Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolnlelln Structured version   Visualization version   GIF version

Theorem lvolnlelln 36165
Description: A lattice line cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012.)
Hypotheses
Ref Expression
lvolnlelln.l = (le‘𝐾)
lvolnlelln.n 𝑁 = (LLines‘𝐾)
lvolnlelln.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvolnlelln ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → ¬ 𝑋 𝑌)

Proof of Theorem lvolnlelln
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1118 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → 𝑌𝑁)
2 eqid 2778 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2778 . . . . 5 (join‘𝐾) = (join‘𝐾)
4 eqid 2778 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
5 lvolnlelln.n . . . . 5 𝑁 = (LLines‘𝐾)
62, 3, 4, 5islln2 36092 . . . 4 (𝐾 ∈ HL → (𝑌𝑁 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)))))
763ad2ant1 1113 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → (𝑌𝑁 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)))))
81, 7mpbid 224 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))))
9 simp11 1183 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝐾 ∈ HL)
10 simp12 1184 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑋𝑉)
11 simp2l 1179 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑝 ∈ (Atoms‘𝐾))
12 simp2r 1180 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑞 ∈ (Atoms‘𝐾))
13 lvolnlelln.l . . . . . . . 8 = (le‘𝐾)
14 lvolnlelln.v . . . . . . . 8 𝑉 = (LVols‘𝐾)
1513, 3, 4, 14lvolnle3at 36163 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → ¬ 𝑋 ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞))
169, 10, 11, 11, 12, 15syl23anc 1357 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → ¬ 𝑋 ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞))
17 simp3r 1182 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑌 = (𝑝(join‘𝐾)𝑞))
183, 4hlatjidm 35950 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(join‘𝐾)𝑝) = 𝑝)
199, 11, 18syl2anc 576 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → (𝑝(join‘𝐾)𝑝) = 𝑝)
2019oveq1d 6993 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞) = (𝑝(join‘𝐾)𝑞))
2117, 20eqtr4d 2817 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑌 = ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞))
2221breq2d 4942 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → (𝑋 𝑌𝑋 ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞)))
2316, 22mtbird 317 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → ¬ 𝑋 𝑌)
24233exp 1099 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)) → ¬ 𝑋 𝑌)))
2524rexlimdvv 3238 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → (∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)) → ¬ 𝑋 𝑌))
2625adantld 483 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → ¬ 𝑋 𝑌))
278, 26mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → ¬ 𝑋 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2967  wrex 3089   class class class wbr 4930  cfv 6190  (class class class)co 6978  Basecbs 16342  lecple 16431  joincjn 17415  Atomscatm 35844  HLchlt 35931  LLinesclln 36072  LVolsclvol 36074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-id 5313  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-proset 17399  df-poset 17417  df-plt 17429  df-lub 17445  df-glb 17446  df-join 17447  df-meet 17448  df-p0 17510  df-lat 17517  df-clat 17579  df-oposet 35757  df-ol 35759  df-oml 35760  df-covers 35847  df-ats 35848  df-atl 35879  df-cvlat 35903  df-hlat 35932  df-llines 36079  df-lplanes 36080  df-lvols 36081
This theorem is referenced by:  lvolnelln  36170
  Copyright terms: Public domain W3C validator