MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatmul Structured version   Visualization version   GIF version

Theorem decpmatmul 21970
Description: The matrix consisting of the coefficients in the polynomial entries of the product of two polynomial matrices is a sum of products of the matrices consisting of the coefficients in the polynomial entries of the polynomial matrices for the same power. (Contributed by AV, 21-Oct-2019.) (Revised by AV, 3-Dec-2019.)
Hypotheses
Ref Expression
decpmatmul.p 𝑃 = (Poly1𝑅)
decpmatmul.c 𝐶 = (𝑁 Mat 𝑃)
decpmatmul.b 𝐵 = (Base‘𝐶)
decpmatmul.a 𝐴 = (𝑁 Mat 𝑅)
Assertion
Ref Expression
decpmatmul ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → ((𝑈(.r𝐶)𝑊) decompPMat 𝐾) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐾   𝑘,𝑁   𝑃,𝑘   𝑅,𝑘   𝑈,𝑘   𝑘,𝑊   𝐴,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem decpmatmul
Dummy variables 𝑡 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2737 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))))
2 oveq1 7314 . . . . . . . . . . 11 (𝑥 = 𝑖 → (𝑥(𝑈 decompPMat 𝑘)𝑡) = (𝑖(𝑈 decompPMat 𝑘)𝑡))
3 oveq2 7315 . . . . . . . . . . 11 (𝑦 = 𝑗 → (𝑡(𝑊 decompPMat (𝐾𝑘))𝑦) = (𝑡(𝑊 decompPMat (𝐾𝑘))𝑗))
42, 3oveqan12d 7326 . . . . . . . . . 10 ((𝑥 = 𝑖𝑦 = 𝑗) → ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)) = ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))
54mpteq2dv 5183 . . . . . . . . 9 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))) = (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗))))
65oveq2d 7323 . . . . . . . 8 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))) = (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))
76mpteq2dv 5183 . . . . . . 7 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))) = (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗))))))
87oveq2d 7323 . . . . . 6 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))))
98adantl 483 . . . . 5 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑥 = 𝑖𝑦 = 𝑗)) → (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))))
10 simprl 769 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
11 simprr 771 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
12 ovexd 7342 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))) ∈ V)
131, 9, 10, 11, 12ovmpod 7457 . . . 4 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))))𝑗) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))))
14 decpmatmul.c . . . . . . . . . . . . . . . . . . . 20 𝐶 = (𝑁 Mat 𝑃)
15 decpmatmul.b . . . . . . . . . . . . . . . . . . . 20 𝐵 = (Base‘𝐶)
1614, 15matrcl 21608 . . . . . . . . . . . . . . . . . . 19 (𝑈𝐵 → (𝑁 ∈ Fin ∧ 𝑃 ∈ V))
1716simpld 496 . . . . . . . . . . . . . . . . . 18 (𝑈𝐵𝑁 ∈ Fin)
1817adantr 482 . . . . . . . . . . . . . . . . 17 ((𝑈𝐵𝑊𝐵) → 𝑁 ∈ Fin)
1918anim2i 618 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
2019ancomd 463 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
21203adant3 1132 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
22 decpmatmul.a . . . . . . . . . . . . . . 15 𝐴 = (𝑁 Mat 𝑅)
23 eqid 2736 . . . . . . . . . . . . . . 15 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
2422, 23matmulr 21636 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
2521, 24syl 17 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
2625adantr 482 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
2726adantr 482 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
2827eqcomd 2742 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (.r𝐴) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
2928oveqd 7324 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))) = ((𝑈 decompPMat 𝑘)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑊 decompPMat (𝐾𝑘))))
30 eqid 2736 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
31 eqid 2736 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
32 simp1 1136 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ Ring)
3332adantr 482 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Ring)
3433adantr 482 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑅 ∈ Ring)
3521simpld 496 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ Fin)
3635adantr 482 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑁 ∈ Fin)
3736adantr 482 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑁 ∈ Fin)
38 simpl2l 1226 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑈𝐵)
3938adantr 482 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑈𝐵)
40 elfznn0 13399 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...𝐾) → 𝑘 ∈ ℕ0)
4140adantl 483 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑘 ∈ ℕ0)
4234, 39, 413jca 1128 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0))
43 decpmatmul.p . . . . . . . . . . . . 13 𝑃 = (Poly1𝑅)
44 eqid 2736 . . . . . . . . . . . . 13 (Base‘𝐴) = (Base‘𝐴)
4543, 14, 15, 22, 44decpmatcl 21965 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0) → (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴))
4642, 45syl 17 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴))
4722, 30, 44matbas2i 21620 . . . . . . . . . . 11 ((𝑈 decompPMat 𝑘) ∈ (Base‘𝐴) → (𝑈 decompPMat 𝑘) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
4846, 47syl 17 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑈 decompPMat 𝑘) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
49 simpl2r 1227 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑊𝐵)
5049adantr 482 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑊𝐵)
51 fznn0sub 13338 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...𝐾) → (𝐾𝑘) ∈ ℕ0)
5251adantl 483 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝐾𝑘) ∈ ℕ0)
5334, 50, 523jca 1128 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 ∈ Ring ∧ 𝑊𝐵 ∧ (𝐾𝑘) ∈ ℕ0))
5443, 14, 15, 22, 44decpmatcl 21965 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑊𝐵 ∧ (𝐾𝑘) ∈ ℕ0) → (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴))
5553, 54syl 17 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴))
5622, 30, 44matbas2i 21620 . . . . . . . . . . 11 ((𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴) → (𝑊 decompPMat (𝐾𝑘)) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
5755, 56syl 17 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑊 decompPMat (𝐾𝑘)) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
5823, 30, 31, 34, 37, 37, 37, 48, 57mamuval 21584 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → ((𝑈 decompPMat 𝑘)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑊 decompPMat (𝐾𝑘))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))
5929, 58eqtrd 2776 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))
6059mpteq2dva 5181 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))) = (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))))
6160oveq2d 7323 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))))
62 eqid 2736 . . . . . . 7 (0g𝐴) = (0g𝐴)
63 ovexd 7342 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0...𝐾) ∈ V)
64 ringcmn 19869 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
6532, 64syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ CMnd)
6665adantr 482 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ CMnd)
6766adantr 482 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑅 ∈ CMnd)
68673ad2ant1 1133 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → 𝑅 ∈ CMnd)
69373ad2ant1 1133 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → 𝑁 ∈ Fin)
70343ad2ant1 1133 . . . . . . . . . . . 12 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → 𝑅 ∈ Ring)
7170adantr 482 . . . . . . . . . . 11 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → 𝑅 ∈ Ring)
72 simpl2 1192 . . . . . . . . . . . 12 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → 𝑥𝑁)
73 simpr 486 . . . . . . . . . . . 12 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → 𝑡𝑁)
74423ad2ant1 1133 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → (𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0))
7574adantr 482 . . . . . . . . . . . . 13 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → (𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0))
7675, 45syl 17 . . . . . . . . . . . 12 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴))
7722, 30, 44, 72, 73, 76matecld 21624 . . . . . . . . . . 11 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → (𝑥(𝑈 decompPMat 𝑘)𝑡) ∈ (Base‘𝑅))
78 simpl3 1193 . . . . . . . . . . . 12 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → 𝑦𝑁)
79553ad2ant1 1133 . . . . . . . . . . . . 13 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴))
8079adantr 482 . . . . . . . . . . . 12 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴))
