MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatmul Structured version   Visualization version   GIF version

Theorem decpmatmul 22793
Description: The matrix consisting of the coefficients in the polynomial entries of the product of two polynomial matrices is a sum of products of the matrices consisting of the coefficients in the polynomial entries of the polynomial matrices for the same power. (Contributed by AV, 21-Oct-2019.) (Revised by AV, 3-Dec-2019.)
Hypotheses
Ref Expression
decpmatmul.p 𝑃 = (Poly1𝑅)
decpmatmul.c 𝐶 = (𝑁 Mat 𝑃)
decpmatmul.b 𝐵 = (Base‘𝐶)
decpmatmul.a 𝐴 = (𝑁 Mat 𝑅)
Assertion
Ref Expression
decpmatmul ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → ((𝑈(.r𝐶)𝑊) decompPMat 𝐾) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐾   𝑘,𝑁   𝑃,𝑘   𝑅,𝑘   𝑈,𝑘   𝑘,𝑊   𝐴,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem decpmatmul
Dummy variables 𝑡 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2735 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))))
2 oveq1 7437 . . . . . . . . . . 11 (𝑥 = 𝑖 → (𝑥(𝑈 decompPMat 𝑘)𝑡) = (𝑖(𝑈 decompPMat 𝑘)𝑡))
3 oveq2 7438 . . . . . . . . . . 11 (𝑦 = 𝑗 → (𝑡(𝑊 decompPMat (𝐾𝑘))𝑦) = (𝑡(𝑊 decompPMat (𝐾𝑘))𝑗))
42, 3oveqan12d 7449 . . . . . . . . . 10 ((𝑥 = 𝑖𝑦 = 𝑗) → ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)) = ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))
54mpteq2dv 5249 . . . . . . . . 9 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))) = (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗))))
65oveq2d 7446 . . . . . . . 8 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))) = (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))
76mpteq2dv 5249 . . . . . . 7 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))) = (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗))))))
87oveq2d 7446 . . . . . 6 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))))
98adantl 481 . . . . 5 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑥 = 𝑖𝑦 = 𝑗)) → (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))))
10 simprl 771 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
11 simprr 773 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
12 ovexd 7465 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))) ∈ V)
131, 9, 10, 11, 12ovmpod 7584 . . . 4 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))))𝑗) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))))
14 decpmatmul.c . . . . . . . . . . . . . . . . . . . 20 𝐶 = (𝑁 Mat 𝑃)
15 decpmatmul.b . . . . . . . . . . . . . . . . . . . 20 𝐵 = (Base‘𝐶)
1614, 15matrcl 22431 . . . . . . . . . . . . . . . . . . 19 (𝑈𝐵 → (𝑁 ∈ Fin ∧ 𝑃 ∈ V))
1716simpld 494 . . . . . . . . . . . . . . . . . 18 (𝑈𝐵𝑁 ∈ Fin)
1817adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑈𝐵𝑊𝐵) → 𝑁 ∈ Fin)
1918anim2i 617 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
2019ancomd 461 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
21203adant3 1131 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
22 decpmatmul.a . . . . . . . . . . . . . . 15 𝐴 = (𝑁 Mat 𝑅)
23 eqid 2734 . . . . . . . . . . . . . . 15 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
2422, 23matmulr 22459 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
2521, 24syl 17 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
2625adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
2726adantr 480 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
2827eqcomd 2740 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (.r𝐴) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
2928oveqd 7447 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))) = ((𝑈 decompPMat 𝑘)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑊 decompPMat (𝐾𝑘))))
30 eqid 2734 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
31 eqid 2734 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
32 simp1 1135 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ Ring)
3332adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Ring)
3433adantr 480 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑅 ∈ Ring)
3521simpld 494 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ Fin)
