Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvrat Structured version   Visualization version   GIF version

Theorem 1cvrat 37968
Description: Create an atom under an element covered by the lattice unity. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
1cvrat.b 𝐡 = (Baseβ€˜πΎ)
1cvrat.l ≀ = (leβ€˜πΎ)
1cvrat.j ∨ = (joinβ€˜πΎ)
1cvrat.m ∧ = (meetβ€˜πΎ)
1cvrat.u 1 = (1.β€˜πΎ)
1cvrat.c 𝐢 = ( β‹– β€˜πΎ)
1cvrat.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
1cvrat ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ ((𝑃 ∨ 𝑄) ∧ 𝑋) ∈ 𝐴)

Proof of Theorem 1cvrat
StepHypRef Expression
1 hllat 37854 . . . . . 6 (𝐾 ∈ HL β†’ 𝐾 ∈ Lat)
213ad2ant1 1134 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ 𝐾 ∈ Lat)
3 simp21 1207 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ 𝑃 ∈ 𝐴)
4 1cvrat.b . . . . . . 7 𝐡 = (Baseβ€˜πΎ)
5 1cvrat.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
64, 5atbase 37780 . . . . . 6 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ 𝐡)
73, 6syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ 𝑃 ∈ 𝐡)
8 simp22 1208 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ 𝑄 ∈ 𝐴)
94, 5atbase 37780 . . . . . 6 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ 𝐡)
108, 9syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ 𝑄 ∈ 𝐡)
11 1cvrat.j . . . . . 6 ∨ = (joinβ€˜πΎ)
124, 11latjcom 18343 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐡 ∧ 𝑄 ∈ 𝐡) β†’ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃))
132, 7, 10, 12syl3anc 1372 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃))
1413oveq1d 7377 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ ((𝑃 ∨ 𝑄) ∧ 𝑋) = ((𝑄 ∨ 𝑃) ∧ 𝑋))
154, 11latjcl 18335 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐡 ∧ 𝑃 ∈ 𝐡) β†’ (𝑄 ∨ 𝑃) ∈ 𝐡)
162, 10, 7, 15syl3anc 1372 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ (𝑄 ∨ 𝑃) ∈ 𝐡)
17 simp23 1209 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ 𝑋 ∈ 𝐡)
18 1cvrat.m . . . . 5 ∧ = (meetβ€˜πΎ)
194, 18latmcom 18359 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑃) ∈ 𝐡 ∧ 𝑋 ∈ 𝐡) β†’ ((𝑄 ∨ 𝑃) ∧ 𝑋) = (𝑋 ∧ (𝑄 ∨ 𝑃)))
202, 16, 17, 19syl3anc 1372 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ ((𝑄 ∨ 𝑃) ∧ 𝑋) = (𝑋 ∧ (𝑄 ∨ 𝑃)))
2114, 20eqtrd 2777 . 2 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ ((𝑃 ∨ 𝑄) ∧ 𝑋) = (𝑋 ∧ (𝑄 ∨ 𝑃)))
22 simp1 1137 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ 𝐾 ∈ HL)
2317, 8, 33jca 1129 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴))
24 simp31 1210 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ 𝑃 β‰  𝑄)
2524necomd 3000 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ 𝑄 β‰  𝑃)
26 simp33 1212 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ Β¬ 𝑃 ≀ 𝑋)
27 hlop 37853 . . . . . 6 (𝐾 ∈ HL β†’ 𝐾 ∈ OP)
28273ad2ant1 1134 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ 𝐾 ∈ OP)
29 1cvrat.l . . . . . 6 ≀ = (leβ€˜πΎ)
30 1cvrat.u . . . . . 6 1 = (1.β€˜πΎ)
314, 29, 30ople1 37682 . . . . 5 ((𝐾 ∈ OP ∧ 𝑄 ∈ 𝐡) β†’ 𝑄 ≀ 1 )
3228, 10, 31syl2anc 585 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ 𝑄 ≀ 1 )
33 simp32 1211 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ 𝑋𝐢 1 )
34 1cvrat.c . . . . . 6 𝐢 = ( β‹– β€˜πΎ)
354, 29, 11, 30, 34, 51cvrjat 37967 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ (𝑋 ∨ 𝑃) = 1 )
3622, 17, 3, 33, 26, 35syl32anc 1379 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ (𝑋 ∨ 𝑃) = 1 )
3732, 36breqtrrd 5138 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ 𝑄 ≀ (𝑋 ∨ 𝑃))
384, 29, 11, 18, 5cvrat3 37934 . . . 4 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴)) β†’ ((𝑄 β‰  𝑃 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ 𝑄 ≀ (𝑋 ∨ 𝑃)) β†’ (𝑋 ∧ (𝑄 ∨ 𝑃)) ∈ 𝐴))
3938imp 408 . . 3 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴)) ∧ (𝑄 β‰  𝑃 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ 𝑄 ≀ (𝑋 ∨ 𝑃))) β†’ (𝑋 ∧ (𝑄 ∨ 𝑃)) ∈ 𝐴)
4022, 23, 25, 26, 37, 39syl23anc 1378 . 2 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ (𝑋 ∧ (𝑄 ∨ 𝑃)) ∈ 𝐴)
4121, 40eqeltrd 2838 1 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ ((𝑃 ∨ 𝑄) ∧ 𝑋) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2944   class class class wbr 5110  β€˜cfv 6501  (class class class)co 7362  Basecbs 17090  lecple 17147  joincjn 18207  meetcmee 18208  1.cp1 18320  Latclat 18327  OPcops 37663   β‹– ccvr 37753  Atomscatm 37754  HLchlt 37841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-proset 18191  df-poset 18209  df-plt 18226  df-lub 18242  df-glb 18243  df-join 18244  df-meet 18245  df-p0 18321  df-p1 18322  df-lat 18328  df-clat 18395  df-oposet 37667  df-ol 37669  df-oml 37670  df-covers 37757  df-ats 37758  df-atl 37789  df-cvlat 37813  df-hlat 37842
This theorem is referenced by:  cdlemblem  38285  cdlemb  38286  lhpat  38535
  Copyright terms: Public domain W3C validator