MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspz Structured version   Visualization version   GIF version

Theorem sspz 30719
Description: The zero vector of a subspace is the same as the parent's. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspz.z 𝑍 = (0vec𝑈)
sspz.q 𝑄 = (0vec𝑊)
sspz.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspz ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑄 = 𝑍)

Proof of Theorem sspz
StepHypRef Expression
1 sspz.h . . . . 5 𝐻 = (SubSp‘𝑈)
21sspnv 30710 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
3 eqid 2733 . . . . . 6 (BaseSet‘𝑊) = (BaseSet‘𝑊)
4 sspz.q . . . . . 6 𝑄 = (0vec𝑊)
53, 4nvzcl 30618 . . . . 5 (𝑊 ∈ NrmCVec → 𝑄 ∈ (BaseSet‘𝑊))
65, 5jca 511 . . . 4 (𝑊 ∈ NrmCVec → (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊)))
72, 6syl 17 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊)))
8 eqid 2733 . . . 4 ( −𝑣𝑈) = ( −𝑣𝑈)
9 eqid 2733 . . . 4 ( −𝑣𝑊) = ( −𝑣𝑊)
103, 8, 9, 1sspmval 30717 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊))) → (𝑄( −𝑣𝑊)𝑄) = (𝑄( −𝑣𝑈)𝑄))
117, 10mpdan 687 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑄( −𝑣𝑊)𝑄) = (𝑄( −𝑣𝑈)𝑄))
123, 9, 4nvmid 30643 . . 3 ((𝑊 ∈ NrmCVec ∧ 𝑄 ∈ (BaseSet‘𝑊)) → (𝑄( −𝑣𝑊)𝑄) = 𝑄)
132, 5, 12syl2anc2 585 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑄( −𝑣𝑊)𝑄) = 𝑄)
14 eqid 2733 . . . . 5 (BaseSet‘𝑈) = (BaseSet‘𝑈)
1514, 3, 1sspba 30711 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (BaseSet‘𝑊) ⊆ (BaseSet‘𝑈))
162, 5syl 17 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑄 ∈ (BaseSet‘𝑊))
1715, 16sseldd 3931 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑄 ∈ (BaseSet‘𝑈))
18 sspz.z . . . 4 𝑍 = (0vec𝑈)
1914, 8, 18nvmid 30643 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑄 ∈ (BaseSet‘𝑈)) → (𝑄( −𝑣𝑈)𝑄) = 𝑍)
2017, 19syldan 591 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑄( −𝑣𝑈)𝑄) = 𝑍)
2111, 13, 203eqtr3d 2776 1 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑄 = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cfv 6488  (class class class)co 7354  NrmCVeccnv 30568  BaseSetcba 30570  0veccn0v 30572  𝑣 cnsb 30573  SubSpcss 30705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-1st 7929  df-2nd 7930  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-ltxr 11160  df-sub 11355  df-neg 11356  df-grpo 30477  df-gid 30478  df-ginv 30479  df-gdiv 30480  df-ablo 30529  df-vc 30543  df-nv 30576  df-va 30579  df-ba 30580  df-sm 30581  df-0v 30582  df-vs 30583  df-nmcv 30584  df-ssp 30706
This theorem is referenced by:  hhshsslem2  31252
  Copyright terms: Public domain W3C validator