MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspz Structured version   Visualization version   GIF version

Theorem sspz 30697
Description: The zero vector of a subspace is the same as the parent's. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspz.z 𝑍 = (0vec𝑈)
sspz.q 𝑄 = (0vec𝑊)
sspz.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspz ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑄 = 𝑍)

Proof of Theorem sspz
StepHypRef Expression
1 sspz.h . . . . 5 𝐻 = (SubSp‘𝑈)
21sspnv 30688 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
3 eqid 2729 . . . . . 6 (BaseSet‘𝑊) = (BaseSet‘𝑊)
4 sspz.q . . . . . 6 𝑄 = (0vec𝑊)
53, 4nvzcl 30596 . . . . 5 (𝑊 ∈ NrmCVec → 𝑄 ∈ (BaseSet‘𝑊))
65, 5jca 511 . . . 4 (𝑊 ∈ NrmCVec → (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊)))
72, 6syl 17 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊)))
8 eqid 2729 . . . 4 ( −𝑣𝑈) = ( −𝑣𝑈)
9 eqid 2729 . . . 4 ( −𝑣𝑊) = ( −𝑣𝑊)
103, 8, 9, 1sspmval 30695 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊))) → (𝑄( −𝑣𝑊)𝑄) = (𝑄( −𝑣𝑈)𝑄))
117, 10mpdan 687 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑄( −𝑣𝑊)𝑄) = (𝑄( −𝑣𝑈)𝑄))
123, 9, 4nvmid 30621 . . 3 ((𝑊 ∈ NrmCVec ∧ 𝑄 ∈ (BaseSet‘𝑊)) → (𝑄( −𝑣𝑊)𝑄) = 𝑄)
132, 5, 12syl2anc2 585 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑄( −𝑣𝑊)𝑄) = 𝑄)
14 eqid 2729 . . . . 5 (BaseSet‘𝑈) = (BaseSet‘𝑈)
1514, 3, 1sspba 30689 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (BaseSet‘𝑊) ⊆ (BaseSet‘𝑈))
162, 5syl 17 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑄 ∈ (BaseSet‘𝑊))
1715, 16sseldd 3938 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑄 ∈ (BaseSet‘𝑈))
18 sspz.z . . . 4 𝑍 = (0vec𝑈)
1914, 8, 18nvmid 30621 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑄 ∈ (BaseSet‘𝑈)) → (𝑄( −𝑣𝑈)𝑄) = 𝑍)
2017, 19syldan 591 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑄( −𝑣𝑈)𝑄) = 𝑍)
2111, 13, 203eqtr3d 2772 1 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑄 = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  NrmCVeccnv 30546  BaseSetcba 30548  0veccn0v 30550  𝑣 cnsb 30551  SubSpcss 30683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-ltxr 11173  df-sub 11367  df-neg 11368  df-grpo 30455  df-gid 30456  df-ginv 30457  df-gdiv 30458  df-ablo 30507  df-vc 30521  df-nv 30554  df-va 30557  df-ba 30558  df-sm 30559  df-0v 30560  df-vs 30561  df-nmcv 30562  df-ssp 30684
This theorem is referenced by:  hhshsslem2  31230
  Copyright terms: Public domain W3C validator