MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatmul Structured version   Visualization version   GIF version

Theorem decpmatmul 22659
Description: The matrix consisting of the coefficients in the polynomial entries of the product of two polynomial matrices is a sum of products of the matrices consisting of the coefficients in the polynomial entries of the polynomial matrices for the same power. (Contributed by AV, 21-Oct-2019.) (Revised by AV, 3-Dec-2019.)
Hypotheses
Ref Expression
decpmatmul.p 𝑃 = (Poly1𝑅)
decpmatmul.c 𝐶 = (𝑁 Mat 𝑃)
decpmatmul.b 𝐵 = (Base‘𝐶)
decpmatmul.a 𝐴 = (𝑁 Mat 𝑅)
Assertion
Ref Expression
decpmatmul ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → ((𝑈(.r𝐶)𝑊) decompPMat 𝐾) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐾   𝑘,𝑁   𝑃,𝑘   𝑅,𝑘   𝑈,𝑘   𝑘,𝑊   𝐴,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem decpmatmul
Dummy variables 𝑡 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))))
2 oveq1 7394 . . . . . . . . . . 11 (𝑥 = 𝑖 → (𝑥(𝑈 decompPMat 𝑘)𝑡) = (𝑖(𝑈 decompPMat 𝑘)𝑡))
3 oveq2 7395 . . . . . . . . . . 11 (𝑦 = 𝑗 → (𝑡(𝑊 decompPMat (𝐾𝑘))𝑦) = (𝑡(𝑊 decompPMat (𝐾𝑘))𝑗))
42, 3oveqan12d 7406 . . . . . . . . . 10 ((𝑥 = 𝑖𝑦 = 𝑗) → ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)) = ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))
54mpteq2dv 5201 . . . . . . . . 9 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))) = (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗))))
65oveq2d 7403 . . . . . . . 8 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))) = (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))
76mpteq2dv 5201 . . . . . . 7 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))) = (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗))))))
87oveq2d 7403 . . . . . 6 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))))
98adantl 481 . . . . 5 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑥 = 𝑖𝑦 = 𝑗)) → (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))))
10 simprl 770 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
11 simprr 772 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
12 ovexd 7422 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))) ∈ V)
131, 9, 10, 11, 12ovmpod 7541 . . . 4 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))))𝑗) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))))
14 decpmatmul.c . . . . . . . . . . . . . . . . . . . 20 𝐶 = (𝑁 Mat 𝑃)
15 decpmatmul.b . . . . . . . . . . . . . . . . . . . 20 𝐵 = (Base‘𝐶)
1614, 15matrcl 22299 . . . . . . . . . . . . . . . . . . 19 (𝑈𝐵 → (𝑁 ∈ Fin ∧ 𝑃 ∈ V))
1716simpld 494 . . . . . . . . . . . . . . . . . 18 (𝑈𝐵𝑁 ∈ Fin)
1817adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑈𝐵𝑊𝐵) → 𝑁 ∈ Fin)
1918anim2i 617 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
2019ancomd 461 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
21203adant3 1132 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
22 decpmatmul.a . . . . . . . . . . . . . . 15 𝐴 = (𝑁 Mat 𝑅)
23 eqid 2729 . . . . . . . . . . . . . . 15 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
2422, 23matmulr 22325 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
2521, 24syl 17 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
2625adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
2726adantr 480 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
2827eqcomd 2735 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (.r𝐴) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
2928oveqd 7404 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))) = ((𝑈 decompPMat 𝑘)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑊 decompPMat (𝐾𝑘))))
30 eqid 2729 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
31 eqid 2729 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
32 simp1 1136 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ Ring)
3332adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Ring)
3433adantr 480 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑅 ∈ Ring)
3521simpld 494 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ Fin)
3635adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑁 ∈ Fin)
3736adantr 480 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑁 ∈ Fin)
38 simpl2l 1227 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑈𝐵)
3938adantr 480 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑈𝐵)
40 elfznn0 13581 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...𝐾) → 𝑘 ∈ ℕ0)
4140adantl 481 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑘 ∈ ℕ0)
4234, 39, 413jca 1128 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0))
43 decpmatmul.p . . . . . . . . . . . . 13 𝑃 = (Poly1𝑅)
44 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝐴) = (Base‘𝐴)
4543, 14, 15, 22, 44decpmatcl 22654 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0) → (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴))
4642, 45syl 17 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴))
4722, 30, 44matbas2i 22309 . . . . . . . . . . 11 ((𝑈 decompPMat 𝑘) ∈ (Base‘𝐴) → (𝑈 decompPMat 𝑘) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
