MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppofss1d Structured version   Visualization version   GIF version

Theorem suppofss1d 8137
Description: Condition for the support of a function operation to be a subset of the support of the left function term. (Contributed by Thierry Arnoux, 21-Jun-2019.)
Hypotheses
Ref Expression
suppofssd.1 (𝜑𝐴𝑉)
suppofssd.2 (𝜑𝑍𝐵)
suppofssd.3 (𝜑𝐹:𝐴𝐵)
suppofssd.4 (𝜑𝐺:𝐴𝐵)
suppofss1d.5 ((𝜑𝑥𝐵) → (𝑍𝑋𝑥) = 𝑍)
Assertion
Ref Expression
suppofss1d (𝜑 → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑍))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝑥,𝑍   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem suppofss1d
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 suppofssd.3 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
21ffnd 6653 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
3 suppofssd.4 . . . . . . . 8 (𝜑𝐺:𝐴𝐵)
43ffnd 6653 . . . . . . 7 (𝜑𝐺 Fn 𝐴)
5 suppofssd.1 . . . . . . 7 (𝜑𝐴𝑉)
6 inidm 4178 . . . . . . 7 (𝐴𝐴) = 𝐴
7 eqidd 2730 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) = (𝐹𝑦))
8 eqidd 2730 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐺𝑦) = (𝐺𝑦))
92, 4, 5, 5, 6, 7, 8ofval 7624 . . . . . 6 ((𝜑𝑦𝐴) → ((𝐹f 𝑋𝐺)‘𝑦) = ((𝐹𝑦)𝑋(𝐺𝑦)))
109adantr 480 . . . . 5 (((𝜑𝑦𝐴) ∧ (𝐹𝑦) = 𝑍) → ((𝐹f 𝑋𝐺)‘𝑦) = ((𝐹𝑦)𝑋(𝐺𝑦)))
11 simpr 484 . . . . . 6 (((𝜑𝑦𝐴) ∧ (𝐹𝑦) = 𝑍) → (𝐹𝑦) = 𝑍)
1211oveq1d 7364 . . . . 5 (((𝜑𝑦𝐴) ∧ (𝐹𝑦) = 𝑍) → ((𝐹𝑦)𝑋(𝐺𝑦)) = (𝑍𝑋(𝐺𝑦)))
13 suppofss1d.5 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑍𝑋𝑥) = 𝑍)
1413ralrimiva 3121 . . . . . . . 8 (𝜑 → ∀𝑥𝐵 (𝑍𝑋𝑥) = 𝑍)
1514adantr 480 . . . . . . 7 ((𝜑𝑦𝐴) → ∀𝑥𝐵 (𝑍𝑋𝑥) = 𝑍)
163ffvelcdmda 7018 . . . . . . . 8 ((𝜑𝑦𝐴) → (𝐺𝑦) ∈ 𝐵)
17 simpr 484 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑥 = (𝐺𝑦)) → 𝑥 = (𝐺𝑦))
1817oveq2d 7365 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑥 = (𝐺𝑦)) → (𝑍𝑋𝑥) = (𝑍𝑋(𝐺𝑦)))
1918eqeq1d 2731 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ 𝑥 = (𝐺𝑦)) → ((𝑍𝑋𝑥) = 𝑍 ↔ (𝑍𝑋(𝐺𝑦)) = 𝑍))
2016, 19rspcdv 3569 . . . . . . 7 ((𝜑𝑦𝐴) → (∀𝑥𝐵 (𝑍𝑋𝑥) = 𝑍 → (𝑍𝑋(𝐺𝑦)) = 𝑍))
2115, 20mpd 15 . . . . . 6 ((𝜑𝑦𝐴) → (𝑍𝑋(𝐺𝑦)) = 𝑍)
2221adantr 480 . . . . 5 (((𝜑𝑦𝐴) ∧ (𝐹𝑦) = 𝑍) → (𝑍𝑋(𝐺𝑦)) = 𝑍)
2310, 12, 223eqtrd 2768 . . . 4 (((𝜑𝑦𝐴) ∧ (𝐹𝑦) = 𝑍) → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍)
2423ex 412 . . 3 ((𝜑𝑦𝐴) → ((𝐹𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍))
2524ralrimiva 3121 . 2 (𝜑 → ∀𝑦𝐴 ((𝐹𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍))
262, 4, 5, 5, 6offn 7626 . . 3 (𝜑 → (𝐹f 𝑋𝐺) Fn 𝐴)
27 ssidd 3959 . . 3 (𝜑𝐴𝐴)
28 suppofssd.2 . . 3 (𝜑𝑍𝐵)
29 suppfnss 8122 . . 3 ((((𝐹f 𝑋𝐺) Fn 𝐴𝐹 Fn 𝐴) ∧ (𝐴𝐴𝐴𝑉𝑍𝐵)) → (∀𝑦𝐴 ((𝐹𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍) → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑍)))
3026, 2, 27, 5, 28, 29syl23anc 1379 . 2 (𝜑 → (∀𝑦𝐴 ((𝐹𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍) → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑍)))
3125, 30mpd 15 1 (𝜑 → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3903   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611   supp csupp 8093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-supp 8094
This theorem is referenced by:  frlmphllem  21687  rrxcph  25290
  Copyright terms: Public domain W3C validator