Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atjm Structured version   Visualization version   GIF version

Theorem 2atjm 39554
Description: The meet of a line (expressed with 2 atoms) and a lattice element. (Contributed by NM, 30-Jul-2012.)
Hypotheses
Ref Expression
2atjm.b 𝐵 = (Base‘𝐾)
2atjm.l = (le‘𝐾)
2atjm.j = (join‘𝐾)
2atjm.m = (meet‘𝐾)
2atjm.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2atjm ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 𝑄) 𝑋) = 𝑃)

Proof of Theorem 2atjm
StepHypRef Expression
1 hllat 39472 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
213ad2ant1 1133 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝐾 ∈ Lat)
3 simp21 1207 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃𝐴)
4 2atjm.b . . . . . . 7 𝐵 = (Base‘𝐾)
5 2atjm.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
64, 5atbase 39398 . . . . . 6 (𝑃𝐴𝑃𝐵)
73, 6syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃𝐵)
8 simp22 1208 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑄𝐴)
94, 5atbase 39398 . . . . . 6 (𝑄𝐴𝑄𝐵)
108, 9syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑄𝐵)
11 2atjm.l . . . . . 6 = (le‘𝐾)
12 2atjm.j . . . . . 6 = (join‘𝐾)
134, 11, 12latlej1 18354 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → 𝑃 (𝑃 𝑄))
142, 7, 10, 13syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃 (𝑃 𝑄))
15 simp3l 1202 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃 𝑋)
16 simp1 1136 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝐾 ∈ HL)
174, 12, 5hlatjcl 39476 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ 𝐵)
1816, 3, 8, 17syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → (𝑃 𝑄) ∈ 𝐵)
19 simp23 1209 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑋𝐵)
20 2atjm.m . . . . . 6 = (meet‘𝐾)
214, 11, 20latlem12 18372 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃𝐵 ∧ (𝑃 𝑄) ∈ 𝐵𝑋𝐵)) → ((𝑃 (𝑃 𝑄) ∧ 𝑃 𝑋) ↔ 𝑃 ((𝑃 𝑄) 𝑋)))
222, 7, 18, 19, 21syl13anc 1374 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 (𝑃 𝑄) ∧ 𝑃 𝑋) ↔ 𝑃 ((𝑃 𝑄) 𝑋)))
2314, 15, 22mpbi2and 712 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃 ((𝑃 𝑄) 𝑋))
24 hlatl 39469 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
25243ad2ant1 1133 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝐾 ∈ AtLat)
264, 20latmcom 18369 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵𝑋𝐵) → ((𝑃 𝑄) 𝑋) = (𝑋 (𝑃 𝑄)))
272, 18, 19, 26syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 𝑄) 𝑋) = (𝑋 (𝑃 𝑄)))
2819, 3, 83jca 1128 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → (𝑋𝐵𝑃𝐴𝑄𝐴))
29 nbrne2 5109 . . . . . . 7 ((𝑃 𝑋 ∧ ¬ 𝑄 𝑋) → 𝑃𝑄)
30293ad2ant3 1135 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃𝑄)
31 simp3r 1203 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ¬ 𝑄 𝑋)
324, 12latjcl 18345 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → (𝑋 𝑄) ∈ 𝐵)
332, 19, 10, 32syl3anc 1373 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → (𝑋 𝑄) ∈ 𝐵)
344, 11, 12latlej1 18354 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → 𝑋 (𝑋 𝑄))
352, 19, 10, 34syl3anc 1373 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑋 (𝑋 𝑄))
364, 11, 2, 7, 19, 33, 15, 35lattrd 18352 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃 (𝑋 𝑄))
374, 11, 12, 20, 5cvrat3 39551 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))
3837imp 406 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑄 𝑋𝑃 (𝑋 𝑄))) → (𝑋 (𝑃 𝑄)) ∈ 𝐴)
3916, 28, 30, 31, 36, 38syl23anc 1379 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → (𝑋 (𝑃 𝑄)) ∈ 𝐴)
4027, 39eqeltrd 2831 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 𝑄) 𝑋) ∈ 𝐴)
4111, 5atcmp 39420 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐴 ∧ ((𝑃 𝑄) 𝑋) ∈ 𝐴) → (𝑃 ((𝑃 𝑄) 𝑋) ↔ 𝑃 = ((𝑃 𝑄) 𝑋)))
4225, 3, 40, 41syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → (𝑃 ((𝑃 𝑄) 𝑋) ↔ 𝑃 = ((𝑃 𝑄) 𝑋)))
4323, 42mpbid 232 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃 = ((𝑃 𝑄) 𝑋))
4443eqcomd 2737 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 𝑄) 𝑋) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Latclat 18337  Atomscatm 39372  AtLatcal 39373  HLchlt 39459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460
This theorem is referenced by:  atbtwn  39555  dalem24  39806  dalem25  39807
  Copyright terms: Public domain W3C validator