MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvabs Structured version   Visualization version   GIF version

Theorem nvabs 30654
Description: Norm difference property of a normed complex vector space. Problem 3 of [Kreyszig] p. 64. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvabs.1 𝑋 = (BaseSet‘𝑈)
nvabs.2 𝐺 = ( +𝑣𝑈)
nvabs.4 𝑆 = ( ·𝑠OLD𝑈)
nvabs.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvabs ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (abs‘((𝑁𝐴) − (𝑁𝐵))) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))))

Proof of Theorem nvabs
StepHypRef Expression
1 nvabs.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
2 nvabs.2 . . . . 5 𝐺 = ( +𝑣𝑈)
3 nvabs.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
4 nvabs.6 . . . . 5 𝑁 = (normCV𝑈)
51, 2, 3, 4nvdif 30648 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴))))
65negeqd 11361 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -(𝑁‘(𝐴𝐺(-1𝑆𝐵))) = -(𝑁‘(𝐵𝐺(-1𝑆𝐴))))
71, 4nvcl 30643 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝑁𝐵) ∈ ℝ)
873adant2 1131 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) ∈ ℝ)
91, 4nvcl 30643 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
1093adant3 1132 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) ∈ ℝ)
11 simp1 1136 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝑈 ∈ NrmCVec)
12 neg1cn 12117 . . . . . . . . . 10 -1 ∈ ℂ
131, 3nvscl 30608 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
1412, 13mp3an2 1451 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
15143adant2 1131 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
161, 2nvgcl 30602 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋)
1715, 16syld3an3 1411 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋)
18173com23 1126 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋)
191, 4nvcl 30643 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋) → (𝑁‘(𝐵𝐺(-1𝑆𝐴))) ∈ ℝ)
2011, 18, 19syl2anc 584 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐵𝐺(-1𝑆𝐴))) ∈ ℝ)
2120renegcld 11551 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -(𝑁‘(𝐵𝐺(-1𝑆𝐴))) ∈ ℝ)
221, 2nvcom 30603 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋) → (𝐴𝐺(𝐵𝐺(-1𝑆𝐴))) = ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴))
2318, 22syld3an3 1411 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(𝐵𝐺(-1𝑆𝐴))) = ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴))
24 simprr 772 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
2514adantrr 717 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → (-1𝑆𝐴) ∈ 𝑋)
26 simprl 770 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
2724, 25, 263jca 1128 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → (𝐵𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋𝐴𝑋))
281, 2nvass 30604 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐵𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋𝐴𝑋)) → ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴) = (𝐵𝐺((-1𝑆𝐴)𝐺𝐴)))
2927, 28syldan 591 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴) = (𝐵𝐺((-1𝑆𝐴)𝐺𝐴)))
30293impb 1114 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴) = (𝐵𝐺((-1𝑆𝐴)𝐺𝐴)))
31 eqid 2733 . . . . . . . . . . . 12 (0vec𝑈) = (0vec𝑈)
321, 2, 3, 31nvlinv 30634 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((-1𝑆𝐴)𝐺𝐴) = (0vec𝑈))
33323adant3 1132 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-1𝑆𝐴)𝐺𝐴) = (0vec𝑈))
3433oveq2d 7368 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺((-1𝑆𝐴)𝐺𝐴)) = (𝐵𝐺(0vec𝑈)))
351, 2, 31nv0rid 30617 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐵𝐺(0vec𝑈)) = 𝐵)
36353adant2 1131 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺(0vec𝑈)) = 𝐵)
3730, 34, 363eqtrd 2772 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴) = 𝐵)
3823, 37eqtrd 2768 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(𝐵𝐺(-1𝑆𝐴))) = 𝐵)
3938fveq2d 6832 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(𝐵𝐺(-1𝑆𝐴)))) = (𝑁𝐵))
401, 2, 4nvtri 30652 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋) → (𝑁‘(𝐴𝐺(𝐵𝐺(-1𝑆𝐴)))) ≤ ((𝑁𝐴) + (𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
