Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > nmopnegi | Structured version Visualization version GIF version |
Description: Value of the norm of the negative of a Hilbert space operator. Unlike nmophmi 29969, the operator does not have to be bounded. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmopneg.1 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
nmopnegi | ⊢ (normop‘(-1 ·op 𝑇)) = (normop‘𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 11833 | . . . . . . . . . 10 ⊢ -1 ∈ ℂ | |
2 | nmopneg.1 | . . . . . . . . . 10 ⊢ 𝑇: ℋ⟶ ℋ | |
3 | homval 29679 | . . . . . . . . . 10 ⊢ ((-1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((-1 ·op 𝑇)‘𝑦) = (-1 ·ℎ (𝑇‘𝑦))) | |
4 | 1, 2, 3 | mp3an12 1452 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → ((-1 ·op 𝑇)‘𝑦) = (-1 ·ℎ (𝑇‘𝑦))) |
5 | 4 | fveq2d 6681 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (normℎ‘((-1 ·op 𝑇)‘𝑦)) = (normℎ‘(-1 ·ℎ (𝑇‘𝑦)))) |
6 | 2 | ffvelrni 6863 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → (𝑇‘𝑦) ∈ ℋ) |
7 | normneg 29082 | . . . . . . . . 9 ⊢ ((𝑇‘𝑦) ∈ ℋ → (normℎ‘(-1 ·ℎ (𝑇‘𝑦))) = (normℎ‘(𝑇‘𝑦))) | |
8 | 6, 7 | syl 17 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (normℎ‘(-1 ·ℎ (𝑇‘𝑦))) = (normℎ‘(𝑇‘𝑦))) |
9 | 5, 8 | eqtrd 2774 | . . . . . . 7 ⊢ (𝑦 ∈ ℋ → (normℎ‘((-1 ·op 𝑇)‘𝑦)) = (normℎ‘(𝑇‘𝑦))) |
10 | 9 | eqeq2d 2750 | . . . . . 6 ⊢ (𝑦 ∈ ℋ → (𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦)) ↔ 𝑥 = (normℎ‘(𝑇‘𝑦)))) |
11 | 10 | anbi2d 632 | . . . . 5 ⊢ (𝑦 ∈ ℋ → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))))) |
12 | 11 | rexbiia 3161 | . . . 4 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))) |
13 | 12 | abbii 2804 | . . 3 ⊢ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦)))} = {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} |
14 | 13 | supeq1i 8987 | . 2 ⊢ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < ) |
15 | homulcl 29697 | . . . 4 ⊢ ((-1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (-1 ·op 𝑇): ℋ⟶ ℋ) | |
16 | 1, 2, 15 | mp2an 692 | . . 3 ⊢ (-1 ·op 𝑇): ℋ⟶ ℋ |
17 | nmopval 29794 | . . 3 ⊢ ((-1 ·op 𝑇): ℋ⟶ ℋ → (normop‘(-1 ·op 𝑇)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦)))}, ℝ*, < )) | |
18 | 16, 17 | ax-mp 5 | . 2 ⊢ (normop‘(-1 ·op 𝑇)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦)))}, ℝ*, < ) |
19 | nmopval 29794 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < )) | |
20 | 2, 19 | ax-mp 5 | . 2 ⊢ (normop‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < ) |
21 | 14, 18, 20 | 3eqtr4i 2772 | 1 ⊢ (normop‘(-1 ·op 𝑇)) = (normop‘𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1542 ∈ wcel 2114 {cab 2717 ∃wrex 3055 class class class wbr 5031 ⟶wf 6336 ‘cfv 6340 (class class class)co 7173 supcsup 8980 ℂcc 10616 1c1 10619 ℝ*cxr 10755 < clt 10756 ≤ cle 10757 -cneg 10952 ℋchba 28857 ·ℎ csm 28859 normℎcno 28861 ·op chot 28877 normopcnop 28883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 ax-cnex 10674 ax-resscn 10675 ax-1cn 10676 ax-icn 10677 ax-addcl 10678 ax-addrcl 10679 ax-mulcl 10680 ax-mulrcl 10681 ax-mulcom 10682 ax-addass 10683 ax-mulass 10684 ax-distr 10685 ax-i2m1 10686 ax-1ne0 10687 ax-1rid 10688 ax-rnegex 10689 ax-rrecex 10690 ax-cnre 10691 ax-pre-lttri 10692 ax-pre-lttrn 10693 ax-pre-ltadd 10694 ax-pre-mulgt0 10695 ax-pre-sup 10696 ax-hilex 28937 ax-hfvadd 28938 ax-hvcom 28939 ax-hv0cl 28941 ax-hvaddid 28942 ax-hfvmul 28943 ax-hvmulid 28944 ax-hvmulass 28945 ax-hvdistr1 28946 ax-hvmul0 28948 ax-hfi 29017 ax-his1 29020 ax-his3 29022 ax-his4 29023 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7130 df-ov 7176 df-oprab 7177 df-mpo 7178 df-om 7603 df-2nd 7718 df-wrecs 7979 df-recs 8040 df-rdg 8078 df-er 8323 df-map 8442 df-en 8559 df-dom 8560 df-sdom 8561 df-sup 8982 df-pnf 10758 df-mnf 10759 df-xr 10760 df-ltxr 10761 df-le 10762 df-sub 10953 df-neg 10954 df-div 11379 df-nn 11720 df-2 11782 df-3 11783 df-n0 11980 df-z 12066 df-uz 12328 df-rp 12476 df-seq 13464 df-exp 13525 df-cj 14551 df-re 14552 df-im 14553 df-sqrt 14687 df-abs 14688 df-hnorm 28906 df-hvsub 28909 df-homul 29669 df-nmop 29777 |
This theorem is referenced by: nmoptri2i 30037 |
Copyright terms: Public domain | W3C validator |