![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrltmin | Structured version Visualization version GIF version |
Description: Two ways of saying an extended real is less than the minimum of two others. (Contributed by NM, 7-Feb-2007.) |
Ref | Expression |
---|---|
xrltmin | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝐴 < 𝐵 ∧ 𝐴 < 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrmin1 13225 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐵) | |
2 | 1 | 3adant1 1131 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐵) |
3 | simp1 1137 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*) | |
4 | ifcl 4579 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∈ ℝ*) | |
5 | 4 | 3adant1 1131 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∈ ℝ*) |
6 | simp2 1138 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*) | |
7 | xrltletr 13205 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∧ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐵) → 𝐴 < 𝐵)) | |
8 | 3, 5, 6, 7 | syl3anc 1372 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∧ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐵) → 𝐴 < 𝐵)) |
9 | 2, 8 | mpan2d 694 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) → 𝐴 < 𝐵)) |
10 | xrmin2 13226 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐶) | |
11 | 10 | 3adant1 1131 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐶) |
12 | xrltletr 13205 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∧ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐶) → 𝐴 < 𝐶)) | |
13 | 5, 12 | syld3an2 1412 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∧ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐶) → 𝐴 < 𝐶)) |
14 | 11, 13 | mpan2d 694 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) → 𝐴 < 𝐶)) |
15 | 9, 14 | jcad 512 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) → (𝐴 < 𝐵 ∧ 𝐴 < 𝐶))) |
16 | breq2 5155 | . . 3 ⊢ (𝐵 = if(𝐵 ≤ 𝐶, 𝐵, 𝐶) → (𝐴 < 𝐵 ↔ 𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶))) | |
17 | breq2 5155 | . . 3 ⊢ (𝐶 = if(𝐵 ≤ 𝐶, 𝐵, 𝐶) → (𝐴 < 𝐶 ↔ 𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶))) | |
18 | 16, 17 | ifboth 4573 | . 2 ⊢ ((𝐴 < 𝐵 ∧ 𝐴 < 𝐶) → 𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶)) |
19 | 15, 18 | impbid1 225 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝐴 < 𝐵 ∧ 𝐴 < 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ifcif 4534 class class class wbr 5151 ℝ*cxr 11301 < clt 11302 ≤ cle 11303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-pre-lttri 11236 ax-pre-lttrn 11237 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-po 5601 df-so 5602 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 |
This theorem is referenced by: ltmin 13242 iooin 13427 blin 24456 lhop1 26079 ioondisj1 45476 |
Copyright terms: Public domain | W3C validator |