Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sspz | Structured version Visualization version GIF version |
Description: The zero vector of a subspace is the same as the parent's. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspz.z | ⊢ 𝑍 = (0vec‘𝑈) |
sspz.q | ⊢ 𝑄 = (0vec‘𝑊) |
sspz.h | ⊢ 𝐻 = (SubSp‘𝑈) |
Ref | Expression |
---|---|
sspz | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑄 = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspz.h | . . . . 5 ⊢ 𝐻 = (SubSp‘𝑈) | |
2 | 1 | sspnv 29088 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) |
3 | eqid 2738 | . . . . . 6 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
4 | sspz.q | . . . . . 6 ⊢ 𝑄 = (0vec‘𝑊) | |
5 | 3, 4 | nvzcl 28996 | . . . . 5 ⊢ (𝑊 ∈ NrmCVec → 𝑄 ∈ (BaseSet‘𝑊)) |
6 | 5, 5 | jca 512 | . . . 4 ⊢ (𝑊 ∈ NrmCVec → (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊))) |
7 | 2, 6 | syl 17 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊))) |
8 | eqid 2738 | . . . 4 ⊢ ( −𝑣 ‘𝑈) = ( −𝑣 ‘𝑈) | |
9 | eqid 2738 | . . . 4 ⊢ ( −𝑣 ‘𝑊) = ( −𝑣 ‘𝑊) | |
10 | 3, 8, 9, 1 | sspmval 29095 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊))) → (𝑄( −𝑣 ‘𝑊)𝑄) = (𝑄( −𝑣 ‘𝑈)𝑄)) |
11 | 7, 10 | mpdan 684 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑄( −𝑣 ‘𝑊)𝑄) = (𝑄( −𝑣 ‘𝑈)𝑄)) |
12 | 3, 9, 4 | nvmid 29021 | . . 3 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑄 ∈ (BaseSet‘𝑊)) → (𝑄( −𝑣 ‘𝑊)𝑄) = 𝑄) |
13 | 2, 5, 12 | syl2anc2 585 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑄( −𝑣 ‘𝑊)𝑄) = 𝑄) |
14 | eqid 2738 | . . . . 5 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
15 | 14, 3, 1 | sspba 29089 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (BaseSet‘𝑊) ⊆ (BaseSet‘𝑈)) |
16 | 2, 5 | syl 17 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑄 ∈ (BaseSet‘𝑊)) |
17 | 15, 16 | sseldd 3922 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑄 ∈ (BaseSet‘𝑈)) |
18 | sspz.z | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
19 | 14, 8, 18 | nvmid 29021 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑄 ∈ (BaseSet‘𝑈)) → (𝑄( −𝑣 ‘𝑈)𝑄) = 𝑍) |
20 | 17, 19 | syldan 591 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑄( −𝑣 ‘𝑈)𝑄) = 𝑍) |
21 | 11, 13, 20 | 3eqtr3d 2786 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑄 = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 NrmCVeccnv 28946 BaseSetcba 28948 0veccn0v 28950 −𝑣 cnsb 28951 SubSpcss 29083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-sub 11207 df-neg 11208 df-grpo 28855 df-gid 28856 df-ginv 28857 df-gdiv 28858 df-ablo 28907 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-0v 28960 df-vs 28961 df-nmcv 28962 df-ssp 29084 |
This theorem is referenced by: hhshsslem2 29630 |
Copyright terms: Public domain | W3C validator |