HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopnegi Structured version   Visualization version   GIF version

Theorem nmopnegi 31909
Description: Value of the norm of the negative of a Hilbert space operator. Unlike nmophmi 31975, the operator does not have to be bounded. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmopneg.1 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
nmopnegi (normop‘(-1 ·op 𝑇)) = (normop𝑇)

Proof of Theorem nmopnegi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neg1cn 12113 . . . . . . . . . 10 -1 ∈ ℂ
2 nmopneg.1 . . . . . . . . . 10 𝑇: ℋ⟶ ℋ
3 homval 31685 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((-1 ·op 𝑇)‘𝑦) = (-1 · (𝑇𝑦)))
41, 2, 3mp3an12 1453 . . . . . . . . 9 (𝑦 ∈ ℋ → ((-1 ·op 𝑇)‘𝑦) = (-1 · (𝑇𝑦)))
54fveq2d 6826 . . . . . . . 8 (𝑦 ∈ ℋ → (norm‘((-1 ·op 𝑇)‘𝑦)) = (norm‘(-1 · (𝑇𝑦))))
62ffvelcdmi 7017 . . . . . . . . 9 (𝑦 ∈ ℋ → (𝑇𝑦) ∈ ℋ)
7 normneg 31088 . . . . . . . . 9 ((𝑇𝑦) ∈ ℋ → (norm‘(-1 · (𝑇𝑦))) = (norm‘(𝑇𝑦)))
86, 7syl 17 . . . . . . . 8 (𝑦 ∈ ℋ → (norm‘(-1 · (𝑇𝑦))) = (norm‘(𝑇𝑦)))
95, 8eqtrd 2764 . . . . . . 7 (𝑦 ∈ ℋ → (norm‘((-1 ·op 𝑇)‘𝑦)) = (norm‘(𝑇𝑦)))
109eqeq2d 2740 . . . . . 6 (𝑦 ∈ ℋ → (𝑥 = (norm‘((-1 ·op 𝑇)‘𝑦)) ↔ 𝑥 = (norm‘(𝑇𝑦))))
1110anbi2d 630 . . . . 5 (𝑦 ∈ ℋ → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((-1 ·op 𝑇)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))))
1211rexbiia 3074 . . . 4 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((-1 ·op 𝑇)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))))
1312abbii 2796 . . 3 {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((-1 ·op 𝑇)‘𝑦)))} = {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}
1413supeq1i 9337 . 2 sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((-1 ·op 𝑇)‘𝑦)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < )
15 homulcl 31703 . . . 4 ((-1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (-1 ·op 𝑇): ℋ⟶ ℋ)
161, 2, 15mp2an 692 . . 3 (-1 ·op 𝑇): ℋ⟶ ℋ
17 nmopval 31800 . . 3 ((-1 ·op 𝑇): ℋ⟶ ℋ → (normop‘(-1 ·op 𝑇)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((-1 ·op 𝑇)‘𝑦)))}, ℝ*, < ))
1816, 17ax-mp 5 . 2 (normop‘(-1 ·op 𝑇)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((-1 ·op 𝑇)‘𝑦)))}, ℝ*, < )
19 nmopval 31800 . . 3 (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
202, 19ax-mp 5 . 2 (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < )
2114, 18, 203eqtr4i 2762 1 (normop‘(-1 ·op 𝑇)) = (normop𝑇)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053   class class class wbr 5092  wf 6478  cfv 6482  (class class class)co 7349  supcsup 9330  cc 11007  1c1 11010  *cxr 11148   < clt 11149  cle 11150  -cneg 11348  chba 30863   · csm 30865  normcno 30867   ·op chot 30883  normopcnop 30889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-hilex 30943  ax-hfvadd 30944  ax-hvcom 30945  ax-hv0cl 30947  ax-hvaddid 30948  ax-hfvmul 30949  ax-hvmulid 30950  ax-hvmulass 30951  ax-hvdistr1 30952  ax-hvmul0 30954  ax-hfi 31023  ax-his1 31026  ax-his3 31028  ax-his4 31029
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-hnorm 30912  df-hvsub 30915  df-homul 31675  df-nmop 31783
This theorem is referenced by:  nmoptri2i  32043
  Copyright terms: Public domain W3C validator