Step | Hyp | Ref
| Expression |
1 | | simp3 1137 |
. . 3
β’ ((πΎ β HL β§ π β π β§ π β π) β π β π) |
2 | | eqid 2731 |
. . . . 5
β’
(BaseβπΎ) =
(BaseβπΎ) |
3 | | eqid 2731 |
. . . . 5
β’
(joinβπΎ) =
(joinβπΎ) |
4 | | eqid 2731 |
. . . . 5
β’
(AtomsβπΎ) =
(AtomsβπΎ) |
5 | | lvolnlelln.n |
. . . . 5
β’ π = (LLinesβπΎ) |
6 | 2, 3, 4, 5 | islln2 38686 |
. . . 4
β’ (πΎ β HL β (π β π β (π β (BaseβπΎ) β§ βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)(π β π β§ π = (π(joinβπΎ)π))))) |
7 | 6 | 3ad2ant1 1132 |
. . 3
β’ ((πΎ β HL β§ π β π β§ π β π) β (π β π β (π β (BaseβπΎ) β§ βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)(π β π β§ π = (π(joinβπΎ)π))))) |
8 | 1, 7 | mpbid 231 |
. 2
β’ ((πΎ β HL β§ π β π β§ π β π) β (π β (BaseβπΎ) β§ βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)(π β π β§ π = (π(joinβπΎ)π)))) |
9 | | simp11 1202 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β§ (π β π β§ π = (π(joinβπΎ)π))) β πΎ β HL) |
10 | | simp12 1203 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β§ (π β π β§ π = (π(joinβπΎ)π))) β π β π) |
11 | | simp2l 1198 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β§ (π β π β§ π = (π(joinβπΎ)π))) β π β (AtomsβπΎ)) |
12 | | simp2r 1199 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β§ (π β π β§ π = (π(joinβπΎ)π))) β π β (AtomsβπΎ)) |
13 | | lvolnlelln.l |
. . . . . . . 8
β’ β€ =
(leβπΎ) |
14 | | lvolnlelln.v |
. . . . . . . 8
β’ π = (LVolsβπΎ) |
15 | 13, 3, 4, 14 | lvolnle3at 38757 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β Β¬ π β€ ((π(joinβπΎ)π)(joinβπΎ)π)) |
16 | 9, 10, 11, 11, 12, 15 | syl23anc 1376 |
. . . . . 6
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β§ (π β π β§ π = (π(joinβπΎ)π))) β Β¬ π β€ ((π(joinβπΎ)π)(joinβπΎ)π)) |
17 | | simp3r 1201 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β§ (π β π β§ π = (π(joinβπΎ)π))) β π = (π(joinβπΎ)π)) |
18 | 3, 4 | hlatjidm 38543 |
. . . . . . . . . 10
β’ ((πΎ β HL β§ π β (AtomsβπΎ)) β (π(joinβπΎ)π) = π) |
19 | 9, 11, 18 | syl2anc 583 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β§ (π β π β§ π = (π(joinβπΎ)π))) β (π(joinβπΎ)π) = π) |
20 | 19 | oveq1d 7427 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β§ (π β π β§ π = (π(joinβπΎ)π))) β ((π(joinβπΎ)π)(joinβπΎ)π) = (π(joinβπΎ)π)) |
21 | 17, 20 | eqtr4d 2774 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β§ (π β π β§ π = (π(joinβπΎ)π))) β π = ((π(joinβπΎ)π)(joinβπΎ)π)) |
22 | 21 | breq2d 5161 |
. . . . . 6
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β§ (π β π β§ π = (π(joinβπΎ)π))) β (π β€ π β π β€ ((π(joinβπΎ)π)(joinβπΎ)π))) |
23 | 16, 22 | mtbird 324 |
. . . . 5
β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β§ (π β π β§ π = (π(joinβπΎ)π))) β Β¬ π β€ π) |
24 | 23 | 3exp 1118 |
. . . 4
β’ ((πΎ β HL β§ π β π β§ π β π) β ((π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β ((π β π β§ π = (π(joinβπΎ)π)) β Β¬ π β€ π))) |
25 | 24 | rexlimdvv 3209 |
. . 3
β’ ((πΎ β HL β§ π β π β§ π β π) β (βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)(π β π β§ π = (π(joinβπΎ)π)) β Β¬ π β€ π)) |
26 | 25 | adantld 490 |
. 2
β’ ((πΎ β HL β§ π β π β§ π β π) β ((π β (BaseβπΎ) β§ βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)(π β π β§ π = (π(joinβπΎ)π))) β Β¬ π β€ π)) |
27 | 8, 26 | mpd 15 |
1
β’ ((πΎ β HL β§ π β π β§ π β π) β Β¬ π β€ π) |