MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1expd Structured version   Visualization version   GIF version

Theorem evl1expd 22268
Description: Polynomial evaluation builder for an exponential. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1addd.q 𝑂 = (eval1𝑅)
evl1addd.p 𝑃 = (Poly1𝑅)
evl1addd.b 𝐵 = (Base‘𝑅)
evl1addd.u 𝑈 = (Base‘𝑃)
evl1addd.1 (𝜑𝑅 ∈ CRing)
evl1addd.2 (𝜑𝑌𝐵)
evl1addd.3 (𝜑 → (𝑀𝑈 ∧ ((𝑂𝑀)‘𝑌) = 𝑉))
evl1expd.f = (.g‘(mulGrp‘𝑃))
evl1expd.e = (.g‘(mulGrp‘𝑅))
evl1expd.4 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
evl1expd (𝜑 → ((𝑁 𝑀) ∈ 𝑈 ∧ ((𝑂‘(𝑁 𝑀))‘𝑌) = (𝑁 𝑉)))

Proof of Theorem evl1expd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . 4 (mulGrp‘𝑃) = (mulGrp‘𝑃)
2 evl1addd.u . . . 4 𝑈 = (Base‘𝑃)
31, 2mgpbas 20090 . . 3 𝑈 = (Base‘(mulGrp‘𝑃))
4 evl1expd.f . . 3 = (.g‘(mulGrp‘𝑃))
5 evl1addd.1 . . . . 5 (𝜑𝑅 ∈ CRing)
6 crngring 20190 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
75, 6syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
8 evl1addd.p . . . . 5 𝑃 = (Poly1𝑅)
98ply1ring 22168 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
101ringmgp 20184 . . . 4 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
117, 9, 103syl 18 . . 3 (𝜑 → (mulGrp‘𝑃) ∈ Mnd)
12 evl1expd.4 . . 3 (𝜑𝑁 ∈ ℕ0)
13 evl1addd.3 . . . 4 (𝜑 → (𝑀𝑈 ∧ ((𝑂𝑀)‘𝑌) = 𝑉))
1413simpld 494 . . 3 (𝜑𝑀𝑈)
153, 4, 11, 12, 14mulgnn0cld 19063 . 2 (𝜑 → (𝑁 𝑀) ∈ 𝑈)
16 evl1addd.q . . . . . . . . 9 𝑂 = (eval1𝑅)
17 eqid 2734 . . . . . . . . 9 (𝑅s 𝐵) = (𝑅s 𝐵)
18 evl1addd.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
1916, 8, 17, 18evl1rhm 22255 . . . . . . . 8 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)))
205, 19syl 17 . . . . . . 7 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)))
21 eqid 2734 . . . . . . . 8 (mulGrp‘(𝑅s 𝐵)) = (mulGrp‘(𝑅s 𝐵))
221, 21rhmmhm 20424 . . . . . . 7 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) → 𝑂 ∈ ((mulGrp‘𝑃) MndHom (mulGrp‘(𝑅s 𝐵))))
2320, 22syl 17 . . . . . 6 (𝜑𝑂 ∈ ((mulGrp‘𝑃) MndHom (mulGrp‘(𝑅s 𝐵))))
24 eqid 2734 . . . . . . 7 (.g‘(mulGrp‘(𝑅s 𝐵))) = (.g‘(mulGrp‘(𝑅s 𝐵)))
253, 4, 24mhmmulg 19083 . . . . . 6 ((𝑂 ∈ ((mulGrp‘𝑃) MndHom (mulGrp‘(𝑅s 𝐵))) ∧ 𝑁 ∈ ℕ0𝑀𝑈) → (𝑂‘(𝑁 𝑀)) = (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))(𝑂𝑀)))
2623, 12, 14, 25syl3anc 1372 . . . . 5 (𝜑 → (𝑂‘(𝑁 𝑀)) = (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))(𝑂𝑀)))
27 eqid 2734 . . . . . . 7 (.g‘((mulGrp‘𝑅) ↑s 𝐵)) = (.g‘((mulGrp‘𝑅) ↑s 𝐵))
28 eqidd 2735 . . . . . . 7 (𝜑 → (Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘(mulGrp‘(𝑅s 𝐵))))
2918fvexi 6886 . . . . . . . . 9 𝐵 ∈ V
30 eqid 2734 . . . . . . . . . 10 (mulGrp‘𝑅) = (mulGrp‘𝑅)
31 eqid 2734 . . . . . . . . . 10 ((mulGrp‘𝑅) ↑s 𝐵) = ((mulGrp‘𝑅) ↑s 𝐵)
32 eqid 2734 . . . . . . . . . 10 (Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘(mulGrp‘(𝑅s 𝐵)))
