Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrmaxlt | Structured version Visualization version GIF version |
Description: Two ways of saying the maximum of two extended reals is less than a third. (Contributed by NM, 7-Feb-2007.) |
Ref | Expression |
---|---|
xrmaxlt | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) < 𝐶 ↔ (𝐴 < 𝐶 ∧ 𝐵 < 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrmax1 12838 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
2 | 1 | 3adant3 1130 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
3 | ifcl 4501 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ*) | |
4 | 3 | ancoms 458 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ*) |
5 | 4 | 3adant3 1130 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ*) |
6 | xrlelttr 12819 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) < 𝐶) → 𝐴 < 𝐶)) | |
7 | 5, 6 | syld3an2 1409 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) < 𝐶) → 𝐴 < 𝐶)) |
8 | 2, 7 | mpand 691 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) < 𝐶 → 𝐴 < 𝐶)) |
9 | xrmax2 12839 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
10 | 9 | 3adant3 1130 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
11 | simp2 1135 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*) | |
12 | simp3 1136 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐶 ∈ ℝ*) | |
13 | xrlelttr 12819 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) < 𝐶) → 𝐵 < 𝐶)) | |
14 | 11, 5, 12, 13 | syl3anc 1369 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) < 𝐶) → 𝐵 < 𝐶)) |
15 | 10, 14 | mpand 691 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) < 𝐶 → 𝐵 < 𝐶)) |
16 | 8, 15 | jcad 512 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) < 𝐶 → (𝐴 < 𝐶 ∧ 𝐵 < 𝐶))) |
17 | breq1 5073 | . . . 4 ⊢ (𝐵 = if(𝐴 ≤ 𝐵, 𝐵, 𝐴) → (𝐵 < 𝐶 ↔ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) < 𝐶)) | |
18 | breq1 5073 | . . . 4 ⊢ (𝐴 = if(𝐴 ≤ 𝐵, 𝐵, 𝐴) → (𝐴 < 𝐶 ↔ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) < 𝐶)) | |
19 | 17, 18 | ifboth 4495 | . . 3 ⊢ ((𝐵 < 𝐶 ∧ 𝐴 < 𝐶) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) < 𝐶) |
20 | 19 | ancoms 458 | . 2 ⊢ ((𝐴 < 𝐶 ∧ 𝐵 < 𝐶) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) < 𝐶) |
21 | 16, 20 | impbid1 224 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) < 𝐶 ↔ (𝐴 < 𝐶 ∧ 𝐵 < 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ifcif 4456 class class class wbr 5070 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 |
This theorem is referenced by: maxlt 12856 iooin 13042 txmetcnp 23609 mbfmax 24718 dvlip2 25064 ply1divmo 25205 |
Copyright terms: Public domain | W3C validator |