Step | Hyp | Ref
| Expression |
1 | | eqidd 2739 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦))))))) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦)))))))) |
2 | | oveq1 7177 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑖 → (𝑥(𝑈 decompPMat 𝑘)𝑡) = (𝑖(𝑈 decompPMat 𝑘)𝑡)) |
3 | | oveq2 7178 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑗 → (𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦) = (𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑗)) |
4 | 2, 3 | oveqan12d 7189 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦)) = ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑗))) |
5 | 4 | mpteq2dv 5126 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑡 ∈ 𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦))) = (𝑡 ∈ 𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑗)))) |
6 | 5 | oveq2d 7186 |
. . . . . . . 8
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦)))) = (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑗))))) |
7 | 6 | mpteq2dv 5126 |
. . . . . . 7
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦))))) = (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑗)))))) |
8 | 7 | oveq2d 7186 |
. . . . . 6
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦)))))) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑗))))))) |
9 | 8 | adantl 485 |
. . . . 5
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑥 = 𝑖 ∧ 𝑦 = 𝑗)) → (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦)))))) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑗))))))) |
10 | | simprl 771 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) |
11 | | simprr 773 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) |
12 | | ovexd 7205 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑗)))))) ∈ V) |
13 | 1, 9, 10, 11, 12 | ovmpod 7317 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦)))))))𝑗) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑗))))))) |
14 | | decpmatmul.c |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐶 = (𝑁 Mat 𝑃) |
15 | | decpmatmul.b |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐵 = (Base‘𝐶) |
16 | 14, 15 | matrcl 21163 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑈 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑃 ∈ V)) |
17 | 16 | simpld 498 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈 ∈ 𝐵 → 𝑁 ∈ Fin) |
18 | 17 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → 𝑁 ∈ Fin) |
19 | 18 | anim2i 620 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin)) |
20 | 19 | ancomd 465 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
21 | 20 | 3adant3 1133 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
22 | | decpmatmul.a |
. . . . . . . . . . . . . . 15
⊢ 𝐴 = (𝑁 Mat 𝑅) |
23 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) |
24 | 22, 23 | matmulr 21189 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (.r‘𝐴)) |
25 | 21, 24 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (.r‘𝐴)) |
26 | 25 | adantr 484 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (.r‘𝐴)) |
27 | 26 | adantr 484 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (.r‘𝐴)) |
28 | 27 | eqcomd 2744 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (.r‘𝐴) = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)) |
29 | 28 | oveqd 7187 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → ((𝑈 decompPMat 𝑘)(.r‘𝐴)(𝑊 decompPMat (𝐾 − 𝑘))) = ((𝑈 decompPMat 𝑘)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)(𝑊 decompPMat (𝐾 − 𝑘)))) |
30 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
31 | | eqid 2738 |
. . . . . . . . . 10
⊢
(.r‘𝑅) = (.r‘𝑅) |
32 | | simp1 1137 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ Ring) |
33 | 32 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑅 ∈ Ring) |
34 | 33 | adantr 484 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑅 ∈ Ring) |
35 | 21 | simpld 498 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ Fin) |
36 | 35 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑁 ∈ Fin) |
37 | 36 | adantr 484 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑁 ∈ Fin) |
38 | | simpl2l 1227 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑈 ∈ 𝐵) |
39 | 38 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑈 ∈ 𝐵) |
40 | | elfznn0 13091 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝐾) → 𝑘 ∈ ℕ0) |
41 | 40 | adantl 485 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑘 ∈ ℕ0) |
42 | 34, 39, 41 | 3jca 1129 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐵 ∧ 𝑘 ∈
ℕ0)) |
43 | | decpmatmul.p |
. . . . . . . . . . . . 13
⊢ 𝑃 = (Poly1‘𝑅) |
44 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(Base‘𝐴) =
