MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppofss1d Structured version   Visualization version   GIF version

Theorem suppofss1d 8160
Description: Condition for the support of a function operation to be a subset of the support of the left function term. (Contributed by Thierry Arnoux, 21-Jun-2019.)
Hypotheses
Ref Expression
suppofssd.1 (𝜑𝐴𝑉)
suppofssd.2 (𝜑𝑍𝐵)
suppofssd.3 (𝜑𝐹:𝐴𝐵)
suppofssd.4 (𝜑𝐺:𝐴𝐵)
suppofss1d.5 ((𝜑𝑥𝐵) → (𝑍𝑋𝑥) = 𝑍)
Assertion
Ref Expression
suppofss1d (𝜑 → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑍))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝑥,𝑍   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem suppofss1d
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 suppofssd.3 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
21ffnd 6671 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
3 suppofssd.4 . . . . . . . 8 (𝜑𝐺:𝐴𝐵)
43ffnd 6671 . . . . . . 7 (𝜑𝐺 Fn 𝐴)
5 suppofssd.1 . . . . . . 7 (𝜑𝐴𝑉)
6 inidm 4186 . . . . . . 7 (𝐴𝐴) = 𝐴
7 eqidd 2730 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) = (𝐹𝑦))
8 eqidd 2730 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐺𝑦) = (𝐺𝑦))
92, 4, 5, 5, 6, 7, 8ofval 7644 . . . . . 6 ((𝜑𝑦𝐴) → ((𝐹f 𝑋𝐺)‘𝑦) = ((𝐹𝑦)𝑋(𝐺𝑦)))
109adantr 480 . . . . 5 (((𝜑𝑦𝐴) ∧ (𝐹𝑦) = 𝑍) → ((𝐹f 𝑋𝐺)‘𝑦) = ((𝐹𝑦)𝑋(𝐺𝑦)))
11 simpr 484 . . . . . 6 (((𝜑𝑦𝐴) ∧ (𝐹𝑦) = 𝑍) → (𝐹𝑦) = 𝑍)
1211oveq1d 7384 . . . . 5 (((𝜑𝑦𝐴) ∧ (𝐹𝑦) = 𝑍) → ((𝐹𝑦)𝑋(𝐺𝑦)) = (𝑍𝑋(𝐺𝑦)))
13 suppofss1d.5 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑍𝑋𝑥) = 𝑍)
1413ralrimiva 3125 . . . . . . . 8 (𝜑 → ∀𝑥𝐵 (𝑍𝑋𝑥) = 𝑍)
1514adantr 480 . . . . . . 7 ((𝜑𝑦𝐴) → ∀𝑥𝐵 (𝑍𝑋𝑥) = 𝑍)
163ffvelcdmda 7038 . . . . . . . 8 ((𝜑𝑦𝐴) → (𝐺𝑦) ∈ 𝐵)
17 simpr 484 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑥 = (𝐺𝑦)) → 𝑥 = (𝐺𝑦))
1817oveq2d 7385 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑥 = (𝐺𝑦)) → (𝑍𝑋𝑥) = (𝑍𝑋(𝐺𝑦)))
1918eqeq1d 2731 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ 𝑥 = (𝐺𝑦)) → ((𝑍𝑋𝑥) = 𝑍 ↔ (𝑍𝑋(𝐺𝑦)) = 𝑍))
2016, 19rspcdv 3577 . . . . . . 7 ((𝜑𝑦𝐴) → (∀𝑥𝐵 (𝑍𝑋𝑥) = 𝑍 → (𝑍𝑋(𝐺𝑦)) = 𝑍))
2115, 20mpd 15 . . . . . 6 ((𝜑𝑦𝐴) → (𝑍𝑋(𝐺𝑦)) = 𝑍)
2221adantr 480 . . . . 5 (((𝜑𝑦𝐴) ∧ (𝐹𝑦) = 𝑍) → (𝑍𝑋(𝐺𝑦)) = 𝑍)
2310, 12, 223eqtrd 2768 . . . 4 (((𝜑𝑦𝐴) ∧ (𝐹𝑦) = 𝑍) → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍)
2423ex 412 . . 3 ((𝜑𝑦𝐴) → ((𝐹𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍))
2524ralrimiva 3125 . 2 (𝜑 → ∀𝑦𝐴 ((𝐹𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍))
262, 4, 5, 5, 6offn 7646 . . 3 (𝜑 → (𝐹f 𝑋𝐺) Fn 𝐴)
27 ssidd 3967 . . 3 (𝜑𝐴𝐴)
28 suppofssd.2 . . 3 (𝜑𝑍𝐵)
29 suppfnss 8145 . . 3 ((((𝐹f 𝑋𝐺) Fn 𝐴𝐹 Fn 𝐴) ∧ (𝐴𝐴𝐴𝑉𝑍𝐵)) → (∀𝑦𝐴 ((𝐹𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍) → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑍)))
3026, 2, 27, 5, 28, 29syl23anc 1379 . 2 (𝜑 → (∀𝑦𝐴 ((𝐹𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍) → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑍)))
3125, 30mpd 15 1 (𝜑 → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3911   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631   supp csupp 8116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-supp 8117
This theorem is referenced by:  frlmphllem  21665  rrxcph  25268
  Copyright terms: Public domain W3C validator