![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspz | Structured version Visualization version GIF version |
Description: The zero vector of a subspace is the same as the parent's. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspz.z | β’ π = (0vecβπ) |
sspz.q | β’ π = (0vecβπ) |
sspz.h | β’ π» = (SubSpβπ) |
Ref | Expression |
---|---|
sspz | β’ ((π β NrmCVec β§ π β π») β π = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspz.h | . . . . 5 β’ π» = (SubSpβπ) | |
2 | 1 | sspnv 29966 | . . . 4 β’ ((π β NrmCVec β§ π β π») β π β NrmCVec) |
3 | eqid 2732 | . . . . . 6 β’ (BaseSetβπ) = (BaseSetβπ) | |
4 | sspz.q | . . . . . 6 β’ π = (0vecβπ) | |
5 | 3, 4 | nvzcl 29874 | . . . . 5 β’ (π β NrmCVec β π β (BaseSetβπ)) |
6 | 5, 5 | jca 512 | . . . 4 β’ (π β NrmCVec β (π β (BaseSetβπ) β§ π β (BaseSetβπ))) |
7 | 2, 6 | syl 17 | . . 3 β’ ((π β NrmCVec β§ π β π») β (π β (BaseSetβπ) β§ π β (BaseSetβπ))) |
8 | eqid 2732 | . . . 4 β’ ( βπ£ βπ) = ( βπ£ βπ) | |
9 | eqid 2732 | . . . 4 β’ ( βπ£ βπ) = ( βπ£ βπ) | |
10 | 3, 8, 9, 1 | sspmval 29973 | . . 3 β’ (((π β NrmCVec β§ π β π») β§ (π β (BaseSetβπ) β§ π β (BaseSetβπ))) β (π( βπ£ βπ)π) = (π( βπ£ βπ)π)) |
11 | 7, 10 | mpdan 685 | . 2 β’ ((π β NrmCVec β§ π β π») β (π( βπ£ βπ)π) = (π( βπ£ βπ)π)) |
12 | 3, 9, 4 | nvmid 29899 | . . 3 β’ ((π β NrmCVec β§ π β (BaseSetβπ)) β (π( βπ£ βπ)π) = π) |
13 | 2, 5, 12 | syl2anc2 585 | . 2 β’ ((π β NrmCVec β§ π β π») β (π( βπ£ βπ)π) = π) |
14 | eqid 2732 | . . . . 5 β’ (BaseSetβπ) = (BaseSetβπ) | |
15 | 14, 3, 1 | sspba 29967 | . . . 4 β’ ((π β NrmCVec β§ π β π») β (BaseSetβπ) β (BaseSetβπ)) |
16 | 2, 5 | syl 17 | . . . 4 β’ ((π β NrmCVec β§ π β π») β π β (BaseSetβπ)) |
17 | 15, 16 | sseldd 3982 | . . 3 β’ ((π β NrmCVec β§ π β π») β π β (BaseSetβπ)) |
18 | sspz.z | . . . 4 β’ π = (0vecβπ) | |
19 | 14, 8, 18 | nvmid 29899 | . . 3 β’ ((π β NrmCVec β§ π β (BaseSetβπ)) β (π( βπ£ βπ)π) = π) |
20 | 17, 19 | syldan 591 | . 2 β’ ((π β NrmCVec β§ π β π») β (π( βπ£ βπ)π) = π) |
21 | 11, 13, 20 | 3eqtr3d 2780 | 1 β’ ((π β NrmCVec β§ π β π») β π = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βcfv 6540 (class class class)co 7405 NrmCVeccnv 29824 BaseSetcba 29826 0veccn0v 29828 βπ£ cnsb 29829 SubSpcss 29961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-sub 11442 df-neg 11443 df-grpo 29733 df-gid 29734 df-ginv 29735 df-gdiv 29736 df-ablo 29785 df-vc 29799 df-nv 29832 df-va 29835 df-ba 29836 df-sm 29837 df-0v 29838 df-vs 29839 df-nmcv 29840 df-ssp 29962 |
This theorem is referenced by: hhshsslem2 30508 |
Copyright terms: Public domain | W3C validator |