MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1expd Structured version   Visualization version   GIF version

Theorem evl1expd 21509
Description: Polynomial evaluation builder for an exponential. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1addd.q 𝑂 = (eval1𝑅)
evl1addd.p 𝑃 = (Poly1𝑅)
evl1addd.b 𝐵 = (Base‘𝑅)
evl1addd.u 𝑈 = (Base‘𝑃)
evl1addd.1 (𝜑𝑅 ∈ CRing)
evl1addd.2 (𝜑𝑌𝐵)
evl1addd.3 (𝜑 → (𝑀𝑈 ∧ ((𝑂𝑀)‘𝑌) = 𝑉))
evl1expd.f = (.g‘(mulGrp‘𝑃))
evl1expd.e = (.g‘(mulGrp‘𝑅))
evl1expd.4 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
evl1expd (𝜑 → ((𝑁 𝑀) ∈ 𝑈 ∧ ((𝑂‘(𝑁 𝑀))‘𝑌) = (𝑁 𝑉)))

Proof of Theorem evl1expd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evl1addd.1 . . . . 5 (𝜑𝑅 ∈ CRing)
2 crngring 19793 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
31, 2syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
4 evl1addd.p . . . . 5 𝑃 = (Poly1𝑅)
54ply1ring 21417 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
6 eqid 2740 . . . . 5 (mulGrp‘𝑃) = (mulGrp‘𝑃)
76ringmgp 19787 . . . 4 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
83, 5, 73syl 18 . . 3 (𝜑 → (mulGrp‘𝑃) ∈ Mnd)
9 evl1expd.4 . . 3 (𝜑𝑁 ∈ ℕ0)
10 evl1addd.3 . . . 4 (𝜑 → (𝑀𝑈 ∧ ((𝑂𝑀)‘𝑌) = 𝑉))
1110simpld 495 . . 3 (𝜑𝑀𝑈)
12 evl1addd.u . . . . 5 𝑈 = (Base‘𝑃)
136, 12mgpbas 19724 . . . 4 𝑈 = (Base‘(mulGrp‘𝑃))
14 evl1expd.f . . . 4 = (.g‘(mulGrp‘𝑃))
1513, 14mulgnn0cl 18718 . . 3 (((mulGrp‘𝑃) ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑀𝑈) → (𝑁 𝑀) ∈ 𝑈)
168, 9, 11, 15syl3anc 1370 . 2 (𝜑 → (𝑁 𝑀) ∈ 𝑈)
17 evl1addd.q . . . . . . . . 9 𝑂 = (eval1𝑅)
18 eqid 2740 . . . . . . . . 9 (𝑅s 𝐵) = (𝑅s 𝐵)
19 evl1addd.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
2017, 4, 18, 19evl1rhm 21496 . . . . . . . 8 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)))
211, 20syl 17 . . . . . . 7 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)))
22 eqid 2740 . . . . . . . 8 (mulGrp‘(𝑅s 𝐵)) = (mulGrp‘(𝑅s 𝐵))
236, 22rhmmhm 19964 . . . . . . 7 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) → 𝑂 ∈ ((mulGrp‘𝑃) MndHom (mulGrp‘(𝑅s 𝐵))))
2421, 23syl 17 . . . . . 6 (𝜑𝑂 ∈ ((mulGrp‘𝑃) MndHom (mulGrp‘(𝑅s 𝐵))))
25 eqid 2740 . . . . . . 7 (.g‘(mulGrp‘(𝑅s 𝐵))) = (.g‘(mulGrp‘(𝑅s 𝐵)))
2613, 14, 25mhmmulg 18742 . . . . . 6 ((𝑂 ∈ ((mulGrp‘𝑃) MndHom (mulGrp‘(𝑅s 𝐵))) ∧ 𝑁 ∈ ℕ0𝑀𝑈) → (𝑂‘(𝑁 𝑀)) = (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))(𝑂𝑀)))
2724, 9, 11, 26syl3anc 1370 . . . . 5 (𝜑 → (𝑂‘(𝑁 𝑀)) = (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))(𝑂𝑀)))
28 eqid 2740 . . . . . . 7 (.g‘((mulGrp‘𝑅) ↑s 𝐵)) = (.g‘((mulGrp‘𝑅) ↑s 𝐵))
29 eqidd 2741 . . . . . . 7 (𝜑 → (Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘(mulGrp‘(𝑅s 𝐵))))
3019fvexi 6785 . . . . . . . . 9 𝐵 ∈ V
31 eqid 2740 . . . . . . . . . 10 (mulGrp‘𝑅) = (mulGrp‘𝑅)
32 eqid 2740 . . . . . . . . . 10 ((mulGrp‘𝑅) ↑s 𝐵) = ((mulGrp‘𝑅) ↑s 𝐵)
33 eqid 2740 . . . . . . . . . 10 (Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘(mulGrp‘(𝑅s 𝐵)))
34 eqid 2740 . . . . . . . . . 10 (Base‘((mulGrp‘𝑅) ↑s 𝐵)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵))
35 eqid 2740 . . . . . . . . . 10 (+g‘(mulGrp‘(𝑅s 𝐵))) = (+g‘(mulGrp‘(𝑅s 𝐵)))
36 eqid 2740 . . . . . . . . . 10 (+g‘((mulGrp‘𝑅) ↑s 𝐵)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))
3718, 31, 32, 22, 33, 34, 35, 36pwsmgp 19855 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝐵 ∈ V) → ((Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ (+g‘(mulGrp‘(𝑅s 𝐵))) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))))
381, 30, 37sylancl 586 . . . . . . . 8 (𝜑 → ((Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ (+g‘(mulGrp‘(𝑅s 𝐵))) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))))
3938simpld 495 . . . . . . 7 (𝜑 → (Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
40 ssv 3950 . . . . . . . 8 (Base‘(mulGrp‘(𝑅s 𝐵))) ⊆ V
