| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nmopnegi | Structured version Visualization version GIF version | ||
| Description: Value of the norm of the negative of a Hilbert space operator. Unlike nmophmi 32010, the operator does not have to be bounded. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmopneg.1 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| nmopnegi | ⊢ (normop‘(-1 ·op 𝑇)) = (normop‘𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1cn 12147 | . . . . . . . . . 10 ⊢ -1 ∈ ℂ | |
| 2 | nmopneg.1 | . . . . . . . . . 10 ⊢ 𝑇: ℋ⟶ ℋ | |
| 3 | homval 31720 | . . . . . . . . . 10 ⊢ ((-1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((-1 ·op 𝑇)‘𝑦) = (-1 ·ℎ (𝑇‘𝑦))) | |
| 4 | 1, 2, 3 | mp3an12 1453 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → ((-1 ·op 𝑇)‘𝑦) = (-1 ·ℎ (𝑇‘𝑦))) |
| 5 | 4 | fveq2d 6844 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (normℎ‘((-1 ·op 𝑇)‘𝑦)) = (normℎ‘(-1 ·ℎ (𝑇‘𝑦)))) |
| 6 | 2 | ffvelcdmi 7037 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → (𝑇‘𝑦) ∈ ℋ) |
| 7 | normneg 31123 | . . . . . . . . 9 ⊢ ((𝑇‘𝑦) ∈ ℋ → (normℎ‘(-1 ·ℎ (𝑇‘𝑦))) = (normℎ‘(𝑇‘𝑦))) | |
| 8 | 6, 7 | syl 17 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (normℎ‘(-1 ·ℎ (𝑇‘𝑦))) = (normℎ‘(𝑇‘𝑦))) |
| 9 | 5, 8 | eqtrd 2764 | . . . . . . 7 ⊢ (𝑦 ∈ ℋ → (normℎ‘((-1 ·op 𝑇)‘𝑦)) = (normℎ‘(𝑇‘𝑦))) |
| 10 | 9 | eqeq2d 2740 | . . . . . 6 ⊢ (𝑦 ∈ ℋ → (𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦)) ↔ 𝑥 = (normℎ‘(𝑇‘𝑦)))) |
| 11 | 10 | anbi2d 630 | . . . . 5 ⊢ (𝑦 ∈ ℋ → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))))) |
| 12 | 11 | rexbiia 3074 | . . . 4 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))) |
| 13 | 12 | abbii 2796 | . . 3 ⊢ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦)))} = {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} |
| 14 | 13 | supeq1i 9374 | . 2 ⊢ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < ) |
| 15 | homulcl 31738 | . . . 4 ⊢ ((-1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (-1 ·op 𝑇): ℋ⟶ ℋ) | |
| 16 | 1, 2, 15 | mp2an 692 | . . 3 ⊢ (-1 ·op 𝑇): ℋ⟶ ℋ |
| 17 | nmopval 31835 | . . 3 ⊢ ((-1 ·op 𝑇): ℋ⟶ ℋ → (normop‘(-1 ·op 𝑇)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦)))}, ℝ*, < )) | |
| 18 | 16, 17 | ax-mp 5 | . 2 ⊢ (normop‘(-1 ·op 𝑇)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦)))}, ℝ*, < ) |
| 19 | nmopval 31835 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < )) | |
| 20 | 2, 19 | ax-mp 5 | . 2 ⊢ (normop‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < ) |
| 21 | 14, 18, 20 | 3eqtr4i 2762 | 1 ⊢ (normop‘(-1 ·op 𝑇)) = (normop‘𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 class class class wbr 5102 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 supcsup 9367 ℂcc 11042 1c1 11045 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 -cneg 11382 ℋchba 30898 ·ℎ csm 30900 normℎcno 30902 ·op chot 30918 normopcnop 30924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-hilex 30978 ax-hfvadd 30979 ax-hvcom 30980 ax-hv0cl 30982 ax-hvaddid 30983 ax-hfvmul 30984 ax-hvmulid 30985 ax-hvmulass 30986 ax-hvdistr1 30987 ax-hvmul0 30989 ax-hfi 31058 ax-his1 31061 ax-his3 31063 ax-his4 31064 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-hnorm 30947 df-hvsub 30950 df-homul 31710 df-nmop 31818 |
| This theorem is referenced by: nmoptri2i 32078 |
| Copyright terms: Public domain | W3C validator |