Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme4a Structured version   Visualization version   GIF version

Theorem cdleme4a 39623
Description: Part of proof of Lemma E in [Crawley] p. 114 top. 𝐺 represents fs(r). Auxiliary lemma derived from cdleme5 39624. We show fs(r) ≀ p ∨ q. (Contributed by NM, 10-Nov-2012.)
Hypotheses
Ref Expression
cdleme4.l ≀ = (leβ€˜πΎ)
cdleme4.j ∨ = (joinβ€˜πΎ)
cdleme4.m ∧ = (meetβ€˜πΎ)
cdleme4.a 𝐴 = (Atomsβ€˜πΎ)
cdleme4.h 𝐻 = (LHypβ€˜πΎ)
cdleme4.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme4.f 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
cdleme4.g 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))
Assertion
Ref Expression
cdleme4a (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) β†’ 𝐺 ≀ (𝑃 ∨ 𝑄))

Proof of Theorem cdleme4a
StepHypRef Expression
1 cdleme4.g . 2 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))
2 simp1l 1194 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) β†’ 𝐾 ∈ HL)
32hllatd 38747 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) β†’ 𝐾 ∈ Lat)
4 simp21 1203 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) β†’ 𝑃 ∈ 𝐴)
5 simp22 1204 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) β†’ 𝑄 ∈ 𝐴)
6 eqid 2726 . . . . 5 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
7 cdleme4.j . . . . 5 ∨ = (joinβ€˜πΎ)
8 cdleme4.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
96, 7, 8hlatjcl 38750 . . . 4 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
102, 4, 5, 9syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
11 simp1r 1195 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) β†’ π‘Š ∈ 𝐻)
12 simp3 1135 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) β†’ 𝑆 ∈ 𝐴)
13 cdleme4.l . . . . . 6 ≀ = (leβ€˜πΎ)
14 cdleme4.m . . . . . 6 ∧ = (meetβ€˜πΎ)
15 cdleme4.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
16 cdleme4.u . . . . . 6 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
17 cdleme4.f . . . . . 6 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
1813, 7, 14, 8, 15, 16, 17, 6cdleme1b 39610 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝐹 ∈ (Baseβ€˜πΎ))
192, 11, 4, 5, 12, 18syl23anc 1374 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) β†’ 𝐹 ∈ (Baseβ€˜πΎ))
20 simp23 1205 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) β†’ 𝑅 ∈ 𝐴)
216, 7, 8hlatjcl 38750 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
222, 20, 12, 21syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) β†’ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
236, 15lhpbase 39382 . . . . . 6 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
2411, 23syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) β†’ π‘Š ∈ (Baseβ€˜πΎ))
256, 14latmcl 18405 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑅 ∨ 𝑆) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
263, 22, 24, 25syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) β†’ ((𝑅 ∨ 𝑆) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
276, 7latjcl 18404 . . . 4 ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Baseβ€˜πΎ) ∧ ((𝑅 ∨ 𝑆) ∧ π‘Š) ∈ (Baseβ€˜πΎ)) β†’ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)) ∈ (Baseβ€˜πΎ))
283, 19, 26, 27syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) β†’ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)) ∈ (Baseβ€˜πΎ))
296, 13, 14latmle1 18429 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)) ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))) ≀ (𝑃 ∨ 𝑄))
303, 10, 28, 29syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) β†’ ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))) ≀ (𝑃 ∨ 𝑄))
311, 30eqbrtrid 5176 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) β†’ 𝐺 ≀ (𝑃 ∨ 𝑄))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   class class class wbr 5141  β€˜cfv 6537  (class class class)co 7405  Basecbs 17153  lecple 17213  joincjn 18276  meetcmee 18277  Latclat 18396  Atomscatm 38646  HLchlt 38733  LHypclh 39368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-lat 18397  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734  df-lhyp 39372
This theorem is referenced by:  cdleme18c  39677  cdleme41sn3a  39817
  Copyright terms: Public domain W3C validator