Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvrat Structured version   Visualization version   GIF version

Theorem 1cvrat 36164
Description: Create an atom under an element covered by the lattice unit. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
1cvrat.b 𝐵 = (Base‘𝐾)
1cvrat.l = (le‘𝐾)
1cvrat.j = (join‘𝐾)
1cvrat.m = (meet‘𝐾)
1cvrat.u 1 = (1.‘𝐾)
1cvrat.c 𝐶 = ( ⋖ ‘𝐾)
1cvrat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
1cvrat ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((𝑃 𝑄) 𝑋) ∈ 𝐴)

Proof of Theorem 1cvrat
StepHypRef Expression
1 hllat 36051 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
213ad2ant1 1126 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ Lat)
3 simp21 1199 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑃𝐴)
4 1cvrat.b . . . . . . 7 𝐵 = (Base‘𝐾)
5 1cvrat.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
64, 5atbase 35977 . . . . . 6 (𝑃𝐴𝑃𝐵)
73, 6syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑃𝐵)
8 simp22 1200 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑄𝐴)
94, 5atbase 35977 . . . . . 6 (𝑄𝐴𝑄𝐵)
108, 9syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑄𝐵)
11 1cvrat.j . . . . . 6 = (join‘𝐾)
124, 11latjcom 17502 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) = (𝑄 𝑃))
132, 7, 10, 12syl3anc 1364 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑃 𝑄) = (𝑄 𝑃))
1413oveq1d 7038 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((𝑃 𝑄) 𝑋) = ((𝑄 𝑃) 𝑋))
154, 11latjcl 17494 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑃𝐵) → (𝑄 𝑃) ∈ 𝐵)
162, 10, 7, 15syl3anc 1364 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑄 𝑃) ∈ 𝐵)
17 simp23 1201 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑋𝐵)
18 1cvrat.m . . . . 5 = (meet‘𝐾)
194, 18latmcom 17518 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 𝑃) ∈ 𝐵𝑋𝐵) → ((𝑄 𝑃) 𝑋) = (𝑋 (𝑄 𝑃)))
202, 16, 17, 19syl3anc 1364 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((𝑄 𝑃) 𝑋) = (𝑋 (𝑄 𝑃)))
2114, 20eqtrd 2833 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((𝑃 𝑄) 𝑋) = (𝑋 (𝑄 𝑃)))
22 simp1 1129 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ HL)
2317, 8, 33jca 1121 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋𝐵𝑄𝐴𝑃𝐴))
24 simp31 1202 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑃𝑄)
2524necomd 3041 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑄𝑃)
26 simp33 1204 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ¬ 𝑃 𝑋)
27 hlop 36050 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
28273ad2ant1 1126 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ OP)
29 1cvrat.l . . . . . 6 = (le‘𝐾)
30 1cvrat.u . . . . . 6 1 = (1.‘𝐾)
314, 29, 30ople1 35879 . . . . 5 ((𝐾 ∈ OP ∧ 𝑄𝐵) → 𝑄 1 )
3228, 10, 31syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑄 1 )
33 simp32 1203 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑋𝐶 1 )
34 1cvrat.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
354, 29, 11, 30, 34, 51cvrjat 36163 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋 𝑃) = 1 )
3622, 17, 3, 33, 26, 35syl32anc 1371 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋 𝑃) = 1 )
3732, 36breqtrrd 4996 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑄 (𝑋 𝑃))
384, 29, 11, 18, 5cvrat3 36130 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑃𝐴)) → ((𝑄𝑃 ∧ ¬ 𝑃 𝑋𝑄 (𝑋 𝑃)) → (𝑋 (𝑄 𝑃)) ∈ 𝐴))
3938imp 407 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑃𝐴)) ∧ (𝑄𝑃 ∧ ¬ 𝑃 𝑋𝑄 (𝑋 𝑃))) → (𝑋 (𝑄 𝑃)) ∈ 𝐴)
4022, 23, 25, 26, 37, 39syl23anc 1370 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋 (𝑄 𝑃)) ∈ 𝐴)
4121, 40eqeltrd 2885 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((𝑃 𝑄) 𝑋) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1080   = wceq 1525  wcel 2083  wne 2986   class class class wbr 4968  cfv 6232  (class class class)co 7023  Basecbs 16316  lecple 16405  joincjn 17387  meetcmee 17388  1.cp1 17481  Latclat 17488  OPcops 35860  ccvr 35950  Atomscatm 35951  HLchlt 36038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-proset 17371  df-poset 17389  df-plt 17401  df-lub 17417  df-glb 17418  df-join 17419  df-meet 17420  df-p0 17482  df-p1 17483  df-lat 17489  df-clat 17551  df-oposet 35864  df-ol 35866  df-oml 35867  df-covers 35954  df-ats 35955  df-atl 35986  df-cvlat 36010  df-hlat 36039
This theorem is referenced by:  cdlemblem  36481  cdlemb  36482  lhpat  36731
  Copyright terms: Public domain W3C validator