3635adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑁 ∈ Fin)
3736adantr 480 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑁 ∈ Fin)
38 simpl2l 1225 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑈𝐵)
3938adantr 480 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑈𝐵)
40 elfznn0 13656 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...𝐾) → 𝑘 ∈ ℕ0)
4140adantl 481 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑘 ∈ ℕ0)
4234, 39, 413jca 1127 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0))
43 decpmatmul.p . . . . . . . . . . . . 13 𝑃 = (Poly1𝑅)
44 eqid 2734 . . . . . . . . . . . . 13 (Base‘𝐴) = (Base‘𝐴)
4543, 14, 15, 22, 44decpmatcl 22788 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0) → (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴))
4642, 45syl 17 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴))
4722, 30, 44matbas2i 22443 . . . . . . . . . . 11 ((𝑈 decompPMat 𝑘) ∈ (Base‘𝐴) → (𝑈 decompPMat 𝑘) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
4846, 47syl 17 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑈 decompPMat 𝑘) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
49 simpl2r 1226 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑊𝐵)
5049adantr 480 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑊𝐵)
51 fznn0sub 13592 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...𝐾) → (𝐾𝑘) ∈ ℕ0)
5251adantl 481 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝐾𝑘) ∈ ℕ0)
5334, 50, 523jca 1127 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 ∈ Ring ∧ 𝑊𝐵 ∧ (𝐾𝑘) ∈ ℕ0))
5443, 14, 15, 22, 44decpmatcl 22788 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑊𝐵 ∧ (𝐾𝑘) ∈ ℕ0) → (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴))
5553, 54syl 17 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴))
5622, 30, 44matbas2i 22443 . . . . . . . . . . 11 ((𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴) → (𝑊 decompPMat (𝐾𝑘)) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
5755, 56syl 17 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑊 decompPMat (𝐾𝑘)) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
5823, 30, 31, 34, 37, 37, 37, 48, 57mamuval 22412 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → ((𝑈 decompPMat 𝑘)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑊 decompPMat (𝐾𝑘))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))
5929, 58eqtrd 2774 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))
6059mpteq2dva 5247 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))) = (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))))
6160oveq2d 7446 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))))
62 eqid 2734 . . . . . . 7 (0g𝐴) = (0g𝐴)
63 ovexd 7465 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0...𝐾) ∈ V)
64 ringcmn 20295 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
6532, 64syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ CMnd)
6665adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ CMnd)
6766adantr 480 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑅 ∈ CMnd)
68673ad2ant1 1132 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → 𝑅 ∈ CMnd)
69373ad2ant1 1132 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → 𝑁 ∈ Fin)
70343ad2ant1 1132 . . . . . . . . . . . 12 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → 𝑅 ∈ Ring)
7170adantr 480 . . . . . . . . . . 11 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → 𝑅 ∈ Ring)
72 simpl2 1191 . . . . . . . . . . . 12 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → 𝑥𝑁)
73 simpr 484 . . . . . . . . . . . 12 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → 𝑡𝑁)
74423ad2ant1 1132 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → (𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0))
7574adantr 480 . . . . . . . . . . . . 13 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → (𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0))
7675, 45syl 17 . . . . . . . . . . . 12 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴))
