MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvabs Structured version   Visualization version   GIF version

Theorem nvabs 28707
Description: Norm difference property of a normed complex vector space. Problem 3 of [Kreyszig] p. 64. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvabs.1 𝑋 = (BaseSet‘𝑈)
nvabs.2 𝐺 = ( +𝑣𝑈)
nvabs.4 𝑆 = ( ·𝑠OLD𝑈)
nvabs.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvabs ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (abs‘((𝑁𝐴) − (𝑁𝐵))) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))))

Proof of Theorem nvabs
StepHypRef Expression
1 nvabs.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
2 nvabs.2 . . . . 5 𝐺 = ( +𝑣𝑈)
3 nvabs.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
4 nvabs.6 . . . . 5 𝑁 = (normCV𝑈)
51, 2, 3, 4nvdif 28701 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴))))
65negeqd 11037 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -(𝑁‘(𝐴𝐺(-1𝑆𝐵))) = -(𝑁‘(𝐵𝐺(-1𝑆𝐴))))
71, 4nvcl 28696 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝑁𝐵) ∈ ℝ)
873adant2 1133 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) ∈ ℝ)
91, 4nvcl 28696 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
1093adant3 1134 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) ∈ ℝ)
11 simp1 1138 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝑈 ∈ NrmCVec)
12 neg1cn 11909 . . . . . . . . . 10 -1 ∈ ℂ
131, 3nvscl 28661 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
1412, 13mp3an2 1451 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
15143adant2 1133 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
161, 2nvgcl 28655 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋)
1715, 16syld3an3 1411 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋)
18173com23 1128 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋)
191, 4nvcl 28696 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋) → (𝑁‘(𝐵𝐺(-1𝑆𝐴))) ∈ ℝ)
2011, 18, 19syl2anc 587 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐵𝐺(-1𝑆𝐴))) ∈ ℝ)
2120renegcld 11224 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -(𝑁‘(𝐵𝐺(-1𝑆𝐴))) ∈ ℝ)
221, 2nvcom 28656 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋) → (𝐴𝐺(𝐵𝐺(-1𝑆𝐴))) = ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴))
2318, 22syld3an3 1411 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(𝐵𝐺(-1𝑆𝐴))) = ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴))
24 simprr 773 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
2514adantrr 717 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → (-1𝑆𝐴) ∈ 𝑋)
26 simprl 771 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
2724, 25, 263jca 1130 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → (𝐵𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋𝐴𝑋))
281, 2nvass 28657 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐵𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋𝐴𝑋)) → ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴) = (𝐵𝐺((-1𝑆𝐴)𝐺𝐴)))
2927, 28syldan 594 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴) = (𝐵𝐺((-1𝑆𝐴)𝐺𝐴)))
30293impb 1117 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴) = (𝐵𝐺((-1𝑆𝐴)𝐺𝐴)))
31 eqid 2736 . . . . . . . . . . . 12 (0vec𝑈) = (0vec𝑈)
321, 2, 3, 31nvlinv 28687 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((-1𝑆𝐴)𝐺𝐴) = (0vec𝑈))
33323adant3 1134 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-1𝑆𝐴)𝐺𝐴) = (0vec𝑈))
3433oveq2d 7207 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺((-1𝑆𝐴)𝐺𝐴)) = (𝐵𝐺(0vec𝑈)))
351, 2, 31nv0rid 28670 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐵𝐺(0vec𝑈)) = 𝐵)
36353adant2 1133 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺(0vec𝑈)) = 𝐵)
3730, 34, 363eqtrd 2775 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴) = 𝐵)
3823, 37eqtrd 2771 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(𝐵𝐺(-1𝑆𝐴))) = 𝐵)
3938fveq2d 6699 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(𝐵𝐺(-1𝑆𝐴)))) = (𝑁𝐵))
401, 2, 4nvtri 28705 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋) → (𝑁‘(𝐴𝐺(𝐵𝐺(-1𝑆𝐴)))) ≤ ((𝑁𝐴) + (𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
4118, 40syld3an3 1411 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(𝐵𝐺(-1𝑆𝐴)))) ≤ ((𝑁𝐴) + (𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
