MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspz Structured version   Visualization version   GIF version

Theorem sspz 29097
Description: The zero vector of a subspace is the same as the parent's. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspz.z 𝑍 = (0vec𝑈)
sspz.q 𝑄 = (0vec𝑊)
sspz.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspz ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑄 = 𝑍)

Proof of Theorem sspz
StepHypRef Expression
1 sspz.h . . . . 5 𝐻 = (SubSp‘𝑈)
21sspnv 29088 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
3 eqid 2738 . . . . . 6 (BaseSet‘𝑊) = (BaseSet‘𝑊)
4 sspz.q . . . . . 6 𝑄 = (0vec𝑊)
53, 4nvzcl 28996 . . . . 5 (𝑊 ∈ NrmCVec → 𝑄 ∈ (BaseSet‘𝑊))
65, 5jca 512 . . . 4 (𝑊 ∈ NrmCVec → (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊)))
72, 6syl 17 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊)))
8 eqid 2738 . . . 4 ( −𝑣𝑈) = ( −𝑣𝑈)
9 eqid 2738 . . . 4 ( −𝑣𝑊) = ( −𝑣𝑊)
103, 8, 9, 1sspmval 29095 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊))) → (𝑄( −𝑣𝑊)𝑄) = (𝑄( −𝑣𝑈)𝑄))
117, 10mpdan 684 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑄( −𝑣𝑊)𝑄) = (𝑄( −𝑣𝑈)𝑄))
123, 9, 4nvmid 29021 . . 3 ((𝑊 ∈ NrmCVec ∧ 𝑄 ∈ (BaseSet‘𝑊)) → (𝑄( −𝑣𝑊)𝑄) = 𝑄)
132, 5, 12syl2anc2 585 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑄( −𝑣𝑊)𝑄) = 𝑄)
14 eqid 2738 . . . . 5 (BaseSet‘𝑈) = (BaseSet‘𝑈)
1514, 3, 1sspba 29089 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (BaseSet‘𝑊) ⊆ (BaseSet‘𝑈))
162, 5syl 17 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑄 ∈ (BaseSet‘𝑊))
1715, 16sseldd 3922 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑄 ∈ (BaseSet‘𝑈))
18 sspz.z . . . 4 𝑍 = (0vec𝑈)
1914, 8, 18nvmid 29021 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑄 ∈ (BaseSet‘𝑈)) → (𝑄( −𝑣𝑈)𝑄) = 𝑍)
2017, 19syldan 591 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑄( −𝑣𝑈)𝑄) = 𝑍)
2111, 13, 203eqtr3d 2786 1 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑄 = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  NrmCVeccnv 28946  BaseSetcba 28948  0veccn0v 28950  𝑣 cnsb 28951  SubSpcss 29083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-sub 11207  df-neg 11208  df-grpo 28855  df-gid 28856  df-ginv 28857  df-gdiv 28858  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-vs 28961  df-nmcv 28962  df-ssp 29084
This theorem is referenced by:  hhshsslem2  29630
  Copyright terms: Public domain W3C validator