7722, 30, 44, 72, 73, 76matecld 22447 . . . . . . . . . . 11 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → (𝑥(𝑈 decompPMat 𝑘)𝑡) ∈ (Base‘𝑅))
78 simpl3 1192 . . . . . . . . . . . 12 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → 𝑦𝑁)
79553ad2ant1 1132 . . . . . . . . . . . . 13 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴))
8079adantr 480 . . . . . . . . . . . 12 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴))
8122, 30, 44, 73, 78, 80matecld 22447 . . . . . . . . . . 11 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → (𝑡(𝑊 decompPMat (𝐾𝑘))𝑦) ∈ (Base‘𝑅))
8230, 31ringcl 20267 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑥(𝑈 decompPMat 𝑘)𝑡) ∈ (Base‘𝑅) ∧ (𝑡(𝑊 decompPMat (𝐾𝑘))𝑦) ∈ (Base‘𝑅)) → ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)) ∈ (Base‘𝑅))
8371, 77, 81, 82syl3anc 1370 . . . . . . . . . 10 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)) ∈ (Base‘𝑅))
8483ralrimiva 3143 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → ∀𝑡𝑁 ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)) ∈ (Base‘𝑅))
8530, 68, 69, 84gsummptcl 19999 . . . . . . . 8 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))) ∈ (Base‘𝑅))
8622, 30, 44, 37, 34, 85matbas2d 22444 . . . . . . 7 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))) ∈ (Base‘𝐴))
87 eqid 2734 . . . . . . . 8 (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))) = (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))
88 fzfid 14010 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0...𝐾) ∈ Fin)
89 simpl 482 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑃 ∈ V) → 𝑁 ∈ Fin)
9089, 89jca 511 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑃 ∈ V) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
9116, 90syl 17 . . . . . . . . . . . . 13 (𝑈𝐵 → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
9291adantr 480 . . . . . . . . . . . 12 ((𝑈𝐵𝑊𝐵) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
93923ad2ant2 1133 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
9493adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
9594adantr 480 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
96 mpoexga 8100 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))) ∈ V)
9795, 96syl 17 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))) ∈ V)
98 fvexd 6921 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0g𝐴) ∈ V)
9987, 88, 97, 98fsuppmptdm 9413 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))) finSupp (0g𝐴))
10022, 44, 62, 36, 63, 33, 86, 99matgsum 22458 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))))
10161, 100eqtrd 2774 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))))
102101oveqd 7447 . . . 4 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))))𝑗) = (𝑖(𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))))𝑗))
103 simpl2 1191 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑈𝐵𝑊𝐵))
104 simpl3 1192 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝐾 ∈ ℕ0)
10543, 14, 15decpmatmullem 22792 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝑖𝑁𝑗𝑁𝐾 ∈ ℕ0)) → (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))))))
10636, 33, 103, 10, 11, 104, 105syl213anc 1388 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))))))
107 simpll1 1211 . . . . . . 7 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑅 ∈ Ring)
108 simplrl 777 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑖𝑁)
109 simprl 771 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑡𝑁)
11015eleq2i 2830 . . . . . . . . . . . . . 14 (𝑈𝐵𝑈 ∈ (Base‘𝐶))
111110biimpi 216 . . . . . . . . . . . . 13 (𝑈𝐵𝑈 ∈ (Base‘𝐶))
112111adantr 480 . . . . . . . . . . . 12 ((𝑈𝐵𝑊𝐵) → 𝑈 ∈ (Base‘𝐶))
1131123ad2ant2 1133 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝑈 ∈ (Base‘𝐶))
114113adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑈 ∈ (Base‘𝐶))
115114adantr 480 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑈 ∈ (Base‘𝐶))
116 eqid 2734 . . . . . . . . . 10 (Base‘𝑃) = (Base‘𝑃)
11714, 116matecl 22446 . . . . . . . . 9 ((𝑖𝑁𝑡𝑁𝑈 ∈ (Base‘𝐶)) → (𝑖𝑈𝑡) ∈ (Base‘𝑃))
118108, 109, 115, 117syl3anc 1370 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → (𝑖𝑈𝑡) ∈ (Base‘𝑃))