8122, 30, 44, 73, 78, 80matecld 21624 . . . . . . . . . . 11 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → (𝑡(𝑊 decompPMat (𝐾𝑘))𝑦) ∈ (Base‘𝑅))
8230, 31ringcl 19849 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑥(𝑈 decompPMat 𝑘)𝑡) ∈ (Base‘𝑅) ∧ (𝑡(𝑊 decompPMat (𝐾𝑘))𝑦) ∈ (Base‘𝑅)) → ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)) ∈ (Base‘𝑅))
8371, 77, 81, 82syl3anc 1371 . . . . . . . . . 10 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)) ∈ (Base‘𝑅))
8483ralrimiva 3140 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → ∀𝑡𝑁 ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)) ∈ (Base‘𝑅))
8530, 68, 69, 84gsummptcl 19617 . . . . . . . 8 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))) ∈ (Base‘𝑅))
8622, 30, 44, 37, 34, 85matbas2d 21621 . . . . . . 7 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))) ∈ (Base‘𝐴))
87 eqid 2736 . . . . . . . 8 (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))) = (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))
88 fzfid 13743 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0...𝐾) ∈ Fin)
89 simpl 484 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑃 ∈ V) → 𝑁 ∈ Fin)
9089, 89jca 513 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑃 ∈ V) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
9116, 90syl 17 . . . . . . . . . . . . 13 (𝑈𝐵 → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
9291adantr 482 . . . . . . . . . . . 12 ((𝑈𝐵𝑊𝐵) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
93923ad2ant2 1134 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
9493adantr 482 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
9594adantr 482 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
96 mpoexga 7950 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))) ∈ V)
9795, 96syl 17 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))) ∈ V)
98 fvexd 6819 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0g𝐴) ∈ V)
9987, 88, 97, 98fsuppmptdm 9187 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))) finSupp (0g𝐴))
10022, 44, 62, 36, 63, 33, 86, 99matgsum 21635 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))))
10161, 100eqtrd 2776 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))))
102101oveqd 7324 . . . 4 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))))𝑗) = (𝑖(𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))))𝑗))
103 simpl2 1192 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑈𝐵𝑊𝐵))
104 simpl3 1193 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝐾 ∈ ℕ0)
10543, 14, 15decpmatmullem 21969 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝑖𝑁𝑗𝑁𝐾 ∈ ℕ0)) → (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))))))
10636, 33, 103, 10, 11, 104, 105syl213anc 1389 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))))))
107 simpll1 1212 . . . . . . 7 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑅 ∈ Ring)
108 simplrl 775 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑖𝑁)
109 simprl 769 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑡𝑁)
11015eleq2i 2828 . . . . . . . . . . . . . 14 (𝑈𝐵𝑈 ∈ (Base‘𝐶))
111110biimpi 215 . . . . . . . . . . . . 13 (𝑈𝐵𝑈 ∈ (Base‘𝐶))
112111adantr 482 . . . . . . . . . . . 12 ((𝑈𝐵𝑊𝐵) → 𝑈 ∈ (Base‘𝐶))
1131123ad2ant2 1134 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝑈 ∈ (Base‘𝐶))
114113adantr 482 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑈 ∈ (Base‘𝐶))
115114adantr 482 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑈 ∈ (Base‘𝐶))
116 eqid 2736 . . . . . . . . . 10 (Base‘𝑃) = (Base‘𝑃)
11714, 116matecl 21623 . . . . . . . . 9 ((𝑖𝑁𝑡𝑁𝑈 ∈ (Base‘𝐶)) → (𝑖𝑈𝑡) ∈ (Base‘𝑃))
118108, 109, 115, 117syl3anc 1371 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → (𝑖𝑈𝑡) ∈ (Base‘𝑃))
11940ad2antll 727 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑘 ∈ ℕ0)
120 eqid 2736 . . . . . . . . 9 (coe1‘(𝑖𝑈𝑡)) = (coe1‘(𝑖𝑈𝑡))
121120, 116, 43, 30coe1fvalcl 21432 . . . . . . . 8 (((𝑖𝑈𝑡) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) → ((coe1‘(𝑖𝑈𝑡))‘𝑘) ∈ (Base‘𝑅))
122118, 119, 121syl2anc 585 . . . . . . 7 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → ((coe1‘(𝑖𝑈𝑡))‘𝑘) ∈ (Base‘𝑅))
123 simplrr 776 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑗𝑁)
12449adantr 482 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑊𝐵)