4239, 41eqbrtrrd 5063 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) ≤ ((𝑁𝐴) + (𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
4310recnd 10826 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) ∈ ℂ)
4420recnd 10826 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐵𝐺(-1𝑆𝐴))) ∈ ℂ)
4543, 44subnegd 11161 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) − -(𝑁‘(𝐵𝐺(-1𝑆𝐴)))) = ((𝑁𝐴) + (𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
4642, 45breqtrrd 5067 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) ≤ ((𝑁𝐴) − -(𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
478, 10, 21, 46lesubd 11401 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -(𝑁‘(𝐵𝐺(-1𝑆𝐴))) ≤ ((𝑁𝐴) − (𝑁𝐵)))
486, 47eqbrtrd 5061 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -(𝑁‘(𝐴𝐺(-1𝑆𝐵))) ≤ ((𝑁𝐴) − (𝑁𝐵)))
49 simp2 1139 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
501, 3nvscl 28661 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
5112, 50mp3an2 1451 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
52513adant2 1133 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
53 simp3 1140 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
541, 2nvass 28657 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋𝐵𝑋)) → ((𝐴𝐺(-1𝑆𝐵))𝐺𝐵) = (𝐴𝐺((-1𝑆𝐵)𝐺𝐵)))
5511, 49, 52, 53, 54syl13anc 1374 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺𝐵) = (𝐴𝐺((-1𝑆𝐵)𝐺𝐵)))
561, 2, 3, 31nvlinv 28687 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((-1𝑆𝐵)𝐺𝐵) = (0vec𝑈))
57563adant2 1133 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-1𝑆𝐵)𝐺𝐵) = (0vec𝑈))
5857oveq2d 7207 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺((-1𝑆𝐵)𝐺𝐵)) = (𝐴𝐺(0vec𝑈)))
591, 2, 31nv0rid 28670 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(0vec𝑈)) = 𝐴)
60593adant3 1134 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(0vec𝑈)) = 𝐴)
6155, 58, 603eqtrd 2775 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺𝐵) = 𝐴)
6261fveq2d 6699 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐵)) = (𝑁𝐴))
631, 2nvgcl 28655 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
6452, 63syld3an3 1411 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
651, 2, 4nvtri 28705 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋𝐵𝑋) → (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐵)) ≤ ((𝑁‘(𝐴𝐺(-1𝑆𝐵))) + (𝑁𝐵)))
6664, 65syld3an2 1413 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐵)) ≤ ((𝑁‘(𝐴𝐺(-1𝑆𝐵))) + (𝑁𝐵)))
6762, 66eqbrtrrd 5063 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) ≤ ((𝑁‘(𝐴𝐺(-1𝑆𝐵))) + (𝑁𝐵)))
681, 4nvcl 28696 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ∈ ℝ)
6911, 64, 68syl2anc 587 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ∈ ℝ)
7010, 8, 69lesubaddd 11394 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((𝑁𝐴) − (𝑁𝐵)) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ↔ (𝑁𝐴) ≤ ((𝑁‘(𝐴𝐺(-1𝑆𝐵))) + (𝑁𝐵))))
7167, 70mpbird 260 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) − (𝑁𝐵)) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))))
7210, 8resubcld 11225 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) − (𝑁𝐵)) ∈ ℝ)
7372, 69absled 14959 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((abs‘((𝑁𝐴) − (𝑁𝐵))) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ↔ (-(𝑁‘(𝐴𝐺(-1𝑆𝐵))) ≤ ((𝑁𝐴) − (𝑁𝐵)) ∧ ((𝑁𝐴) − (𝑁𝐵)) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))))))
7448, 71, 73mpbir2and 713 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (abs‘((𝑁𝐴) − (𝑁𝐵))) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112   class class class wbr 5039  cfv 6358  (class class class)co 7191  cc 10692  cr 10693  1c1 10695   + caddc 10697  cle 10833  cmin 11027  -cneg 11028  abscabs 14762  NrmCVeccnv 28619   +𝑣 cpv 28620  BaseSetcba 28621   ·𝑠OLD cns 28622  0veccn0v 28623  normCVcnmcv 28625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-seq 13540  df-exp 13601  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-grpo 28528  df-gid 28529  df-ginv 28530  df-ablo 28580  df-vc 28594  df-nv 28627  df-va 28630  df-ba 28631  df-sm 28632  df-0v 28633  df-nmcv 28635
This theorem is referenced by:  nmcvcn  28730
  Copyright terms: Public domain W3C validator