Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme4a Structured version   Visualization version   GIF version

Theorem cdleme4a 40196
Description: Part of proof of Lemma E in [Crawley] p. 114 top. 𝐺 represents fs(r). Auxiliary lemma derived from cdleme5 40197. We show fs(r) p q. (Contributed by NM, 10-Nov-2012.)
Hypotheses
Ref Expression
cdleme4.l = (le‘𝐾)
cdleme4.j = (join‘𝐾)
cdleme4.m = (meet‘𝐾)
cdleme4.a 𝐴 = (Atoms‘𝐾)
cdleme4.h 𝐻 = (LHyp‘𝐾)
cdleme4.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme4.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme4.g 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
Assertion
Ref Expression
cdleme4a (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑆𝐴) → 𝐺 (𝑃 𝑄))

Proof of Theorem cdleme4a
StepHypRef Expression
1 cdleme4.g . 2 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
2 simp1l 1197 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑆𝐴) → 𝐾 ∈ HL)
32hllatd 39320 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑆𝐴) → 𝐾 ∈ Lat)
4 simp21 1206 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑆𝐴) → 𝑃𝐴)
5 simp22 1207 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑆𝐴) → 𝑄𝐴)
6 eqid 2740 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
7 cdleme4.j . . . . 5 = (join‘𝐾)
8 cdleme4.a . . . . 5 𝐴 = (Atoms‘𝐾)
96, 7, 8hlatjcl 39323 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
102, 4, 5, 9syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑆𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
11 simp1r 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑆𝐴) → 𝑊𝐻)
12 simp3 1138 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑆𝐴) → 𝑆𝐴)
13 cdleme4.l . . . . . 6 = (le‘𝐾)
14 cdleme4.m . . . . . 6 = (meet‘𝐾)
15 cdleme4.h . . . . . 6 𝐻 = (LHyp‘𝐾)
16 cdleme4.u . . . . . 6 𝑈 = ((𝑃 𝑄) 𝑊)
17 cdleme4.f . . . . . 6 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
1813, 7, 14, 8, 15, 16, 17, 6cdleme1b 40183 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑆𝐴)) → 𝐹 ∈ (Base‘𝐾))
192, 11, 4, 5, 12, 18syl23anc 1377 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑆𝐴) → 𝐹 ∈ (Base‘𝐾))
20 simp23 1208 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑆𝐴) → 𝑅𝐴)
216, 7, 8hlatjcl 39323 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
222, 20, 12, 21syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
236, 15lhpbase 39955 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2411, 23syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑆𝐴) → 𝑊 ∈ (Base‘𝐾))
256, 14latmcl 18510 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑅 𝑆) 𝑊) ∈ (Base‘𝐾))
263, 22, 24, 25syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑆𝐴) → ((𝑅 𝑆) 𝑊) ∈ (Base‘𝐾))
276, 7latjcl 18509 . . . 4 ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Base‘𝐾) ∧ ((𝑅 𝑆) 𝑊) ∈ (Base‘𝐾)) → (𝐹 ((𝑅 𝑆) 𝑊)) ∈ (Base‘𝐾))
283, 19, 26, 27syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑆𝐴) → (𝐹 ((𝑅 𝑆) 𝑊)) ∈ (Base‘𝐾))
296, 13, 14latmle1 18534 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝐹 ((𝑅 𝑆) 𝑊)) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊))) (𝑃 𝑄))
303, 10, 28, 29syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑆𝐴) → ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊))) (𝑃 𝑄))
311, 30eqbrtrid 5201 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑆𝐴) → 𝐺 (𝑃 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  meetcmee 18382  Latclat 18501  Atomscatm 39219  HLchlt 39306  LHypclh 39941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-lat 18502  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-lhyp 39945
This theorem is referenced by:  cdleme18c  40250  cdleme41sn3a  40390
  Copyright terms: Public domain W3C validator