![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nmopnegi | Structured version Visualization version GIF version |
Description: Value of the norm of the negative of a Hilbert space operator. Unlike nmophmi 31566, the operator does not have to be bounded. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmopneg.1 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
nmopnegi | ⊢ (normop‘(-1 ·op 𝑇)) = (normop‘𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 12333 | . . . . . . . . . 10 ⊢ -1 ∈ ℂ | |
2 | nmopneg.1 | . . . . . . . . . 10 ⊢ 𝑇: ℋ⟶ ℋ | |
3 | homval 31276 | . . . . . . . . . 10 ⊢ ((-1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((-1 ·op 𝑇)‘𝑦) = (-1 ·ℎ (𝑇‘𝑦))) | |
4 | 1, 2, 3 | mp3an12 1450 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → ((-1 ·op 𝑇)‘𝑦) = (-1 ·ℎ (𝑇‘𝑦))) |
5 | 4 | fveq2d 6895 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (normℎ‘((-1 ·op 𝑇)‘𝑦)) = (normℎ‘(-1 ·ℎ (𝑇‘𝑦)))) |
6 | 2 | ffvelcdmi 7085 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → (𝑇‘𝑦) ∈ ℋ) |
7 | normneg 30679 | . . . . . . . . 9 ⊢ ((𝑇‘𝑦) ∈ ℋ → (normℎ‘(-1 ·ℎ (𝑇‘𝑦))) = (normℎ‘(𝑇‘𝑦))) | |
8 | 6, 7 | syl 17 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (normℎ‘(-1 ·ℎ (𝑇‘𝑦))) = (normℎ‘(𝑇‘𝑦))) |
9 | 5, 8 | eqtrd 2771 | . . . . . . 7 ⊢ (𝑦 ∈ ℋ → (normℎ‘((-1 ·op 𝑇)‘𝑦)) = (normℎ‘(𝑇‘𝑦))) |
10 | 9 | eqeq2d 2742 | . . . . . 6 ⊢ (𝑦 ∈ ℋ → (𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦)) ↔ 𝑥 = (normℎ‘(𝑇‘𝑦)))) |
11 | 10 | anbi2d 628 | . . . . 5 ⊢ (𝑦 ∈ ℋ → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))))) |
12 | 11 | rexbiia 3091 | . . . 4 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))) |
13 | 12 | abbii 2801 | . . 3 ⊢ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦)))} = {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} |
14 | 13 | supeq1i 9448 | . 2 ⊢ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < ) |
15 | homulcl 31294 | . . . 4 ⊢ ((-1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (-1 ·op 𝑇): ℋ⟶ ℋ) | |
16 | 1, 2, 15 | mp2an 689 | . . 3 ⊢ (-1 ·op 𝑇): ℋ⟶ ℋ |
17 | nmopval 31391 | . . 3 ⊢ ((-1 ·op 𝑇): ℋ⟶ ℋ → (normop‘(-1 ·op 𝑇)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦)))}, ℝ*, < )) | |
18 | 16, 17 | ax-mp 5 | . 2 ⊢ (normop‘(-1 ·op 𝑇)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘((-1 ·op 𝑇)‘𝑦)))}, ℝ*, < ) |
19 | nmopval 31391 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < )) | |
20 | 2, 19 | ax-mp 5 | . 2 ⊢ (normop‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < ) |
21 | 14, 18, 20 | 3eqtr4i 2769 | 1 ⊢ (normop‘(-1 ·op 𝑇)) = (normop‘𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2105 {cab 2708 ∃wrex 3069 class class class wbr 5148 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 supcsup 9441 ℂcc 11114 1c1 11117 ℝ*cxr 11254 < clt 11255 ≤ cle 11256 -cneg 11452 ℋchba 30454 ·ℎ csm 30456 normℎcno 30458 ·op chot 30474 normopcnop 30480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-hilex 30534 ax-hfvadd 30535 ax-hvcom 30536 ax-hv0cl 30538 ax-hvaddid 30539 ax-hfvmul 30540 ax-hvmulid 30541 ax-hvmulass 30542 ax-hvdistr1 30543 ax-hvmul0 30545 ax-hfi 30614 ax-his1 30617 ax-his3 30619 ax-his4 30620 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-n0 12480 df-z 12566 df-uz 12830 df-rp 12982 df-seq 13974 df-exp 14035 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-hnorm 30503 df-hvsub 30506 df-homul 31266 df-nmop 31374 |
This theorem is referenced by: nmoptri2i 31634 |
Copyright terms: Public domain | W3C validator |