Proof of Theorem 1cvrat
Step | Hyp | Ref
| Expression |
1 | | hllat 36973 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
2 | 1 | 3ad2ant1 1130 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → 𝐾 ∈ Lat) |
3 | | simp21 1203 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → 𝑃 ∈ 𝐴) |
4 | | 1cvrat.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
5 | | 1cvrat.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
6 | 4, 5 | atbase 36899 |
. . . . . 6
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
7 | 3, 6 | syl 17 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → 𝑃 ∈ 𝐵) |
8 | | simp22 1204 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → 𝑄 ∈ 𝐴) |
9 | 4, 5 | atbase 36899 |
. . . . . 6
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
10 | 8, 9 | syl 17 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → 𝑄 ∈ 𝐵) |
11 | | 1cvrat.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
12 | 4, 11 | latjcom 17748 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
13 | 2, 7, 10, 12 | syl3anc 1368 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
14 | 13 | oveq1d 7171 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → ((𝑃 ∨ 𝑄) ∧ 𝑋) = ((𝑄 ∨ 𝑃) ∧ 𝑋)) |
15 | 4, 11 | latjcl 17740 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) → (𝑄 ∨ 𝑃) ∈ 𝐵) |
16 | 2, 10, 7, 15 | syl3anc 1368 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → (𝑄 ∨ 𝑃) ∈ 𝐵) |
17 | | simp23 1205 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → 𝑋 ∈ 𝐵) |
18 | | 1cvrat.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
19 | 4, 18 | latmcom 17764 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑃) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑄 ∨ 𝑃) ∧ 𝑋) = (𝑋 ∧ (𝑄 ∨ 𝑃))) |
20 | 2, 16, 17, 19 | syl3anc 1368 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → ((𝑄 ∨ 𝑃) ∧ 𝑋) = (𝑋 ∧ (𝑄 ∨ 𝑃))) |
21 | 14, 20 | eqtrd 2793 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → ((𝑃 ∨ 𝑄) ∧ 𝑋) = (𝑋 ∧ (𝑄 ∨ 𝑃))) |
22 | | simp1 1133 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → 𝐾 ∈ HL) |
23 | 17, 8, 3 | 3jca 1125 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴)) |
24 | | simp31 1206 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → 𝑃 ≠ 𝑄) |
25 | 24 | necomd 3006 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → 𝑄 ≠ 𝑃) |
26 | | simp33 1208 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → ¬ 𝑃 ≤ 𝑋) |
27 | | hlop 36972 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
28 | 27 | 3ad2ant1 1130 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → 𝐾 ∈ OP) |
29 | | 1cvrat.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
30 | | 1cvrat.u |
. . . . . 6
⊢ 1 =
(1.‘𝐾) |
31 | 4, 29, 30 | ople1 36801 |
. . . . 5
⊢ ((𝐾 ∈ OP ∧ 𝑄 ∈ 𝐵) → 𝑄 ≤ 1 ) |
32 | 28, 10, 31 | syl2anc 587 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → 𝑄 ≤ 1 ) |
33 | | simp32 1207 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → 𝑋𝐶 1 ) |
34 | | 1cvrat.c |
. . . . . 6
⊢ 𝐶 = ( ⋖ ‘𝐾) |
35 | 4, 29, 11, 30, 34, 5 | 1cvrjat 37085 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → (𝑋 ∨ 𝑃) = 1 ) |
36 | 22, 17, 3, 33, 26, 35 | syl32anc 1375 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → (𝑋 ∨ 𝑃) = 1 ) |
37 | 32, 36 | breqtrrd 5064 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → 𝑄 ≤ (𝑋 ∨ 𝑃)) |
38 | 4, 29, 11, 18, 5 | cvrat3 37052 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴)) → ((𝑄 ≠ 𝑃 ∧ ¬ 𝑃 ≤ 𝑋 ∧ 𝑄 ≤ (𝑋 ∨ 𝑃)) → (𝑋 ∧ (𝑄 ∨ 𝑃)) ∈ 𝐴)) |
39 | 38 | imp 410 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴)) ∧ (𝑄 ≠ 𝑃 ∧ ¬ 𝑃 ≤ 𝑋 ∧ 𝑄 ≤ (𝑋 ∨ 𝑃))) → (𝑋 ∧ (𝑄 ∨ 𝑃)) ∈ 𝐴) |
40 | 22, 23, 25, 26, 37, 39 | syl23anc 1374 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → (𝑋 ∧ (𝑄 ∨ 𝑃)) ∈ 𝐴) |
41 | 21, 40 | eqeltrd 2852 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → ((𝑃 ∨ 𝑄) ∧ 𝑋) ∈ 𝐴) |