Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvrat Structured version   Visualization version   GIF version

Theorem 1cvrat 39443
Description: Create an atom under an element covered by the lattice unity. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
1cvrat.b 𝐵 = (Base‘𝐾)
1cvrat.l = (le‘𝐾)
1cvrat.j = (join‘𝐾)
1cvrat.m = (meet‘𝐾)
1cvrat.u 1 = (1.‘𝐾)
1cvrat.c 𝐶 = ( ⋖ ‘𝐾)
1cvrat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
1cvrat ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((𝑃 𝑄) 𝑋) ∈ 𝐴)

Proof of Theorem 1cvrat
StepHypRef Expression
1 hllat 39329 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
213ad2ant1 1133 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ Lat)
3 simp21 1207 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑃𝐴)
4 1cvrat.b . . . . . . 7 𝐵 = (Base‘𝐾)
5 1cvrat.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
64, 5atbase 39255 . . . . . 6 (𝑃𝐴𝑃𝐵)
73, 6syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑃𝐵)
8 simp22 1208 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑄𝐴)
94, 5atbase 39255 . . . . . 6 (𝑄𝐴𝑄𝐵)
108, 9syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑄𝐵)
11 1cvrat.j . . . . . 6 = (join‘𝐾)
124, 11latjcom 18382 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) = (𝑄 𝑃))
132, 7, 10, 12syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑃 𝑄) = (𝑄 𝑃))
1413oveq1d 7384 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((𝑃 𝑄) 𝑋) = ((𝑄 𝑃) 𝑋))
154, 11latjcl 18374 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑃𝐵) → (𝑄 𝑃) ∈ 𝐵)
162, 10, 7, 15syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑄 𝑃) ∈ 𝐵)
17 simp23 1209 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑋𝐵)
18 1cvrat.m . . . . 5 = (meet‘𝐾)
194, 18latmcom 18398 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 𝑃) ∈ 𝐵𝑋𝐵) → ((𝑄 𝑃) 𝑋) = (𝑋 (𝑄 𝑃)))
202, 16, 17, 19syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((𝑄 𝑃) 𝑋) = (𝑋 (𝑄 𝑃)))
2114, 20eqtrd 2764 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((𝑃 𝑄) 𝑋) = (𝑋 (𝑄 𝑃)))
22 simp1 1136 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ HL)
2317, 8, 33jca 1128 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋𝐵𝑄𝐴𝑃𝐴))
24 simp31 1210 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑃𝑄)
2524necomd 2980 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑄𝑃)
26 simp33 1212 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ¬ 𝑃 𝑋)
27 hlop 39328 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
28273ad2ant1 1133 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ OP)
29 1cvrat.l . . . . . 6 = (le‘𝐾)
30 1cvrat.u . . . . . 6 1 = (1.‘𝐾)
314, 29, 30ople1 39157 . . . . 5 ((𝐾 ∈ OP ∧ 𝑄𝐵) → 𝑄 1 )
3228, 10, 31syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑄 1 )
33 simp32 1211 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑋𝐶 1 )
34 1cvrat.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
354, 29, 11, 30, 34, 51cvrjat 39442 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋 𝑃) = 1 )
3622, 17, 3, 33, 26, 35syl32anc 1380 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋 𝑃) = 1 )
3732, 36breqtrrd 5130 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑄 (𝑋 𝑃))
384, 29, 11, 18, 5cvrat3 39409 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑃𝐴)) → ((𝑄𝑃 ∧ ¬ 𝑃 𝑋𝑄 (𝑋 𝑃)) → (𝑋 (𝑄 𝑃)) ∈ 𝐴))
3938imp 406 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑃𝐴)) ∧ (𝑄𝑃 ∧ ¬ 𝑃 𝑋𝑄 (𝑋 𝑃))) → (𝑋 (𝑄 𝑃)) ∈ 𝐴)
4022, 23, 25, 26, 37, 39syl23anc 1379 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋 (𝑄 𝑃)) ∈ 𝐴)
4121, 40eqeltrd 2828 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((𝑃 𝑄) 𝑋) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18248  meetcmee 18249  1.cp1 18359  Latclat 18366  OPcops 39138  ccvr 39228  Atomscatm 39229  HLchlt 39316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317
This theorem is referenced by:  cdlemblem  39760  cdlemb  39761  lhpat  40010
  Copyright terms: Public domain W3C validator