4118, 40syld3an3 1411 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(𝐵𝐺(-1𝑆𝐴)))) ≤ ((𝑁𝐴) + (𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
4239, 41eqbrtrrd 5117 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) ≤ ((𝑁𝐴) + (𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
4310recnd 11147 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) ∈ ℂ)
4420recnd 11147 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐵𝐺(-1𝑆𝐴))) ∈ ℂ)
4543, 44subnegd 11486 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) − -(𝑁‘(𝐵𝐺(-1𝑆𝐴)))) = ((𝑁𝐴) + (𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
4642, 45breqtrrd 5121 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) ≤ ((𝑁𝐴) − -(𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
478, 10, 21, 46lesubd 11728 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -(𝑁‘(𝐵𝐺(-1𝑆𝐴))) ≤ ((𝑁𝐴) − (𝑁𝐵)))
486, 47eqbrtrd 5115 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -(𝑁‘(𝐴𝐺(-1𝑆𝐵))) ≤ ((𝑁𝐴) − (𝑁𝐵)))
49 simp2 1137 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
501, 3nvscl 30608 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
5112, 50mp3an2 1451 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
52513adant2 1131 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
53 simp3 1138 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
541, 2nvass 30604 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋𝐵𝑋)) → ((𝐴𝐺(-1𝑆𝐵))𝐺𝐵) = (𝐴𝐺((-1𝑆𝐵)𝐺𝐵)))
5511, 49, 52, 53, 54syl13anc 1374 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺𝐵) = (𝐴𝐺((-1𝑆𝐵)𝐺𝐵)))
561, 2, 3, 31nvlinv 30634 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((-1𝑆𝐵)𝐺𝐵) = (0vec𝑈))
57563adant2 1131 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-1𝑆𝐵)𝐺𝐵) = (0vec𝑈))
5857oveq2d 7368 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺((-1𝑆𝐵)𝐺𝐵)) = (𝐴𝐺(0vec𝑈)))
591, 2, 31nv0rid 30617 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(0vec𝑈)) = 𝐴)
60593adant3 1132 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(0vec𝑈)) = 𝐴)
6155, 58, 603eqtrd 2772 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺𝐵) = 𝐴)
6261fveq2d 6832 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐵)) = (𝑁𝐴))
631, 2nvgcl 30602 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
6452, 63syld3an3 1411 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
651, 2, 4nvtri 30652 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋𝐵𝑋) → (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐵)) ≤ ((𝑁‘(𝐴𝐺(-1𝑆𝐵))) + (𝑁𝐵)))
6664, 65syld3an2 1413 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐵)) ≤ ((𝑁‘(𝐴𝐺(-1𝑆𝐵))) + (𝑁𝐵)))
6762, 66eqbrtrrd 5117 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) ≤ ((𝑁‘(𝐴𝐺(-1𝑆𝐵))) + (𝑁𝐵)))
681, 4nvcl 30643 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ∈ ℝ)
6911, 64, 68syl2anc 584 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ∈ ℝ)
7010, 8, 69lesubaddd 11721 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((𝑁𝐴) − (𝑁𝐵)) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ↔ (𝑁𝐴) ≤ ((𝑁‘(𝐴𝐺(-1𝑆𝐵))) + (𝑁𝐵))))
7167, 70mpbird 257 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) − (𝑁𝐵)) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))))
7210, 8resubcld 11552 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) − (𝑁𝐵)) ∈ ℝ)
7372, 69absled 15342 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((abs‘((𝑁𝐴) − (𝑁𝐵))) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ↔ (-(𝑁‘(𝐴𝐺(-1𝑆𝐵))) ≤ ((𝑁𝐴) − (𝑁𝐵)) ∧ ((𝑁𝐴) − (𝑁𝐵)) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))))))
7448, 71, 73mpbir2and 713 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (abs‘((𝑁𝐴) − (𝑁𝐵))) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5093  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  1c1 11014   + caddc 11016  cle 11154  cmin 11351  -cneg 11352  abscabs 15143  NrmCVeccnv 30566   +𝑣 cpv 30567  BaseSetcba 30568   ·𝑠OLD cns 30569  0veccn0v 30570  normCVcnmcv 30572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-grpo 30475  df-gid 30476  df-ginv 30477  df-ablo 30527  df-vc 30541  df-nv 30574  df-va 30577  df-ba 30578  df-sm 30579  df-0v 30580  df-nmcv 30582
This theorem is referenced by:  nmcvcn  30677
  Copyright terms: Public domain W3C validator