33 eqid 2734 . . . . . . . . . 10 (Base‘((mulGrp‘𝑅) ↑s 𝐵)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵))
34 eqid 2734 . . . . . . . . . 10 (+g‘(mulGrp‘(𝑅s 𝐵))) = (+g‘(mulGrp‘(𝑅s 𝐵)))
35 eqid 2734 . . . . . . . . . 10 (+g‘((mulGrp‘𝑅) ↑s 𝐵)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))
3617, 30, 31, 21, 32, 33, 34, 35pwsmgp 20272 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝐵 ∈ V) → ((Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ (+g‘(mulGrp‘(𝑅s 𝐵))) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))))
375, 29, 36sylancl 586 . . . . . . . 8 (𝜑 → ((Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ (+g‘(mulGrp‘(𝑅s 𝐵))) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))))
3837simpld 494 . . . . . . 7 (𝜑 → (Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
39 ssv 3981 . . . . . . . 8 (Base‘(mulGrp‘(𝑅s 𝐵))) ⊆ V
4039a1i 11 . . . . . . 7 (𝜑 → (Base‘(mulGrp‘(𝑅s 𝐵))) ⊆ V)
41 ovexd 7434 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘(mulGrp‘(𝑅s 𝐵)))𝑦) ∈ V)
4237simprd 495 . . . . . . . 8 (𝜑 → (+g‘(mulGrp‘(𝑅s 𝐵))) = (+g‘((mulGrp‘𝑅) ↑s 𝐵)))
4342oveqdr 7427 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘(mulGrp‘(𝑅s 𝐵)))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s 𝐵))𝑦))
4424, 27, 28, 38, 40, 41, 43mulgpropd 19084 . . . . . 6 (𝜑 → (.g‘(mulGrp‘(𝑅s 𝐵))) = (.g‘((mulGrp‘𝑅) ↑s 𝐵)))
4544oveqd 7416 . . . . 5 (𝜑 → (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))(𝑂𝑀)) = (𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀)))
4626, 45eqtrd 2769 . . . 4 (𝜑 → (𝑂‘(𝑁 𝑀)) = (𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀)))
4746fveq1d 6874 . . 3 (𝜑 → ((𝑂‘(𝑁 𝑀))‘𝑌) = ((𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀))‘𝑌))
4830ringmgp 20184 . . . . . 6 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
497, 48syl 17 . . . . 5 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
5029a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
51 eqid 2734 . . . . . . . . 9 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
522, 51rhmf 20430 . . . . . . . 8 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) → 𝑂:𝑈⟶(Base‘(𝑅s 𝐵)))
5320, 52syl 17 . . . . . . 7 (𝜑𝑂:𝑈⟶(Base‘(𝑅s 𝐵)))
5453, 14ffvelcdmd 7071 . . . . . 6 (𝜑 → (𝑂𝑀) ∈ (Base‘(𝑅s 𝐵)))
5521, 51mgpbas 20090 . . . . . . 7 (Base‘(𝑅s 𝐵)) = (Base‘(mulGrp‘(𝑅s 𝐵)))
5655, 38eqtrid 2781 . . . . . 6 (𝜑 → (Base‘(𝑅s 𝐵)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
5754, 56eleqtrd 2835 . . . . 5 (𝜑 → (𝑂𝑀) ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
58 evl1addd.2 . . . . 5 (𝜑𝑌𝐵)
59 evl1expd.e . . . . . 6 = (.g‘(mulGrp‘𝑅))
6031, 33, 27, 59pwsmulg 19087 . . . . 5 ((((mulGrp‘𝑅) ∈ Mnd ∧ 𝐵 ∈ V) ∧ (𝑁 ∈ ℕ0 ∧ (𝑂𝑀) ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ 𝑌𝐵)) → ((𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀))‘𝑌) = (𝑁 ((𝑂𝑀)‘𝑌)))
