MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspz Structured version   Visualization version   GIF version

Theorem sspz 28998
Description: The zero vector of a subspace is the same as the parent's. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspz.z 𝑍 = (0vec𝑈)
sspz.q 𝑄 = (0vec𝑊)
sspz.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspz ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑄 = 𝑍)

Proof of Theorem sspz
StepHypRef Expression
1 sspz.h . . . . 5 𝐻 = (SubSp‘𝑈)
21sspnv 28989 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
3 eqid 2738 . . . . . 6 (BaseSet‘𝑊) = (BaseSet‘𝑊)
4 sspz.q . . . . . 6 𝑄 = (0vec𝑊)
53, 4nvzcl 28897 . . . . 5 (𝑊 ∈ NrmCVec → 𝑄 ∈ (BaseSet‘𝑊))
65, 5jca 511 . . . 4 (𝑊 ∈ NrmCVec → (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊)))
72, 6syl 17 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊)))
8 eqid 2738 . . . 4 ( −𝑣𝑈) = ( −𝑣𝑈)
9 eqid 2738 . . . 4 ( −𝑣𝑊) = ( −𝑣𝑊)
103, 8, 9, 1sspmval 28996 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊))) → (𝑄( −𝑣𝑊)𝑄) = (𝑄( −𝑣𝑈)𝑄))
117, 10mpdan 683 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑄( −𝑣𝑊)𝑄) = (𝑄( −𝑣𝑈)𝑄))
123, 9, 4nvmid 28922 . . 3 ((𝑊 ∈ NrmCVec ∧ 𝑄 ∈ (BaseSet‘𝑊)) → (𝑄( −𝑣𝑊)𝑄) = 𝑄)
132, 5, 12syl2anc2 584 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑄( −𝑣𝑊)𝑄) = 𝑄)
14 eqid 2738 . . . . 5 (BaseSet‘𝑈) = (BaseSet‘𝑈)
1514, 3, 1sspba 28990 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (BaseSet‘𝑊) ⊆ (BaseSet‘𝑈))
162, 5syl 17 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑄 ∈ (BaseSet‘𝑊))
1715, 16sseldd 3918 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑄 ∈ (BaseSet‘𝑈))
18 sspz.z . . . 4 𝑍 = (0vec𝑈)
1914, 8, 18nvmid 28922 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑄 ∈ (BaseSet‘𝑈)) → (𝑄( −𝑣𝑈)𝑄) = 𝑍)
2017, 19syldan 590 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑄( −𝑣𝑈)𝑄) = 𝑍)
2111, 13, 203eqtr3d 2786 1 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑄 = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  NrmCVeccnv 28847  BaseSetcba 28849  0veccn0v 28851  𝑣 cnsb 28852  SubSpcss 28984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137  df-neg 11138  df-grpo 28756  df-gid 28757  df-ginv 28758  df-gdiv 28759  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-vs 28862  df-nmcv 28863  df-ssp 28985
This theorem is referenced by:  hhshsslem2  29531
  Copyright terms: Public domain W3C validator