4846, 47syl 17 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑈 decompPMat 𝑘) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
49 simpl2r 1228 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑊𝐵)
5049adantr 480 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑊𝐵)
51 fznn0sub 13517 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...𝐾) → (𝐾𝑘) ∈ ℕ0)
5251adantl 481 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝐾𝑘) ∈ ℕ0)
5334, 50, 523jca 1128 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 ∈ Ring ∧ 𝑊𝐵 ∧ (𝐾𝑘) ∈ ℕ0))
5443, 14, 15, 22, 44decpmatcl 22654 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑊𝐵 ∧ (𝐾𝑘) ∈ ℕ0) → (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴))
5553, 54syl 17 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴))
5622, 30, 44matbas2i 22309 . . . . . . . . . . 11 ((𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴) → (𝑊 decompPMat (𝐾𝑘)) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
5755, 56syl 17 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑊 decompPMat (𝐾𝑘)) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
5823, 30, 31, 34, 37, 37, 37, 48, 57mamuval 22280 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → ((𝑈 decompPMat 𝑘)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑊 decompPMat (𝐾𝑘))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))
5929, 58eqtrd 2764 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))
6059mpteq2dva 5200 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))) = (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))))
6160oveq2d 7403 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))))
62 eqid 2729 . . . . . . 7 (0g𝐴) = (0g𝐴)
63 ovexd 7422 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0...𝐾) ∈ V)
64 ringcmn 20191 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
6532, 64syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ CMnd)
6665adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ CMnd)
6766adantr 480 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑅 ∈ CMnd)
68673ad2ant1 1133 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → 𝑅 ∈ CMnd)
69373ad2ant1 1133 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → 𝑁 ∈ Fin)
70343ad2ant1 1133 . . . . . . . . . . . 12 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → 𝑅 ∈ Ring)
7170adantr 480 . . . . . . . . . . 11 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → 𝑅 ∈ Ring)
72 simpl2 1193 . . . . . . . . . . . 12 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → 𝑥𝑁)
73 simpr 484 . . . . . . . . . . . 12 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → 𝑡𝑁)
74423ad2ant1 1133 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → (𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0))
7574adantr 480 . . . . . . . . . . . . 13 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → (𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0))
7675, 45syl 17 . . . . . . . . . . . 12 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴))
7722, 30, 44, 72, 73, 76matecld 22313 . . . . . . . . . . 11 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → (𝑥(𝑈 decompPMat 𝑘)𝑡) ∈ (Base‘𝑅))
78 simpl3 1194 . . . . . . . . . . . 12 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → 𝑦𝑁)
79553ad2ant1 1133 . . . . . . . . . . . . 13 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴))
8079adantr 480 . . . . . . . . . . . 12 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴))
8122, 30, 44, 73, 78, 80matecld 22313 . . . . . . . . . . 11 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → (𝑡(𝑊 decompPMat (𝐾𝑘))𝑦) ∈ (Base‘𝑅))
8230, 31ringcl 20159 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑥(𝑈 decompPMat 𝑘)𝑡) ∈ (Base‘𝑅) ∧ (𝑡(𝑊 decompPMat (𝐾𝑘))𝑦) ∈ (Base‘𝑅)) → ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)) ∈ (Base‘𝑅))
8371, 77, 81, 82syl3anc 1373 . . . . . . . . . 10 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)) ∈ (Base‘𝑅))
8483ralrimiva 3125 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → ∀𝑡𝑁 ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)) ∈ (Base‘𝑅))
8530, 68, 69, 84gsummptcl 19897 . . . . . . . 8 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))) ∈ (Base‘𝑅))
8622, 30, 44, 37, 34, 85matbas2d 22310 . . . . . . 7 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))) ∈ (Base‘𝐴))
87 eqid 2729 . . . . . . . 8 (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))) = (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))
88 fzfid 13938 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0...𝐾) ∈ Fin)
89 simpl 482 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑃 ∈ V) → 𝑁 ∈ Fin)
9089, 89jca 511 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑃 ∈ V) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
9116, 90syl 17 . . . . . . . . . . . . 13 (𝑈𝐵 → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
9291adantr 480 . . . . . . . . . . . 12 ((𝑈𝐵𝑊𝐵) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