6149, 50, 12, 57, 58, 60syl23anc 1378 . . . 4 (𝜑 → ((𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀))‘𝑌) = (𝑁 ((𝑂𝑀)‘𝑌)))
6213simprd 495 . . . . 5 (𝜑 → ((𝑂𝑀)‘𝑌) = 𝑉)
6362oveq2d 7415 . . . 4 (𝜑 → (𝑁 ((𝑂𝑀)‘𝑌)) = (𝑁 𝑉))
6461, 63eqtrd 2769 . . 3 (𝜑 → ((𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀))‘𝑌) = (𝑁 𝑉))
6547, 64eqtrd 2769 . 2 (𝜑 → ((𝑂‘(𝑁 𝑀))‘𝑌) = (𝑁 𝑉))
6615, 65jca 511 1 (𝜑 → ((𝑁 𝑀) ∈ 𝑈 ∧ ((𝑂‘(𝑁 𝑀))‘𝑌) = (𝑁 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3457  wss 3924  wf 6523  cfv 6527  (class class class)co 7399  0cn0 12493  Basecbs 17213  +gcplusg 17256  s cpws 17445  Mndcmnd 18697   MndHom cmhm 18744  .gcmg 19035  mulGrpcmgp 20085  Ringcrg 20178  CRingccrg 20179   RingHom crh 20414  Poly1cpl1 22097  eval1ce1 22237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-iin 4967  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-se 5604  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-isom 6536  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-of 7665  df-ofr 7666  df-om 7856  df-1st 7982  df-2nd 7983  df-supp 8154  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-2o 8475  df-er 8713  df-map 8836  df-pm 8837  df-ixp 8906  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-fsupp 9368  df-sup 9448  df-oi 9516  df-card 9945  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-2 12295  df-3 12296  df-4 12297  df-5 12298  df-6 12299  df-7 12300  df-8 12301  df-9 12302  df-n0 12494  df-z 12581  df-dec 12701  df-uz 12845  df-fz 13514  df-fzo 13661  df-seq 14009  df-hash 14337  df-struct 17151  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17214  df-ress 17237  df-plusg 17269  df-mulr 17270  df-sca 17272  df-vsca 17273  df-ip 17274  df-tset 17275  df-ple 17276  df-ds 17278  df-hom 17280  df-cco 17281  df-0g 17440  df-gsum 17441  df-prds 17446  df-pws 17448  df-mre 17583  df-mrc 17584  df-acs 17586  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18746  df-submnd 18747  df-grp 18904  df-minusg 18905  df-sbg 18906  df-mulg 19036  df-subg 19091  df-ghm 19181  df-cntz 19285  df-cmn 19748  df-abl 19749  df-mgp 20086  df-rng 20098  df-ur 20127  df-srg 20132  df-ring 20180  df-cring 20181  df-rhm 20417  df-subrng 20491  df-subrg 20515  df-lmod 20804  df-lss 20874  df-lsp 20914  df-assa 21798  df-asp 21799  df-ascl 21800  df-psr 21854  df-mvr 21855  df-mpl 21856  df-opsr 21858  df-evls 22017  df-evl 22018  df-psr1 22100  df-ply1 22102  df-evl1 22239
This theorem is referenced by:  evl1varpwval  22285  idomrootle  26115  plypf1  26154  lgsqrlem1  27293  aks6d1c1p2  42044  aks6d1c2lem4  42062  aks6d1c5lem2  42073  aks5lem2  42122  aks5lem3a  42124
  Copyright terms: Public domain W3C validator