12514, 116, 15, 109, 123, 124matecld 21624 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → (𝑡𝑊𝑗) ∈ (Base‘𝑃))
12651ad2antll 727 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → (𝐾𝑘) ∈ ℕ0)
127 eqid 2736 . . . . . . . . 9 (coe1‘(𝑡𝑊𝑗)) = (coe1‘(𝑡𝑊𝑗))
128127, 116, 43, 30coe1fvalcl 21432 . . . . . . . 8 (((𝑡𝑊𝑗) ∈ (Base‘𝑃) ∧ (𝐾𝑘) ∈ ℕ0) → ((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)) ∈ (Base‘𝑅))
129125, 126, 128syl2anc 585 . . . . . . 7 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → ((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)) ∈ (Base‘𝑅))
13030, 31ringcl 19849 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑖𝑈𝑡))‘𝑘) ∈ (Base‘𝑅) ∧ ((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)) ∈ (Base‘𝑅)) → (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))) ∈ (Base‘𝑅))
131107, 122, 129, 130syl3anc 1371 . . . . . 6 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))) ∈ (Base‘𝑅))
13230, 66, 36, 88, 131gsumcom3fi 19629 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))))) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))))))
13310adantr 482 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑖𝑁)
134133anim1i 616 . . . . . . . . . . . 12 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → (𝑖𝑁𝑡𝑁))
13543, 14, 15decpmate 21964 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0) ∧ (𝑖𝑁𝑡𝑁)) → (𝑖(𝑈 decompPMat 𝑘)𝑡) = ((coe1‘(𝑖𝑈𝑡))‘𝑘))
13642, 134, 135syl2an2r 683 . . . . . . . . . . 11 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → (𝑖(𝑈 decompPMat 𝑘)𝑡) = ((coe1‘(𝑖𝑈𝑡))‘𝑘))
137 simplrr 776 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑗𝑁)
138137anim1ci 617 . . . . . . . . . . . 12 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → (𝑡𝑁𝑗𝑁))
13943, 14, 15decpmate 21964 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑊𝐵 ∧ (𝐾𝑘) ∈ ℕ0) ∧ (𝑡𝑁𝑗𝑁)) → (𝑡(𝑊 decompPMat (𝐾𝑘))𝑗) = ((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)))
14053, 138, 139syl2an2r 683 . . . . . . . . . . 11 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → (𝑡(𝑊 decompPMat (𝐾𝑘))𝑗) = ((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)))
141136, 140oveq12d 7325 . . . . . . . . . 10 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)) = (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))
142141eqcomd 2742 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))) = ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))
143142mpteq2dva 5181 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑡𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)))) = (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗))))
144143oveq2d 7323 . . . . . . 7 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 Σg (𝑡𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))) = (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))
145144mpteq2dva 5181 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)))))) = (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗))))))
146145oveq2d 7323 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))))) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))))
147106, 132, 1463eqtrd 2780 . . . 4 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))))
14813, 102, 1473eqtr4rd 2787 . . 3 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))))𝑗))
149148ralrimivva 3194 . 2 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → ∀𝑖𝑁𝑗𝑁 (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))))𝑗))
15043, 14pmatring 21890 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
15120, 150syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → 𝐶 ∈ Ring)
152 simprl 769 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → 𝑈𝐵)
153 simprr 771 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → 𝑊𝐵)
154 eqid 2736 . . . . . . 7 (.r𝐶) = (.r𝐶)
15515, 154ringcl 19849 . . . . . 6 ((𝐶 ∈ Ring ∧ 𝑈𝐵𝑊𝐵) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
156151, 152, 153, 155syl3anc 1371 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
1571563adant3 1132 . . . 4 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
15843, 14, 15, 22, 44decpmatcl 21965 . . . 4 ((𝑅 ∈ Ring ∧ (𝑈(.r𝐶)𝑊) ∈ 𝐵𝐾 ∈ ℕ0) → ((𝑈(.r𝐶)𝑊) decompPMat 𝐾) ∈ (Base‘𝐴))
159157, 158syld3an2 1411 . . 3 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → ((𝑈(.r𝐶)𝑊) decompPMat 𝐾) ∈ (Base‘𝐴))
16022matring 21641 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
