16481  .rcmulr 16564  0gc0g 16711  Mndcmnd 17909  .gcmg 18222  mulGrpcmgp 19237  Ringcrg 19295  LIdealclidl 19937  var1cv1 20339  Poly1cpl1 20340  coe1cco1 20341   deg1 cdg1 24653  ldgIdlSeqcldgis 39921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-iin 4909  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-isom 6353  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-of 7400  df-ofr 7401  df-om 7572  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8827  df-sup 8899  df-oi 8967  df-card 9361  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11695  df-3 11696  df-4 11697  df-5 11698  df-6 11699  df-7 11700  df-8 11701  df-9 11702  df-n0 11893  df-z 11977  df-dec 12094  df-uz 12239  df-fz 12893  df-fzo 13036  df-seq 13372  df-hash 13694  df-struct 16483  df-ndx 16484  df-slot 16485  df-base 16487  df-sets 16488  df-ress 16489  df-plusg 16576  df-mulr 16577  df-starv 16578  df-sca 16579  df-vsca 16580  df-ip 16581  df-tset 16582  df-ple 16583  df-ds 16585  df-unif 16586  df-0g 16713  df-gsum 16714  df-mre 16855  df-mrc 16856  df-acs 16858  df-mgm 17850  df-sgrp 17899  df-mnd 17910  df-mhm 17954  df-submnd 17955  df-grp 18104  df-minusg 18105  df-sbg 18106  df-mulg 18223  df-subg 18274  df-ghm 18354  df-cntz 18445  df-cmn 18906  df-abl 18907  df-mgp 19238  df-ur 19250  df-ring 19297  df-cring 19298  df-subrg 19528  df-lmod 19631  df-lss 19699  df-sra 19939  df-rgmod 19940  df-lidl 19941  df-psr 20131  df-mvr 20132  df-mpl 20133  df-opsr 20135  df-psr1 20343  df-vr1 20344  df-ply1 20345  df-coe1 20346  df-cnfld 20541  df-mdeg 24654  df-deg1 24655  df-ldgis 39922
This theorem is referenced by:  hbt  39930
  Copyright terms: Public domain W3C validator