MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrltmin Structured version   Visualization version   GIF version

Theorem xrltmin 13083
Description: Two ways of saying an extended real is less than the minimum of two others. (Contributed by NM, 7-Feb-2007.)
Assertion
Ref Expression
xrltmin ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < if(𝐵𝐶, 𝐵, 𝐶) ↔ (𝐴 < 𝐵𝐴 < 𝐶)))

Proof of Theorem xrltmin
StepHypRef Expression
1 xrmin1 13078 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐵)
213adant1 1130 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐵)
3 simp1 1136 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
4 ifcl 4520 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ∈ ℝ*)
543adant1 1130 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ∈ ℝ*)
6 simp2 1137 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*)
7 xrltletr 13058 . . . . 5 ((𝐴 ∈ ℝ* ∧ if(𝐵𝐶, 𝐵, 𝐶) ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 < if(𝐵𝐶, 𝐵, 𝐶) ∧ if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐵) → 𝐴 < 𝐵))
83, 5, 6, 7syl3anc 1373 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < if(𝐵𝐶, 𝐵, 𝐶) ∧ if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐵) → 𝐴 < 𝐵))
92, 8mpan2d 694 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < if(𝐵𝐶, 𝐵, 𝐶) → 𝐴 < 𝐵))
10 xrmin2 13079 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐶)
11103adant1 1130 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐶)
12 xrltletr 13058 . . . . 5 ((𝐴 ∈ ℝ* ∧ if(𝐵𝐶, 𝐵, 𝐶) ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < if(𝐵𝐶, 𝐵, 𝐶) ∧ if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐶) → 𝐴 < 𝐶))
135, 12syld3an2 1413 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < if(𝐵𝐶, 𝐵, 𝐶) ∧ if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐶) → 𝐴 < 𝐶))
1411, 13mpan2d 694 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < if(𝐵𝐶, 𝐵, 𝐶) → 𝐴 < 𝐶))
159, 14jcad 512 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < if(𝐵𝐶, 𝐵, 𝐶) → (𝐴 < 𝐵𝐴 < 𝐶)))
16 breq2 5097 . . 3 (𝐵 = if(𝐵𝐶, 𝐵, 𝐶) → (𝐴 < 𝐵𝐴 < if(𝐵𝐶, 𝐵, 𝐶)))
17 breq2 5097 . . 3 (𝐶 = if(𝐵𝐶, 𝐵, 𝐶) → (𝐴 < 𝐶𝐴 < if(𝐵𝐶, 𝐵, 𝐶)))
1816, 17ifboth 4514 . 2 ((𝐴 < 𝐵𝐴 < 𝐶) → 𝐴 < if(𝐵𝐶, 𝐵, 𝐶))
1915, 18impbid1 225 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < if(𝐵𝐶, 𝐵, 𝐶) ↔ (𝐴 < 𝐵𝐴 < 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2113  ifcif 4474   class class class wbr 5093  *cxr 11152   < clt 11153  cle 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-pre-lttri 11087  ax-pre-lttrn 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159
This theorem is referenced by:  ltmin  13095  iooin  13281  blin  24337  lhop1  25947  ioondisj1  45618
  Copyright terms: Public domain W3C validator