11940ad2antll 729 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑘 ∈ ℕ0)
120 eqid 2734 . . . . . . . . 9 (coe1‘(𝑖𝑈𝑡)) = (coe1‘(𝑖𝑈𝑡))
121120, 116, 43, 30coe1fvalcl 22229 . . . . . . . 8 (((𝑖𝑈𝑡) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) → ((coe1‘(𝑖𝑈𝑡))‘𝑘) ∈ (Base‘𝑅))
122118, 119, 121syl2anc 584 . . . . . . 7 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → ((coe1‘(𝑖𝑈𝑡))‘𝑘) ∈ (Base‘𝑅))
123 simplrr 778 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑗𝑁)
12449adantr 480 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑊𝐵)
12514, 116, 15, 109, 123, 124matecld 22447 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → (𝑡𝑊𝑗) ∈ (Base‘𝑃))
12651ad2antll 729 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → (𝐾𝑘) ∈ ℕ0)
127 eqid 2734 . . . . . . . . 9 (coe1‘(𝑡𝑊𝑗)) = (coe1‘(𝑡𝑊𝑗))
128127, 116, 43, 30coe1fvalcl 22229 . . . . . . . 8 (((𝑡𝑊𝑗) ∈ (Base‘𝑃) ∧ (𝐾𝑘) ∈ ℕ0) → ((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)) ∈ (Base‘𝑅))
129125, 126, 128syl2anc 584 . . . . . . 7 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → ((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)) ∈ (Base‘𝑅))
13030, 31ringcl 20267 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑖𝑈𝑡))‘𝑘) ∈ (Base‘𝑅) ∧ ((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)) ∈ (Base‘𝑅)) → (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))) ∈ (Base‘𝑅))
131107, 122, 129, 130syl3anc 1370 . . . . . 6 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))) ∈ (Base‘𝑅))
13230, 66, 36, 88, 131gsumcom3fi 20011 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))))) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))))))
13310adantr 480 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑖𝑁)
134133anim1i 615 . . . . . . . . . . . 12 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → (𝑖𝑁𝑡𝑁))
13543, 14, 15decpmate 22787 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0) ∧ (𝑖𝑁𝑡𝑁)) → (𝑖(𝑈 decompPMat 𝑘)𝑡) = ((coe1‘(𝑖𝑈𝑡))‘𝑘))
13642, 134, 135syl2an2r 685 . . . . . . . . . . 11 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → (𝑖(𝑈 decompPMat 𝑘)𝑡) = ((coe1‘(𝑖𝑈𝑡))‘𝑘))
137 simplrr 778 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑗𝑁)
138137anim1ci 616 . . . . . . . . . . . 12 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → (𝑡𝑁𝑗𝑁))
13943, 14, 15decpmate 22787 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑊𝐵 ∧ (𝐾𝑘) ∈ ℕ0) ∧ (𝑡𝑁𝑗𝑁)) → (𝑡(𝑊 decompPMat (𝐾𝑘))𝑗) = ((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)))
14053, 138, 139syl2an2r 685 . . . . . . . . . . 11 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → (𝑡(𝑊 decompPMat (𝐾𝑘))𝑗) = ((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)))
141136, 140oveq12d 7448 . . . . . . . . . 10 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)) = (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))
142141eqcomd 2740 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))) = ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))
143142mpteq2dva 5247 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑡𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)))) = (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗))))
144143oveq2d 7446 . . . . . . 7 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 Σg (𝑡𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))) = (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))
145144mpteq2dva 5247 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)))))) = (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗))))))
146145oveq2d 7446 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))))) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))))
147106, 132, 1463eqtrd 2778 . . . 4 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))))
14813, 102, 1473eqtr4rd 2785 . . 3 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))))𝑗))
149148ralrimivva 3199 . 2 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → ∀𝑖𝑁𝑗𝑁 (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))))𝑗))
15043, 14pmatring 22713 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
