![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrltmin | Structured version Visualization version GIF version |
Description: Two ways of saying an extended real is less than the minimum of two others. (Contributed by NM, 7-Feb-2007.) |
Ref | Expression |
---|---|
xrltmin | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝐴 < 𝐵 ∧ 𝐴 < 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrmin1 13239 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐵) | |
2 | 1 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐵) |
3 | simp1 1136 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*) | |
4 | ifcl 4593 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∈ ℝ*) | |
5 | 4 | 3adant1 1130 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∈ ℝ*) |
6 | simp2 1137 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*) | |
7 | xrltletr 13219 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∧ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐵) → 𝐴 < 𝐵)) | |
8 | 3, 5, 6, 7 | syl3anc 1371 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∧ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐵) → 𝐴 < 𝐵)) |
9 | 2, 8 | mpan2d 693 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) → 𝐴 < 𝐵)) |
10 | xrmin2 13240 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐶) | |
11 | 10 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐶) |
12 | xrltletr 13219 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∧ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐶) → 𝐴 < 𝐶)) | |
13 | 5, 12 | syld3an2 1411 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∧ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐶) → 𝐴 < 𝐶)) |
14 | 11, 13 | mpan2d 693 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) → 𝐴 < 𝐶)) |
15 | 9, 14 | jcad 512 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) → (𝐴 < 𝐵 ∧ 𝐴 < 𝐶))) |
16 | breq2 5170 | . . 3 ⊢ (𝐵 = if(𝐵 ≤ 𝐶, 𝐵, 𝐶) → (𝐴 < 𝐵 ↔ 𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶))) | |
17 | breq2 5170 | . . 3 ⊢ (𝐶 = if(𝐵 ≤ 𝐶, 𝐵, 𝐶) → (𝐴 < 𝐶 ↔ 𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶))) | |
18 | 16, 17 | ifboth 4587 | . 2 ⊢ ((𝐴 < 𝐵 ∧ 𝐴 < 𝐶) → 𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶)) |
19 | 15, 18 | impbid1 225 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝐴 < 𝐵 ∧ 𝐴 < 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ifcif 4548 class class class wbr 5166 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 |
This theorem is referenced by: ltmin 13256 iooin 13441 blin 24452 lhop1 26073 ioondisj1 45412 |
Copyright terms: Public domain | W3C validator |