MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppofss1d Structured version   Visualization version   GIF version

Theorem suppofss1d 7991
Description: Condition for the support of a function operation to be a subset of the support of the left function term. (Contributed by Thierry Arnoux, 21-Jun-2019.)
Hypotheses
Ref Expression
suppofssd.1 (𝜑𝐴𝑉)
suppofssd.2 (𝜑𝑍𝐵)
suppofssd.3 (𝜑𝐹:𝐴𝐵)
suppofssd.4 (𝜑𝐺:𝐴𝐵)
suppofss1d.5 ((𝜑𝑥𝐵) → (𝑍𝑋𝑥) = 𝑍)
Assertion
Ref Expression
suppofss1d (𝜑 → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑍))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝑥,𝑍   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem suppofss1d
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 suppofssd.3 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
21ffnd 6585 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
3 suppofssd.4 . . . . . . . 8 (𝜑𝐺:𝐴𝐵)
43ffnd 6585 . . . . . . 7 (𝜑𝐺 Fn 𝐴)
5 suppofssd.1 . . . . . . 7 (𝜑𝐴𝑉)
6 inidm 4149 . . . . . . 7 (𝐴𝐴) = 𝐴
7 eqidd 2739 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) = (𝐹𝑦))
8 eqidd 2739 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐺𝑦) = (𝐺𝑦))
92, 4, 5, 5, 6, 7, 8ofval 7522 . . . . . 6 ((𝜑𝑦𝐴) → ((𝐹f 𝑋𝐺)‘𝑦) = ((𝐹𝑦)𝑋(𝐺𝑦)))
109adantr 480 . . . . 5 (((𝜑𝑦𝐴) ∧ (𝐹𝑦) = 𝑍) → ((𝐹f 𝑋𝐺)‘𝑦) = ((𝐹𝑦)𝑋(𝐺𝑦)))
11 simpr 484 . . . . . 6 (((𝜑𝑦𝐴) ∧ (𝐹𝑦) = 𝑍) → (𝐹𝑦) = 𝑍)
1211oveq1d 7270 . . . . 5 (((𝜑𝑦𝐴) ∧ (𝐹𝑦) = 𝑍) → ((𝐹𝑦)𝑋(𝐺𝑦)) = (𝑍𝑋(𝐺𝑦)))
13 suppofss1d.5 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑍𝑋𝑥) = 𝑍)
1413ralrimiva 3107 . . . . . . . 8 (𝜑 → ∀𝑥𝐵 (𝑍𝑋𝑥) = 𝑍)
1514adantr 480 . . . . . . 7 ((𝜑𝑦𝐴) → ∀𝑥𝐵 (𝑍𝑋𝑥) = 𝑍)
163ffvelrnda 6943 . . . . . . . 8 ((𝜑𝑦𝐴) → (𝐺𝑦) ∈ 𝐵)
17 simpr 484 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑥 = (𝐺𝑦)) → 𝑥 = (𝐺𝑦))
1817oveq2d 7271 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑥 = (𝐺𝑦)) → (𝑍𝑋𝑥) = (𝑍𝑋(𝐺𝑦)))
1918eqeq1d 2740 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ 𝑥 = (𝐺𝑦)) → ((𝑍𝑋𝑥) = 𝑍 ↔ (𝑍𝑋(𝐺𝑦)) = 𝑍))
2016, 19rspcdv 3543 . . . . . . 7 ((𝜑𝑦𝐴) → (∀𝑥𝐵 (𝑍𝑋𝑥) = 𝑍 → (𝑍𝑋(𝐺𝑦)) = 𝑍))
2115, 20mpd 15 . . . . . 6 ((𝜑𝑦𝐴) → (𝑍𝑋(𝐺𝑦)) = 𝑍)
2221adantr 480 . . . . 5 (((𝜑𝑦𝐴) ∧ (𝐹𝑦) = 𝑍) → (𝑍𝑋(𝐺𝑦)) = 𝑍)
2310, 12, 223eqtrd 2782 . . . 4 (((𝜑𝑦𝐴) ∧ (𝐹𝑦) = 𝑍) → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍)
2423ex 412 . . 3 ((𝜑𝑦𝐴) → ((𝐹𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍))
2524ralrimiva 3107 . 2 (𝜑 → ∀𝑦𝐴 ((𝐹𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍))
262, 4, 5, 5, 6offn 7524 . . 3 (𝜑 → (𝐹f 𝑋𝐺) Fn 𝐴)
27 ssidd 3940 . . 3 (𝜑𝐴𝐴)
28 suppofssd.2 . . 3 (𝜑𝑍𝐵)
29 suppfnss 7976 . . 3 ((((𝐹f 𝑋𝐺) Fn 𝐴𝐹 Fn 𝐴) ∧ (𝐴𝐴𝐴𝑉𝑍𝐵)) → (∀𝑦𝐴 ((𝐹𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍) → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑍)))
3026, 2, 27, 5, 28, 29syl23anc 1375 . 2 (𝜑 → (∀𝑦𝐴 ((𝐹𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍) → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑍)))
3125, 30mpd 15 1 (𝜑 → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509   supp csupp 7948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-supp 7949
This theorem is referenced by:  frlmphllem  20897  rrxcph  24461
  Copyright terms: Public domain W3C validator