MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ledivmul Structured version   Visualization version   GIF version

Theorem ledivmul 11182
Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by NM, 9-Dec-2005.)
Assertion
Ref Expression
ledivmul ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) ≤ 𝐵𝐴 ≤ (𝐶 · 𝐵)))

Proof of Theorem ledivmul
StepHypRef Expression
1 remulcl 10304 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 · 𝐵) ∈ ℝ)
21ancoms 448 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 · 𝐵) ∈ ℝ)
32adantrr 699 . . . 4 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐶 · 𝐵) ∈ ℝ)
433adant1 1153 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐶 · 𝐵) ∈ ℝ)
5 lediv1 11171 . . 3 ((𝐴 ∈ ℝ ∧ (𝐶 · 𝐵) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ (𝐶 · 𝐵) ↔ (𝐴 / 𝐶) ≤ ((𝐶 · 𝐵) / 𝐶)))
64, 5syld3an2 1524 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ (𝐶 · 𝐵) ↔ (𝐴 / 𝐶) ≤ ((𝐶 · 𝐵) / 𝐶)))
7 recn 10309 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
87adantr 468 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐵 ∈ ℂ)
9 recn 10309 . . . . . 6 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
109ad2antrl 710 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐶 ∈ ℂ)
11 gt0ne0 10776 . . . . . 6 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ≠ 0)
1211adantl 469 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐶 ≠ 0)
138, 10, 12divcan3d 11089 . . . 4 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 · 𝐵) / 𝐶) = 𝐵)
14133adant1 1153 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 · 𝐵) / 𝐶) = 𝐵)
1514breq2d 4854 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) ≤ ((𝐶 · 𝐵) / 𝐶) ↔ (𝐴 / 𝐶) ≤ 𝐵))
166, 15bitr2d 271 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) ≤ 𝐵𝐴 ≤ (𝐶 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2156  wne 2976   class class class wbr 4842  (class class class)co 6872  cc 10217  cr 10218  0cc0 10219   · cmul 10224   < clt 10357  cle 10358   / cdiv 10967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2782  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5094  ax-un 7177  ax-resscn 10276  ax-1cn 10277  ax-icn 10278  ax-addcl 10279  ax-addrcl 10280  ax-mulcl 10281  ax-mulrcl 10282  ax-mulcom 10283  ax-addass 10284  ax-mulass 10285  ax-distr 10286  ax-i2m1 10287  ax-1ne0 10288  ax-1rid 10289  ax-rnegex 10290  ax-rrecex 10291  ax-cnre 10292  ax-pre-lttri 10293  ax-pre-lttrn 10294  ax-pre-ltadd 10295  ax-pre-mulgt0 10296
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2791  df-cleq 2797  df-clel 2800  df-nfc 2935  df-ne 2977  df-nel 3080  df-ral 3099  df-rex 3100  df-reu 3101  df-rmo 3102  df-rab 3103  df-v 3391  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4115  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4843  df-opab 4905  df-mpt 4922  df-id 5217  df-po 5230  df-so 5231  df-xp 5315  df-rel 5316  df-cnv 5317  df-co 5318  df-dm 5319  df-rn 5320  df-res 5321  df-ima 5322  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6833  df-ov 6875  df-oprab 6876  df-mpt2 6877  df-er 7977  df-en 8191  df-dom 8192  df-sdom 8193  df-pnf 10359  df-mnf 10360  df-xr 10361  df-ltxr 10362  df-le 10363  df-sub 10551  df-neg 10552  df-div 10968
This theorem is referenced by:  ledivmul2  11185  rpnnen1lem3  12033  ledivmuld  12137  divelunit  12535  discr1  13221  faclbnd2  13296  sqrlem7  14210  o1fsum  14765  eftlub  15057  eflegeo  15069  4sqlem16  15879  iihalf2  22943  lebnumii  22976  ovolscalem1  23492  itg2mulclem  23725  abelthlem7  24404  pilem2  24418  sinhalfpilem  24428  sincosq1lem  24462  cxpaddle  24705  leibpi  24881  log2ublem1  24885  jensenlem2  24926  harmonicbnd4  24949  fsumfldivdiaglem  25127  bcmono  25214  lgsquadlem1  25317  rplogsumlem1  25385  rplogsumlem2  25386  dchrisum0lem2a  25418  mulogsumlem  25432  pntlemr  25503  unitdivcld  30270  cvmliftlem2  31589  snmlff  31632  sin2h  33710
  Copyright terms: Public domain W3C validator