Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atjm Structured version   Visualization version   GIF version

Theorem 2atjm 39439
Description: The meet of a line (expressed with 2 atoms) and a lattice element. (Contributed by NM, 30-Jul-2012.)
Hypotheses
Ref Expression
2atjm.b 𝐵 = (Base‘𝐾)
2atjm.l = (le‘𝐾)
2atjm.j = (join‘𝐾)
2atjm.m = (meet‘𝐾)
2atjm.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2atjm ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 𝑄) 𝑋) = 𝑃)

Proof of Theorem 2atjm
StepHypRef Expression
1 hllat 39356 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
213ad2ant1 1133 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝐾 ∈ Lat)
3 simp21 1207 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃𝐴)
4 2atjm.b . . . . . . 7 𝐵 = (Base‘𝐾)
5 2atjm.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
64, 5atbase 39282 . . . . . 6 (𝑃𝐴𝑃𝐵)
73, 6syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃𝐵)
8 simp22 1208 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑄𝐴)
94, 5atbase 39282 . . . . . 6 (𝑄𝐴𝑄𝐵)
108, 9syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑄𝐵)
11 2atjm.l . . . . . 6 = (le‘𝐾)
12 2atjm.j . . . . . 6 = (join‘𝐾)
134, 11, 12latlej1 18407 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → 𝑃 (𝑃 𝑄))
142, 7, 10, 13syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃 (𝑃 𝑄))
15 simp3l 1202 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃 𝑋)
16 simp1 1136 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝐾 ∈ HL)
174, 12, 5hlatjcl 39360 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ 𝐵)
1816, 3, 8, 17syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → (𝑃 𝑄) ∈ 𝐵)
19 simp23 1209 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑋𝐵)
20 2atjm.m . . . . . 6 = (meet‘𝐾)
214, 11, 20latlem12 18425 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃𝐵 ∧ (𝑃 𝑄) ∈ 𝐵𝑋𝐵)) → ((𝑃 (𝑃 𝑄) ∧ 𝑃 𝑋) ↔ 𝑃 ((𝑃 𝑄) 𝑋)))
222, 7, 18, 19, 21syl13anc 1374 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 (𝑃 𝑄) ∧ 𝑃 𝑋) ↔ 𝑃 ((𝑃 𝑄) 𝑋)))
2314, 15, 22mpbi2and 712 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃 ((𝑃 𝑄) 𝑋))
24 hlatl 39353 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
25243ad2ant1 1133 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝐾 ∈ AtLat)
264, 20latmcom 18422 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵𝑋𝐵) → ((𝑃 𝑄) 𝑋) = (𝑋 (𝑃 𝑄)))
272, 18, 19, 26syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 𝑄) 𝑋) = (𝑋 (𝑃 𝑄)))
2819, 3, 83jca 1128 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → (𝑋𝐵𝑃𝐴𝑄𝐴))
29 nbrne2 5127 . . . . . . 7 ((𝑃 𝑋 ∧ ¬ 𝑄 𝑋) → 𝑃𝑄)
30293ad2ant3 1135 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃𝑄)
31 simp3r 1203 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ¬ 𝑄 𝑋)
324, 12latjcl 18398 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → (𝑋 𝑄) ∈ 𝐵)
332, 19, 10, 32syl3anc 1373 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → (𝑋 𝑄) ∈ 𝐵)
344, 11, 12latlej1 18407 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → 𝑋 (𝑋 𝑄))
352, 19, 10, 34syl3anc 1373 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑋 (𝑋 𝑄))
364, 11, 2, 7, 19, 33, 15, 35lattrd 18405 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃 (𝑋 𝑄))
374, 11, 12, 20, 5cvrat3 39436 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))
3837imp 406 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑄 𝑋𝑃 (𝑋 𝑄))) → (𝑋 (𝑃 𝑄)) ∈ 𝐴)
3916, 28, 30, 31, 36, 38syl23anc 1379 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → (𝑋 (𝑃 𝑄)) ∈ 𝐴)
4027, 39eqeltrd 2828 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 𝑄) 𝑋) ∈ 𝐴)
4111, 5atcmp 39304 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐴 ∧ ((𝑃 𝑄) 𝑋) ∈ 𝐴) → (𝑃 ((𝑃 𝑄) 𝑋) ↔ 𝑃 = ((𝑃 𝑄) 𝑋)))
4225, 3, 40, 41syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → (𝑃 ((𝑃 𝑄) 𝑋) ↔ 𝑃 = ((𝑃 𝑄) 𝑋)))
4323, 42mpbid 232 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃 = ((𝑃 𝑄) 𝑋))
4443eqcomd 2735 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 𝑄) 𝑋) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  meetcmee 18273  Latclat 18390  Atomscatm 39256  AtLatcal 39257  HLchlt 39343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344
This theorem is referenced by:  atbtwn  39440  dalem24  39691  dalem25  39692
  Copyright terms: Public domain W3C validator