MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1expd Structured version   Visualization version   GIF version

Theorem evl1expd 22258
Description: Polynomial evaluation builder for an exponential. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1addd.q 𝑂 = (eval1𝑅)
evl1addd.p 𝑃 = (Poly1𝑅)
evl1addd.b 𝐵 = (Base‘𝑅)
evl1addd.u 𝑈 = (Base‘𝑃)
evl1addd.1 (𝜑𝑅 ∈ CRing)
evl1addd.2 (𝜑𝑌𝐵)
evl1addd.3 (𝜑 → (𝑀𝑈 ∧ ((𝑂𝑀)‘𝑌) = 𝑉))
evl1expd.f = (.g‘(mulGrp‘𝑃))
evl1expd.e = (.g‘(mulGrp‘𝑅))
evl1expd.4 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
evl1expd (𝜑 → ((𝑁 𝑀) ∈ 𝑈 ∧ ((𝑂‘(𝑁 𝑀))‘𝑌) = (𝑁 𝑉)))

Proof of Theorem evl1expd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (mulGrp‘𝑃) = (mulGrp‘𝑃)
2 evl1addd.u . . . 4 𝑈 = (Base‘𝑃)
31, 2mgpbas 20061 . . 3 𝑈 = (Base‘(mulGrp‘𝑃))
4 evl1expd.f . . 3 = (.g‘(mulGrp‘𝑃))
5 evl1addd.1 . . . . 5 (𝜑𝑅 ∈ CRing)
6 crngring 20161 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
75, 6syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
8 evl1addd.p . . . . 5 𝑃 = (Poly1𝑅)
98ply1ring 22158 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
101ringmgp 20155 . . . 4 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
117, 9, 103syl 18 . . 3 (𝜑 → (mulGrp‘𝑃) ∈ Mnd)
12 evl1expd.4 . . 3 (𝜑𝑁 ∈ ℕ0)
13 evl1addd.3 . . . 4 (𝜑 → (𝑀𝑈 ∧ ((𝑂𝑀)‘𝑌) = 𝑉))
1413simpld 494 . . 3 (𝜑𝑀𝑈)
153, 4, 11, 12, 14mulgnn0cld 19005 . 2 (𝜑 → (𝑁 𝑀) ∈ 𝑈)
16 evl1addd.q . . . . . . . . 9 𝑂 = (eval1𝑅)
17 eqid 2731 . . . . . . . . 9 (𝑅s 𝐵) = (𝑅s 𝐵)
18 evl1addd.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
1916, 8, 17, 18evl1rhm 22245 . . . . . . . 8 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)))
205, 19syl 17 . . . . . . 7 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)))
21 eqid 2731 . . . . . . . 8 (mulGrp‘(𝑅s 𝐵)) = (mulGrp‘(𝑅s 𝐵))
221, 21rhmmhm 20395 . . . . . . 7 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) → 𝑂 ∈ ((mulGrp‘𝑃) MndHom (mulGrp‘(𝑅s 𝐵))))
2320, 22syl 17 . . . . . 6 (𝜑𝑂 ∈ ((mulGrp‘𝑃) MndHom (mulGrp‘(𝑅s 𝐵))))
24 eqid 2731 . . . . . . 7 (.g‘(mulGrp‘(𝑅s 𝐵))) = (.g‘(mulGrp‘(𝑅s 𝐵)))
253, 4, 24mhmmulg 19025 . . . . . 6 ((𝑂 ∈ ((mulGrp‘𝑃) MndHom (mulGrp‘(𝑅s 𝐵))) ∧ 𝑁 ∈ ℕ0𝑀𝑈) → (𝑂‘(𝑁 𝑀)) = (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))(𝑂𝑀)))
2623, 12, 14, 25syl3anc 1373 . . . . 5 (𝜑 → (𝑂‘(𝑁 𝑀)) = (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))(𝑂𝑀)))
27 eqid 2731 . . . . . . 7 (.g‘((mulGrp‘𝑅) ↑s 𝐵)) = (.g‘((mulGrp‘𝑅) ↑s 𝐵))
28 eqidd 2732 . . . . . . 7 (𝜑 → (Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘(mulGrp‘(𝑅s 𝐵))))
2918fvexi 6836 . . . . . . . . 9 𝐵 ∈ V
30 eqid 2731 . . . . . . . . . 10 (mulGrp‘𝑅) = (mulGrp‘𝑅)
31 eqid 2731 . . . . . . . . . 10 ((mulGrp‘𝑅) ↑s 𝐵) = ((mulGrp‘𝑅) ↑s 𝐵)
32 eqid 2731 . . . . . . . . . 10 (Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘(mulGrp‘(𝑅s 𝐵)))
33 eqid 2731 . . . . . . . . . 10 (Base‘((mulGrp‘𝑅) ↑s 𝐵)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵))
34 eqid 2731 . . . . . . . . . 10 (+g‘(mulGrp‘(𝑅s 𝐵))) = (+g‘(mulGrp‘(𝑅s 𝐵)))
35 eqid 2731 . . . . . . . . . 10 (+g‘((mulGrp‘𝑅) ↑s 𝐵)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))
3617, 30, 31, 21, 32, 33, 34, 35pwsmgp 20243 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝐵 ∈ V) → ((Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ (+g‘(mulGrp‘(𝑅s 𝐵))) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))))
375, 29, 36sylancl 586 . . . . . . . 8 (𝜑 → ((Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ (+g‘(mulGrp‘(𝑅s 𝐵))) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))))
3837simpld 494 . . . . . . 7 (𝜑 → (Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
