Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atjm Structured version   Visualization version   GIF version

Theorem 2atjm 38918
Description: The meet of a line (expressed with 2 atoms) and a lattice element. (Contributed by NM, 30-Jul-2012.)
Hypotheses
Ref Expression
2atjm.b 𝐡 = (Baseβ€˜πΎ)
2atjm.l ≀ = (leβ€˜πΎ)
2atjm.j ∨ = (joinβ€˜πΎ)
2atjm.m ∧ = (meetβ€˜πΎ)
2atjm.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
2atjm ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ ((𝑃 ∨ 𝑄) ∧ 𝑋) = 𝑃)

Proof of Theorem 2atjm
StepHypRef Expression
1 hllat 38835 . . . . . 6 (𝐾 ∈ HL β†’ 𝐾 ∈ Lat)
213ad2ant1 1131 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝐾 ∈ Lat)
3 simp21 1204 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑃 ∈ 𝐴)
4 2atjm.b . . . . . . 7 𝐡 = (Baseβ€˜πΎ)
5 2atjm.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
64, 5atbase 38761 . . . . . 6 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ 𝐡)
73, 6syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑃 ∈ 𝐡)
8 simp22 1205 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑄 ∈ 𝐴)
94, 5atbase 38761 . . . . . 6 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ 𝐡)
108, 9syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑄 ∈ 𝐡)
11 2atjm.l . . . . . 6 ≀ = (leβ€˜πΎ)
12 2atjm.j . . . . . 6 ∨ = (joinβ€˜πΎ)
134, 11, 12latlej1 18440 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐡 ∧ 𝑄 ∈ 𝐡) β†’ 𝑃 ≀ (𝑃 ∨ 𝑄))
142, 7, 10, 13syl3anc 1369 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑃 ≀ (𝑃 ∨ 𝑄))
15 simp3l 1199 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑃 ≀ 𝑋)
16 simp1 1134 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝐾 ∈ HL)
174, 12, 5hlatjcl 38839 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ 𝐡)
1816, 3, 8, 17syl3anc 1369 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ (𝑃 ∨ 𝑄) ∈ 𝐡)
19 simp23 1206 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑋 ∈ 𝐡)
20 2atjm.m . . . . . 6 ∧ = (meetβ€˜πΎ)
214, 11, 20latlem12 18458 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐡 ∧ (𝑃 ∨ 𝑄) ∈ 𝐡 ∧ 𝑋 ∈ 𝐡)) β†’ ((𝑃 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 ≀ 𝑋) ↔ 𝑃 ≀ ((𝑃 ∨ 𝑄) ∧ 𝑋)))
222, 7, 18, 19, 21syl13anc 1370 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ ((𝑃 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 ≀ 𝑋) ↔ 𝑃 ≀ ((𝑃 ∨ 𝑄) ∧ 𝑋)))
2314, 15, 22mpbi2and 711 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑃 ≀ ((𝑃 ∨ 𝑄) ∧ 𝑋))
24 hlatl 38832 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
25243ad2ant1 1131 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝐾 ∈ AtLat)
264, 20latmcom 18455 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ 𝐡 ∧ 𝑋 ∈ 𝐡) β†’ ((𝑃 ∨ 𝑄) ∧ 𝑋) = (𝑋 ∧ (𝑃 ∨ 𝑄)))
272, 18, 19, 26syl3anc 1369 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ ((𝑃 ∨ 𝑄) ∧ 𝑋) = (𝑋 ∧ (𝑃 ∨ 𝑄)))
2819, 3, 83jca 1126 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴))
29 nbrne2 5168 . . . . . . 7 ((𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋) β†’ 𝑃 β‰  𝑄)
30293ad2ant3 1133 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑃 β‰  𝑄)
31 simp3r 1200 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ Β¬ 𝑄 ≀ 𝑋)
324, 12latjcl 18431 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐡) β†’ (𝑋 ∨ 𝑄) ∈ 𝐡)
332, 19, 10, 32syl3anc 1369 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ (𝑋 ∨ 𝑄) ∈ 𝐡)
344, 11, 12latlej1 18440 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐡) β†’ 𝑋 ≀ (𝑋 ∨ 𝑄))
352, 19, 10, 34syl3anc 1369 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑋 ≀ (𝑋 ∨ 𝑄))
364, 11, 2, 7, 19, 33, 15, 35lattrd 18438 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑃 ≀ (𝑋 ∨ 𝑄))
374, 11, 12, 20, 5cvrat3 38915 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ ((𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑃 ≀ (𝑋 ∨ 𝑄)) β†’ (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴))
3837imp 406 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑃 ≀ (𝑋 ∨ 𝑄))) β†’ (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴)
3916, 28, 30, 31, 36, 38syl23anc 1375 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴)
4027, 39eqeltrd 2829 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ ((𝑃 ∨ 𝑄) ∧ 𝑋) ∈ 𝐴)
4111, 5atcmp 38783 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ ((𝑃 ∨ 𝑄) ∧ 𝑋) ∈ 𝐴) β†’ (𝑃 ≀ ((𝑃 ∨ 𝑄) ∧ 𝑋) ↔ 𝑃 = ((𝑃 ∨ 𝑄) ∧ 𝑋)))
4225, 3, 40, 41syl3anc 1369 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ (𝑃 ≀ ((𝑃 ∨ 𝑄) ∧ 𝑋) ↔ 𝑃 = ((𝑃 ∨ 𝑄) ∧ 𝑋)))
4323, 42mpbid 231 . 2 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑃 = ((𝑃 ∨ 𝑄) ∧ 𝑋))
4443eqcomd 2734 1 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ ((𝑃 ∨ 𝑄) ∧ 𝑋) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099   β‰  wne 2937   class class class wbr 5148  β€˜cfv 6548  (class class class)co 7420  Basecbs 17180  lecple 17240  joincjn 18303  meetcmee 18304  Latclat 18423  Atomscatm 38735  AtLatcal 38736  HLchlt 38822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-proset 18287  df-poset 18305  df-plt 18322  df-lub 18338  df-glb 18339  df-join 18340  df-meet 18341  df-p0 18417  df-lat 18424  df-clat 18491  df-oposet 38648  df-ol 38650  df-oml 38651  df-covers 38738  df-ats 38739  df-atl 38770  df-cvlat 38794  df-hlat 38823
This theorem is referenced by:  atbtwn  38919  dalem24  39170  dalem25  39171
  Copyright terms: Public domain W3C validator