MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1expd Structured version   Visualization version   GIF version

Theorem evl1expd 22219
Description: Polynomial evaluation builder for an exponential. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1addd.q 𝑂 = (eval1𝑅)
evl1addd.p 𝑃 = (Poly1𝑅)
evl1addd.b 𝐵 = (Base‘𝑅)
evl1addd.u 𝑈 = (Base‘𝑃)
evl1addd.1 (𝜑𝑅 ∈ CRing)
evl1addd.2 (𝜑𝑌𝐵)
evl1addd.3 (𝜑 → (𝑀𝑈 ∧ ((𝑂𝑀)‘𝑌) = 𝑉))
evl1expd.f = (.g‘(mulGrp‘𝑃))
evl1expd.e = (.g‘(mulGrp‘𝑅))
evl1expd.4 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
evl1expd (𝜑 → ((𝑁 𝑀) ∈ 𝑈 ∧ ((𝑂‘(𝑁 𝑀))‘𝑌) = (𝑁 𝑉)))

Proof of Theorem evl1expd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . . 4 (mulGrp‘𝑃) = (mulGrp‘𝑃)
2 evl1addd.u . . . 4 𝑈 = (Base‘𝑃)
31, 2mgpbas 20045 . . 3 𝑈 = (Base‘(mulGrp‘𝑃))
4 evl1expd.f . . 3 = (.g‘(mulGrp‘𝑃))
5 evl1addd.1 . . . . 5 (𝜑𝑅 ∈ CRing)
6 crngring 20150 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
75, 6syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
8 evl1addd.p . . . . 5 𝑃 = (Poly1𝑅)
98ply1ring 22121 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
101ringmgp 20144 . . . 4 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
117, 9, 103syl 18 . . 3 (𝜑 → (mulGrp‘𝑃) ∈ Mnd)
12 evl1expd.4 . . 3 (𝜑𝑁 ∈ ℕ0)
13 evl1addd.3 . . . 4 (𝜑 → (𝑀𝑈 ∧ ((𝑂𝑀)‘𝑌) = 𝑉))
1413simpld 494 . . 3 (𝜑𝑀𝑈)
153, 4, 11, 12, 14mulgnn0cld 19022 . 2 (𝜑 → (𝑁 𝑀) ∈ 𝑈)
16 evl1addd.q . . . . . . . . 9 𝑂 = (eval1𝑅)
17 eqid 2726 . . . . . . . . 9 (𝑅s 𝐵) = (𝑅s 𝐵)
18 evl1addd.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
1916, 8, 17, 18evl1rhm 22206 . . . . . . . 8 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)))
205, 19syl 17 . . . . . . 7 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)))
21 eqid 2726 . . . . . . . 8 (mulGrp‘(𝑅s 𝐵)) = (mulGrp‘(𝑅s 𝐵))
221, 21rhmmhm 20381 . . . . . . 7 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) → 𝑂 ∈ ((mulGrp‘𝑃) MndHom (mulGrp‘(𝑅s 𝐵))))
2320, 22syl 17 . . . . . 6 (𝜑𝑂 ∈ ((mulGrp‘𝑃) MndHom (mulGrp‘(𝑅s 𝐵))))
24 eqid 2726 . . . . . . 7 (.g‘(mulGrp‘(𝑅s 𝐵))) = (.g‘(mulGrp‘(𝑅s 𝐵)))
253, 4, 24mhmmulg 19042 . . . . . 6 ((𝑂 ∈ ((mulGrp‘𝑃) MndHom (mulGrp‘(𝑅s 𝐵))) ∧ 𝑁 ∈ ℕ0𝑀𝑈) → (𝑂‘(𝑁 𝑀)) = (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))(𝑂𝑀)))
2623, 12, 14, 25syl3anc 1368 . . . . 5 (𝜑 → (𝑂‘(𝑁 𝑀)) = (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))(𝑂𝑀)))
27 eqid 2726 . . . . . . 7 (.g‘((mulGrp‘𝑅) ↑s 𝐵)) = (.g‘((mulGrp‘𝑅) ↑s 𝐵))
28 eqidd 2727 . . . . . . 7 (𝜑 → (Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘(mulGrp‘(𝑅s 𝐵))))
2918fvexi 6899 . . . . . . . . 9 𝐵 ∈ V
30 eqid 2726 . . . . . . . . . 10 (mulGrp‘𝑅) = (mulGrp‘𝑅)
31 eqid 2726 . . . . . . . . . 10 ((mulGrp‘𝑅) ↑s 𝐵) = ((mulGrp‘𝑅) ↑s 𝐵)
32 eqid 2726 . . . . . . . . . 10 (Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘(mulGrp‘(𝑅s 𝐵)))
33 eqid 2726 . . . . . . . . . 10 (Base‘((mulGrp‘𝑅) ↑s 𝐵)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵))
34 eqid 2726 . . . . . . . . . 10 (+g‘(mulGrp‘(𝑅s 𝐵))) = (+g‘(mulGrp‘(𝑅s 𝐵)))
35 eqid 2726 . . . . . . . . . 10 (+g‘((mulGrp‘𝑅) ↑s 𝐵)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))
3617, 30, 31, 21, 32, 33, 34, 35pwsmgp 20226 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝐵 ∈ V) → ((Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ (+g‘(mulGrp‘(𝑅s 𝐵))) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))))
375, 29, 36sylancl 585 . . . . . . . 8 (𝜑 → ((Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ (+g‘(mulGrp‘(𝑅s 𝐵))) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))))
3837simpld 494 . . . . . . 7 (𝜑 → (Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
39 ssv 4001 . . . . . . . 8 (Base‘(mulGrp‘(𝑅s 𝐵))) ⊆ V
4039a1i 11 . . . . . . 7 (𝜑 → (Base‘(mulGrp‘(𝑅s 𝐵))) ⊆ V)
41 ovexd 7440 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘(mulGrp‘(𝑅s 𝐵)))𝑦) ∈ V)
4237simprd 495 . . . . . . . 8 (𝜑 → (+g‘(mulGrp‘(𝑅s 𝐵))) = (+g‘((mulGrp‘𝑅) ↑s 𝐵)))
