MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxtrcfv Structured version   Visualization version   GIF version

Theorem pfxtrcfv 14044
Description: A symbol in a word truncated by one symbol. (Contributed by Alexander van der Vekens, 16-Jun-2018.) (Revised by AV, 3-May-2020.)
Assertion
Ref Expression
pfxtrcfv ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ∧ 𝐼 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 prefix ((♯‘𝑊) − 1))‘𝐼) = (𝑊𝐼))

Proof of Theorem pfxtrcfv
StepHypRef Expression
1 wrdfin 13873 . . . . . 6 (𝑊 ∈ Word 𝑉𝑊 ∈ Fin)
2 1elfz0hash 13745 . . . . . 6 ((𝑊 ∈ Fin ∧ 𝑊 ≠ ∅) → 1 ∈ (0...(♯‘𝑊)))
31, 2sylan 583 . . . . 5 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → 1 ∈ (0...(♯‘𝑊)))
4 lennncl 13875 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
5 elfz1end 12930 . . . . . 6 ((♯‘𝑊) ∈ ℕ ↔ (♯‘𝑊) ∈ (1...(♯‘𝑊)))
64, 5sylib 221 . . . . 5 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ (1...(♯‘𝑊)))
73, 6jca 515 . . . 4 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (1 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (1...(♯‘𝑊))))
873adant3 1129 . . 3 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ∧ 𝐼 ∈ (0..^((♯‘𝑊) − 1))) → (1 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (1...(♯‘𝑊))))
9 fz0fzdiffz0 13009 . . 3 ((1 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (1...(♯‘𝑊))) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)))
108, 9syl 17 . 2 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ∧ 𝐼 ∈ (0..^((♯‘𝑊) − 1))) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)))
11 pfxfv 14033 . 2 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 prefix ((♯‘𝑊) − 1))‘𝐼) = (𝑊𝐼))
1210, 11syld3an2 1408 1 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ∧ 𝐼 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 prefix ((♯‘𝑊) − 1))‘𝐼) = (𝑊𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3013  c0 4274  cfv 6336  (class class class)co 7138  Fincfn 8492  0cc0 10522  1c1 10523  cmin 10855  cn 11623  ...cfz 12883  ..^cfzo 13026  chash 13684  Word cword 13855   prefix cpfx 14021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-n0 11884  df-z 11968  df-uz 12230  df-fz 12884  df-fzo 13027  df-hash 13685  df-word 13856  df-substr 13992  df-pfx 14022
This theorem is referenced by:  pfxtrcfv0  14045  clwlkclwwlk  27776
  Copyright terms: Public domain W3C validator