Step | Hyp | Ref
| Expression |
1 | | simp3 1136 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) → 𝑌 ∈ 𝑁) |
2 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) |
3 | | eqid 2738 |
. . . . 5
⊢
(join‘𝐾) =
(join‘𝐾) |
4 | | eqid 2738 |
. . . . 5
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
5 | | lvolnlelln.n |
. . . . 5
⊢ 𝑁 = (LLines‘𝐾) |
6 | 2, 3, 4, 5 | islln2 37452 |
. . . 4
⊢ (𝐾 ∈ HL → (𝑌 ∈ 𝑁 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))))) |
7 | 6 | 3ad2ant1 1131 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) → (𝑌 ∈ 𝑁 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))))) |
8 | 1, 7 | mpbid 231 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) → (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞)))) |
9 | | simp11 1201 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝐾 ∈ HL) |
10 | | simp12 1202 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑋 ∈ 𝑉) |
11 | | simp2l 1197 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑝 ∈ (Atoms‘𝐾)) |
12 | | simp2r 1198 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑞 ∈ (Atoms‘𝐾)) |
13 | | lvolnlelln.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
14 | | lvolnlelln.v |
. . . . . . . 8
⊢ 𝑉 = (LVols‘𝐾) |
15 | 13, 3, 4, 14 | lvolnle3at 37523 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → ¬ 𝑋 ≤ ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞)) |
16 | 9, 10, 11, 11, 12, 15 | syl23anc 1375 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → ¬ 𝑋 ≤ ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞)) |
17 | | simp3r 1200 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑌 = (𝑝(join‘𝐾)𝑞)) |
18 | 3, 4 | hlatjidm 37310 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(join‘𝐾)𝑝) = 𝑝) |
19 | 9, 11, 18 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → (𝑝(join‘𝐾)𝑝) = 𝑝) |
20 | 19 | oveq1d 7270 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞) = (𝑝(join‘𝐾)𝑞)) |
21 | 17, 20 | eqtr4d 2781 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑌 = ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞)) |
22 | 21 | breq2d 5082 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → (𝑋 ≤ 𝑌 ↔ 𝑋 ≤ ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞))) |
23 | 16, 22 | mtbird 324 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → ¬ 𝑋 ≤ 𝑌) |
24 | 23 | 3exp 1117 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞)) → ¬ 𝑋 ≤ 𝑌))) |
25 | 24 | rexlimdvv 3221 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) → (∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞)) → ¬ 𝑋 ≤ 𝑌)) |
26 | 25 | adantld 490 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) → ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → ¬ 𝑋 ≤ 𝑌)) |
27 | 8, 26 | mpd 15 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) → ¬ 𝑋 ≤ 𝑌) |