Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspz Structured version   Visualization version   GIF version

Theorem sspz 28521
 Description: The zero vector of a subspace is the same as the parent's. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspz.z 𝑍 = (0vec𝑈)
sspz.q 𝑄 = (0vec𝑊)
sspz.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspz ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑄 = 𝑍)

Proof of Theorem sspz
StepHypRef Expression
1 sspz.h . . . . 5 𝐻 = (SubSp‘𝑈)
21sspnv 28512 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
3 eqid 2801 . . . . . 6 (BaseSet‘𝑊) = (BaseSet‘𝑊)
4 sspz.q . . . . . 6 𝑄 = (0vec𝑊)
53, 4nvzcl 28420 . . . . 5 (𝑊 ∈ NrmCVec → 𝑄 ∈ (BaseSet‘𝑊))
65, 5jca 515 . . . 4 (𝑊 ∈ NrmCVec → (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊)))
72, 6syl 17 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊)))
8 eqid 2801 . . . 4 ( −𝑣𝑈) = ( −𝑣𝑈)
9 eqid 2801 . . . 4 ( −𝑣𝑊) = ( −𝑣𝑊)
103, 8, 9, 1sspmval 28519 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊))) → (𝑄( −𝑣𝑊)𝑄) = (𝑄( −𝑣𝑈)𝑄))
117, 10mpdan 686 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑄( −𝑣𝑊)𝑄) = (𝑄( −𝑣𝑈)𝑄))
123, 9, 4nvmid 28445 . . 3 ((𝑊 ∈ NrmCVec ∧ 𝑄 ∈ (BaseSet‘𝑊)) → (𝑄( −𝑣𝑊)𝑄) = 𝑄)
132, 5, 12syl2anc2 588 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑄( −𝑣𝑊)𝑄) = 𝑄)
14 eqid 2801 . . . . 5 (BaseSet‘𝑈) = (BaseSet‘𝑈)
1514, 3, 1sspba 28513 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (BaseSet‘𝑊) ⊆ (BaseSet‘𝑈))
162, 5syl 17 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑄 ∈ (BaseSet‘𝑊))
1715, 16sseldd 3919 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑄 ∈ (BaseSet‘𝑈))
18 sspz.z . . . 4 𝑍 = (0vec𝑈)
1914, 8, 18nvmid 28445 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑄 ∈ (BaseSet‘𝑈)) → (𝑄( −𝑣𝑈)𝑄) = 𝑍)
2017, 19syldan 594 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑄( −𝑣𝑈)𝑄) = 𝑍)
2111, 13, 203eqtr3d 2844 1 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑄 = 𝑍)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ‘cfv 6328  (class class class)co 7139  NrmCVeccnv 28370  BaseSetcba 28372  0veccn0v 28374   −𝑣 cnsb 28375  SubSpcss 28507 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-ltxr 10673  df-sub 10865  df-neg 10866  df-grpo 28279  df-gid 28280  df-ginv 28281  df-gdiv 28282  df-ablo 28331  df-vc 28345  df-nv 28378  df-va 28381  df-ba 28382  df-sm 28383  df-0v 28384  df-vs 28385  df-nmcv 28386  df-ssp 28508 This theorem is referenced by:  hhshsslem2  29054
 Copyright terms: Public domain W3C validator