| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp3 1138 | . . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) → 𝑌 ∈ 𝑁) | 
| 2 |  | eqid 2736 | . . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 3 |  | eqid 2736 | . . . . 5
⊢
(join‘𝐾) =
(join‘𝐾) | 
| 4 |  | eqid 2736 | . . . . 5
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) | 
| 5 |  | lvolnlelln.n | . . . . 5
⊢ 𝑁 = (LLines‘𝐾) | 
| 6 | 2, 3, 4, 5 | islln2 39514 | . . . 4
⊢ (𝐾 ∈ HL → (𝑌 ∈ 𝑁 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))))) | 
| 7 | 6 | 3ad2ant1 1133 | . . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) → (𝑌 ∈ 𝑁 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))))) | 
| 8 | 1, 7 | mpbid 232 | . 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) → (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞)))) | 
| 9 |  | simp11 1203 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝐾 ∈ HL) | 
| 10 |  | simp12 1204 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑋 ∈ 𝑉) | 
| 11 |  | simp2l 1199 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑝 ∈ (Atoms‘𝐾)) | 
| 12 |  | simp2r 1200 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑞 ∈ (Atoms‘𝐾)) | 
| 13 |  | lvolnlelln.l | . . . . . . . 8
⊢  ≤ =
(le‘𝐾) | 
| 14 |  | lvolnlelln.v | . . . . . . . 8
⊢ 𝑉 = (LVols‘𝐾) | 
| 15 | 13, 3, 4, 14 | lvolnle3at 39585 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → ¬ 𝑋 ≤ ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞)) | 
| 16 | 9, 10, 11, 11, 12, 15 | syl23anc 1378 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → ¬ 𝑋 ≤ ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞)) | 
| 17 |  | simp3r 1202 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑌 = (𝑝(join‘𝐾)𝑞)) | 
| 18 | 3, 4 | hlatjidm 39371 | . . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(join‘𝐾)𝑝) = 𝑝) | 
| 19 | 9, 11, 18 | syl2anc 584 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → (𝑝(join‘𝐾)𝑝) = 𝑝) | 
| 20 | 19 | oveq1d 7447 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞) = (𝑝(join‘𝐾)𝑞)) | 
| 21 | 17, 20 | eqtr4d 2779 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑌 = ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞)) | 
| 22 | 21 | breq2d 5154 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → (𝑋 ≤ 𝑌 ↔ 𝑋 ≤ ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞))) | 
| 23 | 16, 22 | mtbird 325 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → ¬ 𝑋 ≤ 𝑌) | 
| 24 | 23 | 3exp 1119 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞)) → ¬ 𝑋 ≤ 𝑌))) | 
| 25 | 24 | rexlimdvv 3211 | . . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) → (∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞)) → ¬ 𝑋 ≤ 𝑌)) | 
| 26 | 25 | adantld 490 | . 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) → ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑌 = (𝑝(join‘𝐾)𝑞))) → ¬ 𝑋 ≤ 𝑌)) | 
| 27 | 8, 26 | mpd 15 | 1
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑁) → ¬ 𝑋 ≤ 𝑌) |