16121, 160syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ Ring)
162 ringcmn 19869 . . . . 5 (𝐴 ∈ Ring → 𝐴 ∈ CMnd)
163161, 162syl 17 . . . 4 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ CMnd)
164 fzfid 13743 . . . 4 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (0...𝐾) ∈ Fin)
165161adantr 482 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝐴 ∈ Ring)
16632adantr 482 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝑅 ∈ Ring)
167 simpl2l 1226 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝑈𝐵)
16840adantl 483 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝑘 ∈ ℕ0)
169166, 167, 1683jca 1128 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0))
170169, 45syl 17 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴))
171 simpl2r 1227 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝑊𝐵)
17251adantl 483 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝐾𝑘) ∈ ℕ0)
173166, 171, 1723jca 1128 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 ∈ Ring ∧ 𝑊𝐵 ∧ (𝐾𝑘) ∈ ℕ0))
174173, 54syl 17 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴))
175 eqid 2736 . . . . . . 7 (.r𝐴) = (.r𝐴)
17644, 175ringcl 19849 . . . . . 6 ((𝐴 ∈ Ring ∧ (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴) ∧ (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴)) → ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))) ∈ (Base‘𝐴))
177165, 170, 174, 176syl3anc 1371 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))) ∈ (Base‘𝐴))
178177ralrimiva 3140 . . . 4 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → ∀𝑘 ∈ (0...𝐾)((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))) ∈ (Base‘𝐴))
17944, 163, 164, 178gsummptcl 19617 . . 3 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) ∈ (Base‘𝐴))
18022, 44eqmat 21622 . . 3 ((((𝑈(.r𝐶)𝑊) decompPMat 𝐾) ∈ (Base‘𝐴) ∧ (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) ∈ (Base‘𝐴)) → (((𝑈(.r𝐶)𝑊) decompPMat 𝐾) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))))𝑗)))
181159, 179, 180syl2anc 585 . 2 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (((𝑈(.r𝐶)𝑊) decompPMat 𝐾) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))))𝑗)))
182149, 181mpbird 257 1 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → ((𝑈(.r𝐶)𝑊) decompPMat 𝐾) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1539  wcel 2104  wral 3062  Vcvv 3437  cotp 4573  cmpt 5164   × cxp 5598  cfv 6458  (class class class)co 7307  cmpo 7309  m cmap 8646  Fincfn 8764  0cc0 10921  cmin 11255  0cn0 12283  ...cfz 13289  Basecbs 16961  .rcmulr 17012  0gc0g 17199   Σg cgsu 17200  CMndccmn 19435  Ringcrg 19832  Poly1cpl1 21397  coe1cco1 21398   maMul cmmul 21581   Mat cmat 21603   decompPMat cdecpmat 21960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-ot 4574  df-uni 4845  df-int 4887  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-ofr 7566  df-om 7745  df-1st 7863  df-2nd 7864  df-supp 8009  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-map 8648  df-pm 8649  df-ixp 8717  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-fsupp 9177  df-sup 9249  df-oi 9317  df-card 9745  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-nn 12024  df-2 12086  df-3 12087  df-4 12088  df-5 12089  df-6 12090  df-7 12091  df-8 12092  df-9 12093  df-n0 12284  df-z 12370  df-dec 12488  df-uz 12633  df-fz 13290  df-fzo 13433  df-seq 13772  df-hash 14095  df-struct 16897  df-sets 16914  df-slot 16932  df-ndx 16944  df-base 16962  df-ress 16991  df-plusg 17024  df-mulr 17025  df-sca 17027  df-vsca 17028  df-ip 17029  df-tset 17030  df-ple 17031  df-ds 17033  df-hom 17035  df-cco 17036  df-0g 17201  df-gsum 17202  df-prds 17207  df-pws 17209  df-mre 17344  df-mrc 17345  df-acs 17347  df-mgm 18375  df-sgrp 18424  df-mnd 18435  df-mhm 18479  df-submnd 18480  df-grp 18629  df-minusg 18630  df-sbg 18631  df-mulg 18750  df-subg 18801  df-ghm 18881  df-cntz 18972  df-cmn 19437  df-abl 19438  df-mgp 19770  df-ur 19787  df-ring 19834  df-subrg 20071  df-lmod 20174  df-lss 20243  df-sra 20483  df-rgmod 20484  df-dsmm 20988  df-frlm 21003  df-psr 21161  df-mpl 21163  df-opsr 21165  df-psr1 21400  df-ply1 21402  df-coe1 21403  df-mamu 21582  df-mat 21604  df-decpmat 21961
This theorem is referenced by:  decpmatmulsumfsupp  21971  pm2mpmhmlem1  22016  pm2mpmhmlem2  22017
  Copyright terms: Public domain W3C validator