Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sspz | Structured version Visualization version GIF version |
Description: The zero vector of a subspace is the same as the parent's. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspz.z | ⊢ 𝑍 = (0vec‘𝑈) |
sspz.q | ⊢ 𝑄 = (0vec‘𝑊) |
sspz.h | ⊢ 𝐻 = (SubSp‘𝑈) |
Ref | Expression |
---|---|
sspz | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑄 = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspz.h | . . . . 5 ⊢ 𝐻 = (SubSp‘𝑈) | |
2 | 1 | sspnv 29375 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) |
3 | eqid 2737 | . . . . . 6 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
4 | sspz.q | . . . . . 6 ⊢ 𝑄 = (0vec‘𝑊) | |
5 | 3, 4 | nvzcl 29283 | . . . . 5 ⊢ (𝑊 ∈ NrmCVec → 𝑄 ∈ (BaseSet‘𝑊)) |
6 | 5, 5 | jca 513 | . . . 4 ⊢ (𝑊 ∈ NrmCVec → (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊))) |
7 | 2, 6 | syl 17 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊))) |
8 | eqid 2737 | . . . 4 ⊢ ( −𝑣 ‘𝑈) = ( −𝑣 ‘𝑈) | |
9 | eqid 2737 | . . . 4 ⊢ ( −𝑣 ‘𝑊) = ( −𝑣 ‘𝑊) | |
10 | 3, 8, 9, 1 | sspmval 29382 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊))) → (𝑄( −𝑣 ‘𝑊)𝑄) = (𝑄( −𝑣 ‘𝑈)𝑄)) |
11 | 7, 10 | mpdan 685 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑄( −𝑣 ‘𝑊)𝑄) = (𝑄( −𝑣 ‘𝑈)𝑄)) |
12 | 3, 9, 4 | nvmid 29308 | . . 3 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑄 ∈ (BaseSet‘𝑊)) → (𝑄( −𝑣 ‘𝑊)𝑄) = 𝑄) |
13 | 2, 5, 12 | syl2anc2 586 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑄( −𝑣 ‘𝑊)𝑄) = 𝑄) |
14 | eqid 2737 | . . . . 5 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
15 | 14, 3, 1 | sspba 29376 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (BaseSet‘𝑊) ⊆ (BaseSet‘𝑈)) |
16 | 2, 5 | syl 17 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑄 ∈ (BaseSet‘𝑊)) |
17 | 15, 16 | sseldd 3936 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑄 ∈ (BaseSet‘𝑈)) |
18 | sspz.z | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
19 | 14, 8, 18 | nvmid 29308 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑄 ∈ (BaseSet‘𝑈)) → (𝑄( −𝑣 ‘𝑈)𝑄) = 𝑍) |
20 | 17, 19 | syldan 592 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑄( −𝑣 ‘𝑈)𝑄) = 𝑍) |
21 | 11, 13, 20 | 3eqtr3d 2785 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑄 = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ‘cfv 6483 (class class class)co 7341 NrmCVeccnv 29233 BaseSetcba 29235 0veccn0v 29237 −𝑣 cnsb 29238 SubSpcss 29370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-po 5536 df-so 5537 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7903 df-2nd 7904 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-pnf 11116 df-mnf 11117 df-ltxr 11119 df-sub 11312 df-neg 11313 df-grpo 29142 df-gid 29143 df-ginv 29144 df-gdiv 29145 df-ablo 29194 df-vc 29208 df-nv 29241 df-va 29244 df-ba 29245 df-sm 29246 df-0v 29247 df-vs 29248 df-nmcv 29249 df-ssp 29371 |
This theorem is referenced by: hhshsslem2 29917 |
Copyright terms: Public domain | W3C validator |