Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemi2 Structured version   Visualization version   GIF version

Theorem cdlemi2 37486
Description: Part of proof of Lemma I of [Crawley] p. 118. (Contributed by NM, 18-Jun-2013.)
Hypotheses
Ref Expression
cdlemi.b 𝐵 = (Base‘𝐾)
cdlemi.l = (le‘𝐾)
cdlemi.j = (join‘𝐾)
cdlemi.m = (meet‘𝐾)
cdlemi.a 𝐴 = (Atoms‘𝐾)
cdlemi.h 𝐻 = (LHyp‘𝐾)
cdlemi.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemi.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemi.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemi2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))

Proof of Theorem cdlemi2
StepHypRef Expression
1 simp1l 1190 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
2 simp1r 1191 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
3 simp21 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑈𝐸)
4 simp1 1129 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5 simp23 1201 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
6 simp22 1200 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
7 cdlemi.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
8 cdlemi.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
97, 8ltrncnv 36813 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
104, 6, 9syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
117, 8ltrnco 37386 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐹𝑇) → (𝐺𝐹) ∈ 𝑇)
124, 5, 10, 11syl3anc 1364 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝐹) ∈ 𝑇)
13 cdlemi.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
147, 8, 13tendovalco 37432 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑈𝐸) ∧ ((𝐺𝐹) ∈ 𝑇𝐹𝑇)) → (𝑈‘((𝐺𝐹) ∘ 𝐹)) = ((𝑈‘(𝐺𝐹)) ∘ (𝑈𝐹)))
151, 2, 3, 12, 6, 14syl32anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑈‘((𝐺𝐹) ∘ 𝐹)) = ((𝑈‘(𝐺𝐹)) ∘ (𝑈𝐹)))
16 coass 5993 . . . . . . 7 ((𝐺𝐹) ∘ 𝐹) = (𝐺 ∘ (𝐹𝐹))
17 cdlemi.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐾)
1817, 7, 8ltrn1o 36791 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
194, 6, 18syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹:𝐵1-1-onto𝐵)
20 f1ococnv1 6511 . . . . . . . . . 10 (𝐹:𝐵1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
2119, 20syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝐹) = ( I ↾ 𝐵))
2221coeq2d 5619 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺 ∘ (𝐹𝐹)) = (𝐺 ∘ ( I ↾ 𝐵)))
2317, 7, 8ltrn1o 36791 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:𝐵1-1-onto𝐵)
244, 5, 23syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺:𝐵1-1-onto𝐵)
25 f1of 6483 . . . . . . . . 9 (𝐺:𝐵1-1-onto𝐵𝐺:𝐵𝐵)
26 fcoi1 6420 . . . . . . . . 9 (𝐺:𝐵𝐵 → (𝐺 ∘ ( I ↾ 𝐵)) = 𝐺)
2724, 25, 263syl 18 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺 ∘ ( I ↾ 𝐵)) = 𝐺)
2822, 27eqtrd 2831 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺 ∘ (𝐹𝐹)) = 𝐺)
2916, 28syl5eq 2843 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝐹) ∘ 𝐹) = 𝐺)
3029fveq2d 6542 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑈‘((𝐺𝐹) ∘ 𝐹)) = (𝑈𝐺))
3115, 30eqtr3d 2833 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈‘(𝐺𝐹)) ∘ (𝑈𝐹)) = (𝑈𝐺))
3231fveq1d 6540 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑈‘(𝐺𝐹)) ∘ (𝑈𝐹))‘𝑃) = ((𝑈𝐺)‘𝑃))
337, 8, 13tendocl 37434 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐺𝐹) ∈ 𝑇) → (𝑈‘(𝐺𝐹)) ∈ 𝑇)
344, 3, 12, 33syl3anc 1364 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑈‘(𝐺𝐹)) ∈ 𝑇)
357, 8, 13tendocl 37434 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐹𝑇) → (𝑈𝐹) ∈ 𝑇)
364, 3, 6, 35syl3anc 1364 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑈𝐹) ∈ 𝑇)
37 simp3l 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
38 cdlemi.l . . . . 5 = (le‘𝐾)
39 cdlemi.a . . . . 5 𝐴 = (Atoms‘𝐾)
4038, 39, 7, 8ltrncoval 36812 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑈‘(𝐺𝐹)) ∈ 𝑇 ∧ (𝑈𝐹) ∈ 𝑇) ∧ 𝑃𝐴) → (((𝑈‘(𝐺𝐹)) ∘ (𝑈𝐹))‘𝑃) = ((𝑈‘(𝐺𝐹))‘((𝑈𝐹)‘𝑃)))
414, 34, 36, 37, 40syl121anc 1368 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑈‘(𝐺𝐹)) ∘ (𝑈𝐹))‘𝑃) = ((𝑈‘(𝐺𝐹))‘((𝑈𝐹)‘𝑃)))
4232, 41eqtr3d 2833 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) = ((𝑈‘(𝐺𝐹))‘((𝑈𝐹)‘𝑃)))
4338, 39, 7, 8ltrnel 36806 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐹) ∈ 𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑈𝐹)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈𝐹)‘𝑃) 𝑊))
4436, 43syld3an2 1404 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑈𝐹)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈𝐹)‘𝑃) 𝑊))
45 cdlemi.j . . . 4 = (join‘𝐾)
46 cdlemi.m . . . 4 = (meet‘𝐾)
47 cdlemi.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
4817, 38, 45, 46, 39, 7, 8, 47, 13cdlemi1 37485 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸 ∧ (𝐺𝐹) ∈ 𝑇) ∧ (((𝑈𝐹)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈𝐹)‘𝑃) 𝑊)) → ((𝑈‘(𝐺𝐹))‘((𝑈𝐹)‘𝑃)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))
494, 3, 12, 44, 48syl121anc 1368 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈‘(𝐺𝐹))‘((𝑈𝐹)‘𝑃)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))
5042, 49eqbrtrd 4984 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1080   = wceq 1522  wcel 2081   class class class wbr 4962   I cid 5347  ccnv 5442  cres 5445  ccom 5447  wf 6221  1-1-ontowf1o 6224  cfv 6225  (class class class)co 7016  Basecbs 16312  lecple 16401  joincjn 17383  meetcmee 17384  Atomscatm 35930  HLchlt 36017  LHypclh 36651  LTrncltrn 36768  trLctrl 36825  TEndoctendo 37419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-riotaBAD 35620
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-1st 7545  df-2nd 7546  df-undef 7790  df-map 8258  df-proset 17367  df-poset 17385  df-plt 17397  df-lub 17413  df-glb 17414  df-join 17415  df-meet 17416  df-p0 17478  df-p1 17479  df-lat 17485  df-clat 17547  df-oposet 35843  df-ol 35845  df-oml 35846  df-covers 35933  df-ats 35934  df-atl 35965  df-cvlat 35989  df-hlat 36018  df-llines 36165  df-lplanes 36166  df-lvols 36167  df-lines 36168  df-psubsp 36170  df-pmap 36171  df-padd 36463  df-lhyp 36655  df-laut 36656  df-ldil 36771  df-ltrn 36772  df-trl 36826  df-tendo 37422
This theorem is referenced by:  cdlemi  37487
  Copyright terms: Public domain W3C validator