4140a1i 11 . . . . . . 7 (𝜑 → (Base‘(mulGrp‘(𝑅s 𝐵))) ⊆ V)
42 ovexd 7306 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘(mulGrp‘(𝑅s 𝐵)))𝑦) ∈ V)
4338simprd 496 . . . . . . . 8 (𝜑 → (+g‘(mulGrp‘(𝑅s 𝐵))) = (+g‘((mulGrp‘𝑅) ↑s 𝐵)))
4443oveqdr 7299 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘(mulGrp‘(𝑅s 𝐵)))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s 𝐵))𝑦))
4525, 28, 29, 39, 41, 42, 44mulgpropd 18743 . . . . . 6 (𝜑 → (.g‘(mulGrp‘(𝑅s 𝐵))) = (.g‘((mulGrp‘𝑅) ↑s 𝐵)))
4645oveqd 7288 . . . . 5 (𝜑 → (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))(𝑂𝑀)) = (𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀)))
4727, 46eqtrd 2780 . . . 4 (𝜑 → (𝑂‘(𝑁 𝑀)) = (𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀)))
4847fveq1d 6773 . . 3 (𝜑 → ((𝑂‘(𝑁 𝑀))‘𝑌) = ((𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀))‘𝑌))
4931ringmgp 19787 . . . . . 6 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
503, 49syl 17 . . . . 5 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
5130a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
52 eqid 2740 . . . . . . . . 9 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
5312, 52rhmf 19968 . . . . . . . 8 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) → 𝑂:𝑈⟶(Base‘(𝑅s 𝐵)))
5421, 53syl 17 . . . . . . 7 (𝜑𝑂:𝑈⟶(Base‘(𝑅s 𝐵)))
5554, 11ffvelrnd 6959 . . . . . 6 (𝜑 → (𝑂𝑀) ∈ (Base‘(𝑅s 𝐵)))
5622, 52mgpbas 19724 . . . . . . 7 (Base‘(𝑅s 𝐵)) = (Base‘(mulGrp‘(𝑅s 𝐵)))
5756, 39eqtrid 2792 . . . . . 6 (𝜑 → (Base‘(𝑅s 𝐵)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
5855, 57eleqtrd 2843 . . . . 5 (𝜑 → (𝑂𝑀) ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
59 evl1addd.2 . . . . 5 (𝜑𝑌𝐵)
60 evl1expd.e . . . . . 6 = (.g‘(mulGrp‘𝑅))
6132, 34, 28, 60pwsmulg 18746 . . . . 5 ((((mulGrp‘𝑅) ∈ Mnd ∧ 𝐵 ∈ V) ∧ (𝑁 ∈ ℕ0 ∧ (𝑂𝑀) ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ 𝑌𝐵)) → ((𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀))‘𝑌) = (𝑁 ((𝑂𝑀)‘𝑌)))
6250, 51, 9, 58, 59, 61syl23anc 1376 . . . 4 (𝜑 → ((𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀))‘𝑌) = (𝑁 ((𝑂𝑀)‘𝑌)))
6310simprd 496 . . . . 5 (𝜑 → ((𝑂𝑀)‘𝑌) = 𝑉)
6463oveq2d 7287 . . . 4 (𝜑 → (𝑁 ((𝑂𝑀)‘𝑌)) = (𝑁 𝑉))
6562, 64eqtrd 2780 . . 3 (𝜑 → ((𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀))‘𝑌) = (𝑁 𝑉))
6648, 65eqtrd 2780 . 2 (𝜑 → ((𝑂‘(𝑁 𝑀))‘𝑌) = (𝑁 𝑉))
6716, 66jca 512 1 (𝜑 → ((𝑁 𝑀) ∈ 𝑈 ∧ ((𝑂‘(𝑁 𝑀))‘𝑌) = (𝑁 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  Vcvv 3431  wss 3892  wf 6428  cfv 6432  (class class class)co 7271  0cn0 12233  Basecbs 16910  +gcplusg 16960  s cpws 17155  Mndcmnd 18383   MndHom cmhm 18426  .gcmg 18698  mulGrpcmgp 19718  Ringcrg 19781  CRingccrg 19782   RingHom crh 19954  Poly1cpl1 21346  eval1ce1 21478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-ofr 7528  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-pm 8601  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-sup 9179  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-fz 13239  df-fzo 13382  df-seq 13720  df-hash 14043  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-hom 16984  df-cco 16985  df-0g 17150  df-gsum 17151  df-prds 17156  df-pws 17158  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-mhm 18428  df-submnd 18429  df-grp 18578  df-minusg 18579  df-sbg 18580  df-mulg 18699  df-subg 18750  df-ghm 18830  df-cntz 18921  df-cmn 19386  df-abl 19387  df-mgp 19719  df-ur 19736  df-srg 19740  df-ring 19783  df-cring 19784  df-rnghom 19957  df-subrg 20020  df-lmod 20123  df-lss 20192  df-lsp 20232  df-assa 21058  df-asp 21059  df-ascl 21060  df-psr 21110  df-mvr 21111  df-mpl 21112  df-opsr 21114  df-evls 21280  df-evl 21281  df-psr1 21349  df-ply1 21351  df-evl1 21480
This theorem is referenced by:  evl1varpwval  21526  plypf1  25371  lgsqrlem1  26492  idomrootle  41017
  Copyright terms: Public domain W3C validator