![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspz | Structured version Visualization version GIF version |
Description: The zero vector of a subspace is the same as the parent's. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspz.z | ⊢ 𝑍 = (0vec‘𝑈) |
sspz.q | ⊢ 𝑄 = (0vec‘𝑊) |
sspz.h | ⊢ 𝐻 = (SubSp‘𝑈) |
Ref | Expression |
---|---|
sspz | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑄 = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspz.h | . . . . 5 ⊢ 𝐻 = (SubSp‘𝑈) | |
2 | 1 | sspnv 30758 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) |
3 | eqid 2740 | . . . . . 6 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
4 | sspz.q | . . . . . 6 ⊢ 𝑄 = (0vec‘𝑊) | |
5 | 3, 4 | nvzcl 30666 | . . . . 5 ⊢ (𝑊 ∈ NrmCVec → 𝑄 ∈ (BaseSet‘𝑊)) |
6 | 5, 5 | jca 511 | . . . 4 ⊢ (𝑊 ∈ NrmCVec → (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊))) |
7 | 2, 6 | syl 17 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊))) |
8 | eqid 2740 | . . . 4 ⊢ ( −𝑣 ‘𝑈) = ( −𝑣 ‘𝑈) | |
9 | eqid 2740 | . . . 4 ⊢ ( −𝑣 ‘𝑊) = ( −𝑣 ‘𝑊) | |
10 | 3, 8, 9, 1 | sspmval 30765 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ (BaseSet‘𝑊) ∧ 𝑄 ∈ (BaseSet‘𝑊))) → (𝑄( −𝑣 ‘𝑊)𝑄) = (𝑄( −𝑣 ‘𝑈)𝑄)) |
11 | 7, 10 | mpdan 686 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑄( −𝑣 ‘𝑊)𝑄) = (𝑄( −𝑣 ‘𝑈)𝑄)) |
12 | 3, 9, 4 | nvmid 30691 | . . 3 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑄 ∈ (BaseSet‘𝑊)) → (𝑄( −𝑣 ‘𝑊)𝑄) = 𝑄) |
13 | 2, 5, 12 | syl2anc2 584 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑄( −𝑣 ‘𝑊)𝑄) = 𝑄) |
14 | eqid 2740 | . . . . 5 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
15 | 14, 3, 1 | sspba 30759 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (BaseSet‘𝑊) ⊆ (BaseSet‘𝑈)) |
16 | 2, 5 | syl 17 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑄 ∈ (BaseSet‘𝑊)) |
17 | 15, 16 | sseldd 4009 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑄 ∈ (BaseSet‘𝑈)) |
18 | sspz.z | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
19 | 14, 8, 18 | nvmid 30691 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑄 ∈ (BaseSet‘𝑈)) → (𝑄( −𝑣 ‘𝑈)𝑄) = 𝑍) |
20 | 17, 19 | syldan 590 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑄( −𝑣 ‘𝑈)𝑄) = 𝑍) |
21 | 11, 13, 20 | 3eqtr3d 2788 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑄 = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 NrmCVeccnv 30616 BaseSetcba 30618 0veccn0v 30620 −𝑣 cnsb 30621 SubSpcss 30753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-neg 11523 df-grpo 30525 df-gid 30526 df-ginv 30527 df-gdiv 30528 df-ablo 30577 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-vs 30631 df-nmcv 30632 df-ssp 30754 |
This theorem is referenced by: hhshsslem2 31300 |
Copyright terms: Public domain | W3C validator |