Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvrat Structured version   Visualization version   GIF version

Theorem 1cvrat 37086
Description: Create an atom under an element covered by the lattice unit. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
1cvrat.b 𝐵 = (Base‘𝐾)
1cvrat.l = (le‘𝐾)
1cvrat.j = (join‘𝐾)
1cvrat.m = (meet‘𝐾)
1cvrat.u 1 = (1.‘𝐾)
1cvrat.c 𝐶 = ( ⋖ ‘𝐾)
1cvrat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
1cvrat ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((𝑃 𝑄) 𝑋) ∈ 𝐴)

Proof of Theorem 1cvrat
StepHypRef Expression
1 hllat 36973 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
213ad2ant1 1130 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ Lat)
3 simp21 1203 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑃𝐴)
4 1cvrat.b . . . . . . 7 𝐵 = (Base‘𝐾)
5 1cvrat.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
64, 5atbase 36899 . . . . . 6 (𝑃𝐴𝑃𝐵)
73, 6syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑃𝐵)
8 simp22 1204 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑄𝐴)
94, 5atbase 36899 . . . . . 6 (𝑄𝐴𝑄𝐵)
108, 9syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑄𝐵)
11 1cvrat.j . . . . . 6 = (join‘𝐾)
124, 11latjcom 17748 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) = (𝑄 𝑃))
132, 7, 10, 12syl3anc 1368 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑃 𝑄) = (𝑄 𝑃))
1413oveq1d 7171 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((𝑃 𝑄) 𝑋) = ((𝑄 𝑃) 𝑋))
154, 11latjcl 17740 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑃𝐵) → (𝑄 𝑃) ∈ 𝐵)
162, 10, 7, 15syl3anc 1368 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑄 𝑃) ∈ 𝐵)
17 simp23 1205 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑋𝐵)
18 1cvrat.m . . . . 5 = (meet‘𝐾)
194, 18latmcom 17764 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 𝑃) ∈ 𝐵𝑋𝐵) → ((𝑄 𝑃) 𝑋) = (𝑋 (𝑄 𝑃)))
202, 16, 17, 19syl3anc 1368 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((𝑄 𝑃) 𝑋) = (𝑋 (𝑄 𝑃)))
2114, 20eqtrd 2793 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((𝑃 𝑄) 𝑋) = (𝑋 (𝑄 𝑃)))
22 simp1 1133 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ HL)
2317, 8, 33jca 1125 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋𝐵𝑄𝐴𝑃𝐴))
24 simp31 1206 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑃𝑄)
2524necomd 3006 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑄𝑃)
26 simp33 1208 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ¬ 𝑃 𝑋)
27 hlop 36972 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
28273ad2ant1 1130 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ OP)
29 1cvrat.l . . . . . 6 = (le‘𝐾)
30 1cvrat.u . . . . . 6 1 = (1.‘𝐾)
314, 29, 30ople1 36801 . . . . 5 ((𝐾 ∈ OP ∧ 𝑄𝐵) → 𝑄 1 )
3228, 10, 31syl2anc 587 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑄 1 )
33 simp32 1207 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑋𝐶 1 )
34 1cvrat.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
354, 29, 11, 30, 34, 51cvrjat 37085 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋 𝑃) = 1 )
3622, 17, 3, 33, 26, 35syl32anc 1375 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋 𝑃) = 1 )
3732, 36breqtrrd 5064 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑄 (𝑋 𝑃))
384, 29, 11, 18, 5cvrat3 37052 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑃𝐴)) → ((𝑄𝑃 ∧ ¬ 𝑃 𝑋𝑄 (𝑋 𝑃)) → (𝑋 (𝑄 𝑃)) ∈ 𝐴))
3938imp 410 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑃𝐴)) ∧ (𝑄𝑃 ∧ ¬ 𝑃 𝑋𝑄 (𝑋 𝑃))) → (𝑋 (𝑄 𝑃)) ∈ 𝐴)
4022, 23, 25, 26, 37, 39syl23anc 1374 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋 (𝑄 𝑃)) ∈ 𝐴)
4121, 40eqeltrd 2852 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((𝑃 𝑄) 𝑋) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951   class class class wbr 5036  cfv 6340  (class class class)co 7156  Basecbs 16554  lecple 16643  joincjn 17633  meetcmee 17634  1.cp1 17727  Latclat 17734  OPcops 36782  ccvr 36872  Atomscatm 36873  HLchlt 36960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-proset 17617  df-poset 17635  df-plt 17647  df-lub 17663  df-glb 17664  df-join 17665  df-meet 17666  df-p0 17728  df-p1 17729  df-lat 17735  df-clat 17797  df-oposet 36786  df-ol 36788  df-oml 36789  df-covers 36876  df-ats 36877  df-atl 36908  df-cvlat 36932  df-hlat 36961
This theorem is referenced by:  cdlemblem  37403  cdlemb  37404  lhpat  37653
  Copyright terms: Public domain W3C validator