39 ssv 3959 . . . . . . . 8 (Base‘(mulGrp‘(𝑅s 𝐵))) ⊆ V
4039a1i 11 . . . . . . 7 (𝜑 → (Base‘(mulGrp‘(𝑅s 𝐵))) ⊆ V)
41 ovexd 7381 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘(mulGrp‘(𝑅s 𝐵)))𝑦) ∈ V)
4237simprd 495 . . . . . . . 8 (𝜑 → (+g‘(mulGrp‘(𝑅s 𝐵))) = (+g‘((mulGrp‘𝑅) ↑s 𝐵)))
4342oveqdr 7374 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘(mulGrp‘(𝑅s 𝐵)))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s 𝐵))𝑦))
4424, 27, 28, 38, 40, 41, 43mulgpropd 19026 . . . . . 6 (𝜑 → (.g‘(mulGrp‘(𝑅s 𝐵))) = (.g‘((mulGrp‘𝑅) ↑s 𝐵)))
4544oveqd 7363 . . . . 5 (𝜑 → (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))(𝑂𝑀)) = (𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀)))
4626, 45eqtrd 2766 . . . 4 (𝜑 → (𝑂‘(𝑁 𝑀)) = (𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀)))
4746fveq1d 6824 . . 3 (𝜑 → ((𝑂‘(𝑁 𝑀))‘𝑌) = ((𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀))‘𝑌))
4830ringmgp 20155 . . . . . 6 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
497, 48syl 17 . . . . 5 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
5029a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
51 eqid 2731 . . . . . . . . 9 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
522, 51rhmf 20400 . . . . . . . 8 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) → 𝑂:𝑈⟶(Base‘(𝑅s 𝐵)))
5320, 52syl 17 . . . . . . 7 (𝜑𝑂:𝑈⟶(Base‘(𝑅s 𝐵)))
5453, 14ffvelcdmd 7018 . . . . . 6 (𝜑 → (𝑂𝑀) ∈ (Base‘(𝑅s 𝐵)))
5521, 51mgpbas 20061 . . . . . . 7 (Base‘(𝑅s 𝐵)) = (Base‘(mulGrp‘(𝑅s 𝐵)))
5655, 38eqtrid 2778 . . . . . 6 (𝜑 → (Base‘(𝑅s 𝐵)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
5754, 56eleqtrd 2833 . . . . 5 (𝜑 → (𝑂𝑀) ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
58 evl1addd.2 . . . . 5 (𝜑𝑌𝐵)
59 evl1expd.e . . . . . 6 = (.g‘(mulGrp‘𝑅))
6031, 33, 27, 59pwsmulg 19029 . . . . 5 ((((mulGrp‘𝑅) ∈ Mnd ∧ 𝐵 ∈ V) ∧ (𝑁 ∈ ℕ0 ∧ (𝑂𝑀) ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ 𝑌𝐵)) → ((𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀))‘𝑌) = (𝑁 ((𝑂𝑀)‘𝑌)))
6149, 50, 12, 57, 58, 60syl23anc 1379 . . . 4 (𝜑 → ((𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀))‘𝑌) = (𝑁 ((𝑂𝑀)‘𝑌)))
6213simprd 495 . . . . 5 (𝜑 → ((𝑂𝑀)‘𝑌) = 𝑉)
6362oveq2d 7362 . . . 4 (𝜑 → (𝑁 ((𝑂𝑀)‘𝑌)) = (𝑁 𝑉))
6461, 63eqtrd 2766 . . 3 (𝜑 → ((𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀))‘𝑌) = (𝑁 𝑉))
6547, 64eqtrd 2766 . 2 (𝜑 → ((𝑂‘(𝑁 𝑀))‘𝑌) = (𝑁 𝑉))
6615, 65jca 511 1 (𝜑 → ((𝑁 𝑀) ∈ 𝑈 ∧ ((𝑂‘(𝑁 𝑀))‘𝑌) = (𝑁 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  wss 3902  wf 6477  cfv 6481  (class class class)co 7346  0cn0 12378  Basecbs 17117  +gcplusg 17158  s cpws 17347  Mndcmnd 18639   MndHom cmhm 18686  .gcmg 18977  mulGrpcmgp 20056  Ringcrg 20149  CRingccrg 20150   RingHom crh 20385  Poly1cpl1 22087  eval1ce1 22227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-hom 17182  df-cco 17183  df-0g 17342  df-gsum 17343  df-prds 17348  df-pws 17350  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mhm 18688  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-mulg 18978  df-subg 19033  df-ghm 19123  df-cntz 19227  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-rhm 20388  df-subrng 20459  df-subrg 20483  df-lmod 20793  df-lss 20863  df-lsp 20903  df-assa 21788  df-asp 21789  df-ascl 21790  df-psr 21844  df-mvr 21845  df-mpl 21846  df-opsr 21848  df-evls 22007  df-evl 22008  df-psr1 22090  df-ply1 22092  df-evl1 22229
This theorem is referenced by:  evl1varpwval  22275  idomrootle  26103  plypf1  26142  lgsqrlem1  27282  aks6d1c1p2  42141  aks6d1c2lem4  42159  aks6d1c5lem2  42170  aks5lem2  42219  aks5lem3a  42221
  Copyright terms: Public domain W3C validator