Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > nmopnegi | Structured version Visualization version GIF version |
Description: Value of the norm of the negative of a Hilbert space operator. Unlike nmophmi 30294, the operator does not have to be bounded. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmopneg.1 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
nmopnegi | ⊢ (normop‘(-1 ·op 𝑇)) = (normop‘𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 12017 | . . . . . . . . . 10 ⊢ -1 ∈ ℂ | |
2 | nmopneg.1 | . . . . . . . . . 10 ⊢ 𝑇: ℋ⟶ ℋ | |
3 | homval 30004 | . . . . . . . . . 10 ⊢ ((-1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((-1 ·op 𝑇)‘𝑦) = (-1 ·ℎ (𝑇‘𝑦))) | |
4 | 1, 2, 3 | mp3an12 1449 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → ((-1 ·op 𝑇)‘𝑦) = (-1 ·ℎ (𝑇‘𝑦))) |
5 | 4 | fveq2d 6760 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (normℎ‘((-1 ·op 𝑇)‘𝑦)) = (normℎ‘(-1 ·ℎ (𝑇‘𝑦)))) |
6 | 2 | ffvelrni 6942 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → (𝑇‘𝑦) ∈ ℋ) |
7 | normneg 29407 | . . . . . . . . 9 ⊢ ((𝑇‘𝑦) ∈ ℋ → (normℎ‘(-1 ·ℎ (𝑇‘𝑦))) = (normℎ‘(𝑇‘𝑦))) | |
8 | 6, 7 | syl 17 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (normℎ‘(-1 ·ℎ (𝑇‘𝑦))) = (normℎ‘(𝑇‘𝑦))) |
9 | 5, 8 | eqtrd 2778 | . . . . . . 7 ⊢ (𝑦 ∈ ℋ → (normℎ‘((-1 ·op 𝑇)‘𝑦)) = (normℎ‘(𝑇‘𝑦))) |
10 | 9 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑦 ∈ ℋ → (𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦)) ↔ 𝑥 = (normℎ‘(𝑇‘𝑦)))) |
11 | 10 | anbi2d 628 | . . . . 5 ⊢ (𝑦 ∈ ℋ → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))))) |
12 | 11 | rexbiia 3176 | . . . 4 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))) |
13 | 12 | abbii 2809 | . . 3 ⊢ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦)))} = {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} |
14 | 13 | supeq1i 9136 | . 2 ⊢ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < ) |
15 | homulcl 30022 | . . . 4 ⊢ ((-1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (-1 ·op 𝑇): ℋ⟶ ℋ) | |
16 | 1, 2, 15 | mp2an 688 | . . 3 ⊢ (-1 ·op 𝑇): ℋ⟶ ℋ |
17 | nmopval 30119 | . . 3 ⊢ ((-1 ·op 𝑇): ℋ⟶ ℋ → (normop‘(-1 ·op 𝑇)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦)))}, ℝ*, < )) | |
18 | 16, 17 | ax-mp 5 | . 2 ⊢ (normop‘(-1 ·op 𝑇)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦)))}, ℝ*, < ) |
19 | nmopval 30119 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < )) | |
20 | 2, 19 | ax-mp 5 | . 2 ⊢ (normop‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < ) |
21 | 14, 18, 20 | 3eqtr4i 2776 | 1 ⊢ (normop‘(-1 ·op 𝑇)) = (normop‘𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 supcsup 9129 ℂcc 10800 1c1 10803 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 -cneg 11136 ℋchba 29182 ·ℎ csm 29184 normℎcno 29186 ·op chot 29202 normopcnop 29208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-hilex 29262 ax-hfvadd 29263 ax-hvcom 29264 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvmulass 29270 ax-hvdistr1 29271 ax-hvmul0 29273 ax-hfi 29342 ax-his1 29345 ax-his3 29347 ax-his4 29348 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-hnorm 29231 df-hvsub 29234 df-homul 29994 df-nmop 30102 |
This theorem is referenced by: nmoptri2i 30362 |
Copyright terms: Public domain | W3C validator |