MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrltmin Structured version   Visualization version   GIF version

Theorem xrltmin 13148
Description: Two ways of saying an extended real is less than the minimum of two others. (Contributed by NM, 7-Feb-2007.)
Assertion
Ref Expression
xrltmin ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < if(𝐵𝐶, 𝐵, 𝐶) ↔ (𝐴 < 𝐵𝐴 < 𝐶)))

Proof of Theorem xrltmin
StepHypRef Expression
1 xrmin1 13143 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐵)
213adant1 1130 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐵)
3 simp1 1136 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
4 ifcl 4536 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ∈ ℝ*)
543adant1 1130 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ∈ ℝ*)
6 simp2 1137 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*)
7 xrltletr 13123 . . . . 5 ((𝐴 ∈ ℝ* ∧ if(𝐵𝐶, 𝐵, 𝐶) ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 < if(𝐵𝐶, 𝐵, 𝐶) ∧ if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐵) → 𝐴 < 𝐵))
83, 5, 6, 7syl3anc 1373 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < if(𝐵𝐶, 𝐵, 𝐶) ∧ if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐵) → 𝐴 < 𝐵))
92, 8mpan2d 694 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < if(𝐵𝐶, 𝐵, 𝐶) → 𝐴 < 𝐵))
10 xrmin2 13144 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐶)
11103adant1 1130 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐶)
12 xrltletr 13123 . . . . 5 ((𝐴 ∈ ℝ* ∧ if(𝐵𝐶, 𝐵, 𝐶) ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < if(𝐵𝐶, 𝐵, 𝐶) ∧ if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐶) → 𝐴 < 𝐶))
135, 12syld3an2 1413 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < if(𝐵𝐶, 𝐵, 𝐶) ∧ if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐶) → 𝐴 < 𝐶))
1411, 13mpan2d 694 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < if(𝐵𝐶, 𝐵, 𝐶) → 𝐴 < 𝐶))
159, 14jcad 512 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < if(𝐵𝐶, 𝐵, 𝐶) → (𝐴 < 𝐵𝐴 < 𝐶)))
16 breq2 5113 . . 3 (𝐵 = if(𝐵𝐶, 𝐵, 𝐶) → (𝐴 < 𝐵𝐴 < if(𝐵𝐶, 𝐵, 𝐶)))
17 breq2 5113 . . 3 (𝐶 = if(𝐵𝐶, 𝐵, 𝐶) → (𝐴 < 𝐶𝐴 < if(𝐵𝐶, 𝐵, 𝐶)))
1816, 17ifboth 4530 . 2 ((𝐴 < 𝐵𝐴 < 𝐶) → 𝐴 < if(𝐵𝐶, 𝐵, 𝐶))
1915, 18impbid1 225 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < if(𝐵𝐶, 𝐵, 𝐶) ↔ (𝐴 < 𝐵𝐴 < 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  ifcif 4490   class class class wbr 5109  *cxr 11213   < clt 11214  cle 11215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-pre-lttri 11148  ax-pre-lttrn 11149
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-po 5548  df-so 5549  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220
This theorem is referenced by:  ltmin  13160  iooin  13346  blin  24315  lhop1  25925  ioondisj1  45485
  Copyright terms: Public domain W3C validator