Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolnlelln Structured version   Visualization version   GIF version

Theorem lvolnlelln 39706
Description: A lattice line cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012.)
Hypotheses
Ref Expression
lvolnlelln.l = (le‘𝐾)
lvolnlelln.n 𝑁 = (LLines‘𝐾)
lvolnlelln.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvolnlelln ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → ¬ 𝑋 𝑌)

Proof of Theorem lvolnlelln
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → 𝑌𝑁)
2 eqid 2733 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2733 . . . . 5 (join‘𝐾) = (join‘𝐾)
4 eqid 2733 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
5 lvolnlelln.n . . . . 5 𝑁 = (LLines‘𝐾)
62, 3, 4, 5islln2 39633 . . . 4 (𝐾 ∈ HL → (𝑌𝑁 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)))))
763ad2ant1 1133 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → (𝑌𝑁 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)))))
81, 7mpbid 232 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))))
9 simp11 1204 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝐾 ∈ HL)
10 simp12 1205 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑋𝑉)
11 simp2l 1200 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑝 ∈ (Atoms‘𝐾))
12 simp2r 1201 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑞 ∈ (Atoms‘𝐾))
13 lvolnlelln.l . . . . . . . 8 = (le‘𝐾)
14 lvolnlelln.v . . . . . . . 8 𝑉 = (LVols‘𝐾)
1513, 3, 4, 14lvolnle3at 39704 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → ¬ 𝑋 ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞))
169, 10, 11, 11, 12, 15syl23anc 1379 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → ¬ 𝑋 ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞))
17 simp3r 1203 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑌 = (𝑝(join‘𝐾)𝑞))
183, 4hlatjidm 39491 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(join‘𝐾)𝑝) = 𝑝)
199, 11, 18syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → (𝑝(join‘𝐾)𝑝) = 𝑝)
2019oveq1d 7369 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞) = (𝑝(join‘𝐾)𝑞))
2117, 20eqtr4d 2771 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑌 = ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞))
2221breq2d 5107 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → (𝑋 𝑌𝑋 ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞)))
2316, 22mtbird 325 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → ¬ 𝑋 𝑌)
24233exp 1119 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)) → ¬ 𝑋 𝑌)))
2524rexlimdvv 3189 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → (∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)) → ¬ 𝑋 𝑌))
2625adantld 490 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → ¬ 𝑋 𝑌))
278, 26mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → ¬ 𝑋 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wrex 3057   class class class wbr 5095  cfv 6488  (class class class)co 7354  Basecbs 17124  lecple 17172  joincjn 18221  Atomscatm 39385  HLchlt 39472  LLinesclln 39613  LVolsclvol 39615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-proset 18204  df-poset 18223  df-plt 18238  df-lub 18254  df-glb 18255  df-join 18256  df-meet 18257  df-p0 18333  df-lat 18342  df-clat 18409  df-oposet 39298  df-ol 39300  df-oml 39301  df-covers 39388  df-ats 39389  df-atl 39420  df-cvlat 39444  df-hlat 39473  df-llines 39620  df-lplanes 39621  df-lvols 39622
This theorem is referenced by:  lvolnelln  39711
  Copyright terms: Public domain W3C validator