15120, 150syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → 𝐶 ∈ Ring)
152 simprl 771 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → 𝑈𝐵)
153 simprr 773 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → 𝑊𝐵)
154 eqid 2734 . . . . . . 7 (.r𝐶) = (.r𝐶)
15515, 154ringcl 20267 . . . . . 6 ((𝐶 ∈ Ring ∧ 𝑈𝐵𝑊𝐵) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
156151, 152, 153, 155syl3anc 1370 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
1571563adant3 1131 . . . 4 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
15843, 14, 15, 22, 44decpmatcl 22788 . . . 4 ((𝑅 ∈ Ring ∧ (𝑈(.r𝐶)𝑊) ∈ 𝐵𝐾 ∈ ℕ0) → ((𝑈(.r𝐶)𝑊) decompPMat 𝐾) ∈ (Base‘𝐴))
159157, 158syld3an2 1410 . . 3 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → ((𝑈(.r𝐶)𝑊) decompPMat 𝐾) ∈ (Base‘𝐴))
16022matring 22464 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
16121, 160syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ Ring)
162 ringcmn 20295 . . . . 5 (𝐴 ∈ Ring → 𝐴 ∈ CMnd)
163161, 162syl 17 . . . 4 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ CMnd)
164 fzfid 14010 . . . 4 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (0...𝐾) ∈ Fin)
165161adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝐴 ∈ Ring)
16632adantr 480 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝑅 ∈ Ring)
167 simpl2l 1225 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝑈𝐵)
16840adantl 481 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝑘 ∈ ℕ0)
169166, 167, 1683jca 1127 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0))
170169, 45syl 17 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴))
171 simpl2r 1226 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝑊𝐵)
17251adantl 481 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝐾𝑘) ∈ ℕ0)
173166, 171, 1723jca 1127 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 ∈ Ring ∧ 𝑊𝐵 ∧ (𝐾𝑘) ∈ ℕ0))
174173, 54syl 17 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴))
175 eqid 2734 . . . . . . 7 (.r𝐴) = (.r𝐴)
17644, 175ringcl 20267 . . . . . 6 ((𝐴 ∈ Ring ∧ (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴) ∧ (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴)) → ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))) ∈ (Base‘𝐴))
177165, 170, 174, 176syl3anc 1370 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))) ∈ (Base‘𝐴))
178177ralrimiva 3143 . . . 4 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → ∀𝑘 ∈ (0...𝐾)((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))) ∈ (Base‘𝐴))
17944, 163, 164, 178gsummptcl 19999 . . 3 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) ∈ (Base‘𝐴))
18022, 44eqmat 22445 . . 3 ((((𝑈(.r𝐶)𝑊) decompPMat 𝐾) ∈ (Base‘𝐴) ∧ (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) ∈ (Base‘𝐴)) → (((𝑈(.r𝐶)𝑊) decompPMat 𝐾) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))))𝑗)))
181159, 179, 180syl2anc 584 . 2 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (((𝑈(.r𝐶)𝑊) decompPMat 𝐾) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))))𝑗)))
182149, 181mpbird 257 1 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → ((𝑈(.r𝐶)𝑊) decompPMat 𝐾) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wral 3058  Vcvv 3477  cotp 4638  cmpt 5230   × cxp 5686  cfv 6562  (class class class)co 7430  cmpo 7432  m cmap 8864  Fincfn 8983  0cc0 11152  cmin 11489  0cn0 12523  ...cfz 13543  Basecbs 17244  .rcmulr 17298  0gc0g 17485   Σg cgsu 17486  CMndccmn 19812  Ringcrg 20250  Poly1cpl1 22193  coe1cco1 22194   maMul cmmul 22409   Mat cmat 22426   decompPMat cdecpmat 22783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-ofr 7697  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-subg 19153  df-ghm 19243  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-subrng 20562  df-subrg 20586  df-lmod 20876  df-lss 20947  df-sra 21189  df-rgmod 21190  df-dsmm 21769  df-frlm 21784  df-psr 21946  df-mpl 21948  df-opsr 21950  df-psr1 22196  df-ply1 22198  df-coe1 22199  df-mamu 22410  df-mat 22427  df-decpmat 22784
This theorem is referenced by:  decpmatmulsumfsupp  22794  pm2mpmhmlem1  22839  pm2mpmhmlem2  22840
  Copyright terms: Public domain W3C validator