93923ad2ant2 1134 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
9493adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
9594adantr 480 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
96 mpoexga 8056 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))) ∈ V)
9795, 96syl 17 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))) ∈ V)
98 fvexd 6873 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0g𝐴) ∈ V)
9987, 88, 97, 98fsuppmptdm 9327 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))) finSupp (0g𝐴))
10022, 44, 62, 36, 63, 33, 86, 99matgsum 22324 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))))
10161, 100eqtrd 2764 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))))
102101oveqd 7404 . . . 4 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))))𝑗) = (𝑖(𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))))𝑗))
103 simpl2 1193 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑈𝐵𝑊𝐵))
104 simpl3 1194 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝐾 ∈ ℕ0)
10543, 14, 15decpmatmullem 22658 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝑖𝑁𝑗𝑁𝐾 ∈ ℕ0)) → (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))))))
10636, 33, 103, 10, 11, 104, 105syl213anc 1391 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))))))
107 simpll1 1213 . . . . . . 7 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑅 ∈ Ring)
108 simplrl 776 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑖𝑁)
109 simprl 770 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑡𝑁)
11015eleq2i 2820 . . . . . . . . . . . . . 14 (𝑈𝐵𝑈 ∈ (Base‘𝐶))
111110biimpi 216 . . . . . . . . . . . . 13 (𝑈𝐵𝑈 ∈ (Base‘𝐶))
112111adantr 480 . . . . . . . . . . . 12 ((𝑈𝐵𝑊𝐵) → 𝑈 ∈ (Base‘𝐶))
1131123ad2ant2 1134 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝑈 ∈ (Base‘𝐶))
114113adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑈 ∈ (Base‘𝐶))
115114adantr 480 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑈 ∈ (Base‘𝐶))
116 eqid 2729 . . . . . . . . . 10 (Base‘𝑃) = (Base‘𝑃)
11714, 116matecl 22312 . . . . . . . . 9 ((𝑖𝑁𝑡𝑁𝑈 ∈ (Base‘𝐶)) → (𝑖𝑈𝑡) ∈ (Base‘𝑃))
118108, 109, 115, 117syl3anc 1373 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → (𝑖𝑈𝑡) ∈ (Base‘𝑃))
11940ad2antll 729 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑘 ∈ ℕ0)
120 eqid 2729 . . . . . . . . 9 (coe1‘(𝑖𝑈𝑡)) = (coe1‘(𝑖𝑈𝑡))
121120, 116, 43, 30coe1fvalcl 22097 . . . . . . . 8 (((𝑖𝑈𝑡) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) → ((coe1‘(𝑖𝑈𝑡))‘𝑘) ∈ (Base‘𝑅))
122118, 119, 121syl2anc 584 . . . . . . 7 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → ((coe1‘(𝑖𝑈𝑡))‘𝑘) ∈ (Base‘𝑅))
123 simplrr 777 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑗𝑁)
12449adantr 480 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑊𝐵)
12514, 116, 15, 109, 123, 124matecld 22313 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → (𝑡𝑊𝑗) ∈ (Base‘𝑃))
12651ad2antll 729 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → (𝐾𝑘) ∈ ℕ0)
127 eqid 2729 . . . . . . . . 9 (coe1‘(𝑡𝑊𝑗)) = (coe1‘(𝑡𝑊𝑗))
128127, 116, 43, 30coe1fvalcl 22097 . . . . . . . 8 (((𝑡𝑊𝑗) ∈ (Base‘𝑃) ∧ (𝐾𝑘) ∈ ℕ0) → ((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)) ∈ (Base‘𝑅))
129125, 126, 128syl2anc 584 . . . . . . 7 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → ((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)) ∈ (Base‘𝑅))
13030, 31ringcl 20159 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑖𝑈𝑡))‘𝑘) ∈ (Base‘𝑅) ∧ ((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)) ∈ (Base‘𝑅)) → (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))) ∈ (Base‘𝑅))
131107, 122, 129, 130syl3anc 1373 . . . . . 6 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))) ∈ (Base‘𝑅))
13230, 66, 36, 88, 131gsumcom3fi 19909 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))))) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))))))
13310adantr 480 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑖𝑁)
134133anim1i 615 . . . . . . . . . . . 12 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → (𝑖𝑁𝑡𝑁))
13543, 14, 15decpmate 22653 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0) ∧ (𝑖𝑁𝑡𝑁)) → (𝑖(𝑈 decompPMat 𝑘)𝑡) = ((coe1‘(𝑖𝑈𝑡))‘𝑘))
13642, 134, 135syl2an2r 685 . . . . . . . . . . 11 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → (𝑖(𝑈 decompPMat 𝑘)𝑡) = ((coe1‘(𝑖𝑈𝑡))‘𝑘))
137 simplrr 777 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑗𝑁)
138137anim1ci 616 . . . . . . . . . . . 12 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → (𝑡𝑁𝑗𝑁))
13943, 14, 15decpmate 22653 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑊𝐵 ∧ (𝐾𝑘) ∈ ℕ0) ∧ (𝑡𝑁𝑗𝑁)) → (𝑡(𝑊 decompPMat (𝐾𝑘))𝑗) = ((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)))
14053, 138, 139syl2an2r 685 . . . . . . . . . . 11 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → (𝑡(𝑊 decompPMat (𝐾𝑘))𝑗) = ((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)))
141136, 140oveq12d 7405 . . . . . . . . . 10 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)) = (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))
