Proof of Theorem cdleme4a
| Step | Hyp | Ref
| Expression |
| 1 | | cdleme4.g |
. 2
⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) |
| 2 | | simp1l 1198 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) → 𝐾 ∈ HL) |
| 3 | 2 | hllatd 39365 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) → 𝐾 ∈ Lat) |
| 4 | | simp21 1207 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) → 𝑃 ∈ 𝐴) |
| 5 | | simp22 1208 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) → 𝑄 ∈ 𝐴) |
| 6 | | eqid 2737 |
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 7 | | cdleme4.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
| 8 | | cdleme4.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
| 9 | 6, 7, 8 | hlatjcl 39368 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 10 | 2, 4, 5, 9 | syl3anc 1373 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 11 | | simp1r 1199 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) → 𝑊 ∈ 𝐻) |
| 12 | | simp3 1139 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) → 𝑆 ∈ 𝐴) |
| 13 | | cdleme4.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
| 14 | | cdleme4.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
| 15 | | cdleme4.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
| 16 | | cdleme4.u |
. . . . . 6
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| 17 | | cdleme4.f |
. . . . . 6
⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
| 18 | 13, 7, 14, 8, 15, 16, 17, 6 | cdleme1b 40228 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐹 ∈ (Base‘𝐾)) |
| 19 | 2, 11, 4, 5, 12, 18 | syl23anc 1379 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) → 𝐹 ∈ (Base‘𝐾)) |
| 20 | | simp23 1209 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) → 𝑅 ∈ 𝐴) |
| 21 | 6, 7, 8 | hlatjcl 39368 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 22 | 2, 20, 12, 21 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 23 | 6, 15 | lhpbase 40000 |
. . . . . 6
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 24 | 11, 23 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) → 𝑊 ∈ (Base‘𝐾)) |
| 25 | 6, 14 | latmcl 18485 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑅 ∨ 𝑆) ∧ 𝑊) ∈ (Base‘𝐾)) |
| 26 | 3, 22, 24, 25 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) → ((𝑅 ∨ 𝑆) ∧ 𝑊) ∈ (Base‘𝐾)) |
| 27 | 6, 7 | latjcl 18484 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Base‘𝐾) ∧ ((𝑅 ∨ 𝑆) ∧ 𝑊) ∈ (Base‘𝐾)) → (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)) ∈ (Base‘𝐾)) |
| 28 | 3, 19, 26, 27 | syl3anc 1373 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) → (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)) ∈ (Base‘𝐾)) |
| 29 | 6, 13, 14 | latmle1 18509 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) ≤ (𝑃 ∨ 𝑄)) |
| 30 | 3, 10, 28, 29 | syl3anc 1373 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) → ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) ≤ (𝑃 ∨ 𝑄)) |
| 31 | 1, 30 | eqbrtrid 5178 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) → 𝐺 ≤ (𝑃 ∨ 𝑄)) |