4342oveqdr 7433 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘(mulGrp‘(𝑅s 𝐵)))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s 𝐵))𝑦))
4424, 27, 28, 38, 40, 41, 43mulgpropd 19043 . . . . . 6 (𝜑 → (.g‘(mulGrp‘(𝑅s 𝐵))) = (.g‘((mulGrp‘𝑅) ↑s 𝐵)))
4544oveqd 7422 . . . . 5 (𝜑 → (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))(𝑂𝑀)) = (𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀)))
4626, 45eqtrd 2766 . . . 4 (𝜑 → (𝑂‘(𝑁 𝑀)) = (𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀)))
4746fveq1d 6887 . . 3 (𝜑 → ((𝑂‘(𝑁 𝑀))‘𝑌) = ((𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀))‘𝑌))
4830ringmgp 20144 . . . . . 6 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
497, 48syl 17 . . . . 5 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
5029a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
51 eqid 2726 . . . . . . . . 9 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
522, 51rhmf 20387 . . . . . . . 8 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) → 𝑂:𝑈⟶(Base‘(𝑅s 𝐵)))
5320, 52syl 17 . . . . . . 7 (𝜑𝑂:𝑈⟶(Base‘(𝑅s 𝐵)))
5453, 14ffvelcdmd 7081 . . . . . 6 (𝜑 → (𝑂𝑀) ∈ (Base‘(𝑅s 𝐵)))
5521, 51mgpbas 20045 . . . . . . 7 (Base‘(𝑅s 𝐵)) = (Base‘(mulGrp‘(𝑅s 𝐵)))
5655, 38eqtrid 2778 . . . . . 6 (𝜑 → (Base‘(𝑅s 𝐵)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
5754, 56eleqtrd 2829 . . . . 5 (𝜑 → (𝑂𝑀) ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
58 evl1addd.2 . . . . 5 (𝜑𝑌𝐵)
59 evl1expd.e . . . . . 6 = (.g‘(mulGrp‘𝑅))
6031, 33, 27, 59pwsmulg 19046 . . . . 5 ((((mulGrp‘𝑅) ∈ Mnd ∧ 𝐵 ∈ V) ∧ (𝑁 ∈ ℕ0 ∧ (𝑂𝑀) ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ 𝑌𝐵)) → ((𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀))‘𝑌) = (𝑁 ((𝑂𝑀)‘𝑌)))
6149, 50, 12, 57, 58, 60syl23anc 1374 . . . 4 (𝜑 → ((𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀))‘𝑌) = (𝑁 ((𝑂𝑀)‘𝑌)))
6213simprd 495 . . . . 5 (𝜑 → ((𝑂𝑀)‘𝑌) = 𝑉)
6362oveq2d 7421 . . . 4 (𝜑 → (𝑁 ((𝑂𝑀)‘𝑌)) = (𝑁 𝑉))
6461, 63eqtrd 2766 . . 3 (𝜑 → ((𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀))‘𝑌) = (𝑁 𝑉))
6547, 64eqtrd 2766 . 2 (𝜑 → ((𝑂‘(𝑁 𝑀))‘𝑌) = (𝑁 𝑉))
6615, 65jca 511 1 (𝜑 → ((𝑁 𝑀) ∈ 𝑈 ∧ ((𝑂‘(𝑁 𝑀))‘𝑌) = (𝑁 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  Vcvv 3468  wss 3943  wf 6533  cfv 6537  (class class class)co 7405  0cn0 12476  Basecbs 17153  +gcplusg 17206  s cpws 17401  Mndcmnd 18667   MndHom cmhm 18711  .gcmg 18995  mulGrpcmgp 20039  Ringcrg 20138  CRingccrg 20139   RingHom crh 20371  Poly1cpl1 22051  eval1ce1 22188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7667  df-ofr 7668  df-om 7853  df-1st 7974  df-2nd 7975  df-supp 8147  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-sup 9439  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13491  df-fzo 13634  df-seq 13973  df-hash 14296  df-struct 17089  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-mulr 17220  df-sca 17222  df-vsca 17223  df-ip 17224  df-tset 17225  df-ple 17226  df-ds 17228  df-hom 17230  df-cco 17231  df-0g 17396  df-gsum 17397  df-prds 17402  df-pws 17404  df-mre 17539  df-mrc 17540  df-acs 17542  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18713  df-submnd 18714  df-grp 18866  df-minusg 18867  df-sbg 18868  df-mulg 18996  df-subg 19050  df-ghm 19139  df-cntz 19233  df-cmn 19702  df-abl 19703  df-mgp 20040  df-rng 20058  df-ur 20087  df-srg 20092  df-ring 20140  df-cring 20141  df-rhm 20374  df-subrng 20446  df-subrg 20471  df-lmod 20708  df-lss 20779  df-lsp 20819  df-assa 21748  df-asp 21749  df-ascl 21750  df-psr 21803  df-mvr 21804  df-mpl 21805  df-opsr 21807  df-evls 21977  df-evl 21978  df-psr1 22054  df-ply1 22056  df-evl1 22190
This theorem is referenced by:  evl1varpwval  22236  idomrootle  26062  plypf1  26101  lgsqrlem1  27234  aks6d1c1p2  41486  aks6d1c2lem4  41503  aks6d1c5lem2  41514
  Copyright terms: Public domain W3C validator