142141eqcomd 2735 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))) = ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))
143142mpteq2dva 5200 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑡𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)))) = (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗))))
144143oveq2d 7403 . . . . . . 7 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 Σg (𝑡𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))) = (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))
145144mpteq2dva 5200 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)))))) = (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗))))))
146145oveq2d 7403 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))))) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))))
147106, 132, 1463eqtrd 2768 . . . 4 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))))
14813, 102, 1473eqtr4rd 2775 . . 3 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))))𝑗))
149148ralrimivva 3180 . 2 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → ∀𝑖𝑁𝑗𝑁 (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))))𝑗))
15043, 14pmatring 22579 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
15120, 150syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → 𝐶 ∈ Ring)
152 simprl 770 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → 𝑈𝐵)
153 simprr 772 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → 𝑊𝐵)
154 eqid 2729 . . . . . . 7 (.r𝐶) = (.r𝐶)
15515, 154ringcl 20159 . . . . . 6 ((𝐶 ∈ Ring ∧ 𝑈𝐵𝑊𝐵) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
156151, 152, 153, 155syl3anc 1373 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
1571563adant3 1132 . . . 4 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
15843, 14, 15, 22, 44decpmatcl 22654 . . . 4 ((𝑅 ∈ Ring ∧ (𝑈(.r𝐶)𝑊) ∈ 𝐵𝐾 ∈ ℕ0) → ((𝑈(.r𝐶)𝑊) decompPMat 𝐾) ∈ (Base‘𝐴))
159157, 158syld3an2 1413 . . 3 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → ((𝑈(.r𝐶)𝑊) decompPMat 𝐾) ∈ (Base‘𝐴))
16022matring 22330 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
16121, 160syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ Ring)
162 ringcmn 20191 . . . . 5 (𝐴 ∈ Ring → 𝐴 ∈ CMnd)
163161, 162syl 17 . . . 4 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ CMnd)
164 fzfid 13938 . . . 4 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (0...𝐾) ∈ Fin)
165161adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝐴 ∈ Ring)
16632adantr 480 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝑅 ∈ Ring)
167 simpl2l 1227 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝑈𝐵)
16840adantl 481 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝑘 ∈ ℕ0)
169166, 167, 1683jca 1128 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0))
170169, 45syl 17 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴))
171 simpl2r 1228 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝑊𝐵)
17251adantl 481 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝐾𝑘) ∈ ℕ0)
173166, 171, 1723jca 1128 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 ∈ Ring ∧ 𝑊𝐵 ∧ (𝐾𝑘) ∈ ℕ0))
174173, 54syl 17 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴))
175 eqid 2729 . . . . . . 7 (.r𝐴) = (.r𝐴)
17644, 175ringcl 20159 . . . . . 6 ((𝐴 ∈ Ring ∧ (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴) ∧ (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴)) → ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))) ∈ (Base‘𝐴))
177165, 170, 174, 176syl3anc 1373 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))) ∈ (Base‘𝐴))
178177ralrimiva 3125 . . . 4 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → ∀𝑘 ∈ (0...𝐾)((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))) ∈ (Base‘𝐴))
17944, 163, 164, 178gsummptcl 19897 . . 3 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) ∈ (Base‘𝐴))
18022, 44eqmat 22311 . . 3 ((((𝑈(.r𝐶)𝑊) decompPMat 𝐾) ∈ (Base‘𝐴) ∧ (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) ∈ (Base‘𝐴)) → (((𝑈(.r𝐶)𝑊) decompPMat 𝐾) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))))𝑗)))
181159, 179, 180syl2anc 584 . 2 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (((𝑈(.r𝐶)𝑊) decompPMat 𝐾) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))))𝑗)))
182149, 181mpbird 257 1 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → ((𝑈(.r𝐶)𝑊) decompPMat 𝐾) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cotp 4597  cmpt 5188   × cxp 5636  cfv 6511  (class class class)co 7387  cmpo 7389  m cmap 8799  Fincfn 8918  0cc0 11068  cmin 11405  0cn0 12442  ...cfz 13468  Basecbs 17179  .rcmulr 17221  0gc0g 17402   Σg cgsu 17403  CMndccmn 19710  Ringcrg 20142  Poly1cpl1 22061  coe1cco1 22062   maMul cmmul 22277   Mat cmat 22294   decompPMat cdecpmat 22649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656  df-psr 21818  df-mpl 21820  df-opsr 21822  df-psr1 22064  df-ply1 22066  df-coe1 22067  df-mamu 22278  df-mat 22295  df-decpmat 22650
This theorem is referenced by:  decpmatmulsumfsupp  22660  pm2mpmhmlem1  22705  pm2mpmhmlem2  22706
  Copyright terms: Public domain W3C validator