(Base‘𝐴) |
45 | 43, 14, 15, 22, 44 | decpmatcl 21518 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0) → (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴)) |
46 | 42, 45 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴)) |
47 | 22, 30, 44 | matbas2i 21173 |
. . . . . . . . . . 11
⊢ ((𝑈 decompPMat 𝑘) ∈ (Base‘𝐴) → (𝑈 decompPMat 𝑘) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
48 | 46, 47 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑈 decompPMat 𝑘) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
49 | | simpl2r 1228 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑊 ∈ 𝐵) |
50 | 49 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑊 ∈ 𝐵) |
51 | | fznn0sub 13030 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝐾) → (𝐾 − 𝑘) ∈
ℕ0) |
52 | 51 | adantl 485 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝐾 − 𝑘) ∈
ℕ0) |
53 | 34, 50, 52 | 3jca 1129 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 ∈ Ring ∧ 𝑊 ∈ 𝐵 ∧ (𝐾 − 𝑘) ∈
ℕ0)) |
54 | 43, 14, 15, 22, 44 | decpmatcl 21518 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝑊 ∈ 𝐵 ∧ (𝐾 − 𝑘) ∈ ℕ0) → (𝑊 decompPMat (𝐾 − 𝑘)) ∈ (Base‘𝐴)) |
55 | 53, 54 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑊 decompPMat (𝐾 − 𝑘)) ∈ (Base‘𝐴)) |
56 | 22, 30, 44 | matbas2i 21173 |
. . . . . . . . . . 11
⊢ ((𝑊 decompPMat (𝐾 − 𝑘)) ∈ (Base‘𝐴) → (𝑊 decompPMat (𝐾 − 𝑘)) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
57 | 55, 56 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑊 decompPMat (𝐾 − 𝑘)) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
58 | 23, 30, 31, 34, 37, 37, 37, 48, 57 | mamuval 21139 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → ((𝑈 decompPMat 𝑘)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)(𝑊 decompPMat (𝐾 − 𝑘))) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦)))))) |
59 | 29, 58 | eqtrd 2773 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → ((𝑈 decompPMat 𝑘)(.r‘𝐴)(𝑊 decompPMat (𝐾 − 𝑘))) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦)))))) |
60 | 59 | mpteq2dva 5125 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r‘𝐴)(𝑊 decompPMat (𝐾 − 𝑘)))) = (𝑘 ∈ (0...𝐾) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦))))))) |
61 | 60 | oveq2d 7186 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r‘𝐴)(𝑊 decompPMat (𝐾 − 𝑘))))) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦)))))))) |
62 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝐴) = (0g‘𝐴) |
63 | | ovexd 7205 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (0...𝐾) ∈ V) |
64 | | ringcmn 19453 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
65 | 32, 64 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ CMnd) |
66 | 65 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑅 ∈ CMnd) |
67 | 66 | adantr 484 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑅 ∈ CMnd) |
68 | 67 | 3ad2ant1 1134 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ Ring
∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑅 ∈ CMnd) |
69 | 37 | 3ad2ant1 1134 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ Ring
∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑁 ∈ Fin) |
70 | 34 | 3ad2ant1 1134 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ Ring
∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑅 ∈ Ring) |
71 | 70 | adantr 484 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ Ring
∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) ∧ 𝑡 ∈ 𝑁) → 𝑅 ∈ Ring) |
72 | | simpl2 1193 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ Ring
∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) ∧ 𝑡 ∈ 𝑁) → 𝑥 ∈ 𝑁) |
73 | | simpr 488 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ Ring
∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) ∧ 𝑡 ∈ 𝑁) → 𝑡 ∈ 𝑁) |
74 | 42 | 3ad2ant1 1134 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ Ring
∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐵 ∧ 𝑘 ∈
ℕ0)) |
75 | 74 | adantr 484 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈ Ring
∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) ∧ 𝑡 ∈ 𝑁) → (𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐵 ∧ 𝑘 ∈
ℕ0)) |
76 | 75, 45 | syl 17 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ Ring
∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) ∧ 𝑡 ∈ 𝑁) → (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴)) |
77 | 22, 30, 44, 72, 73, 76 | matecld 21177 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ Ring
∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) ∧ 𝑡 ∈ 𝑁) → (𝑥(𝑈 decompPMat 𝑘)𝑡) ∈ (Base‘𝑅)) |
78 | | simpl3 1194 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ Ring
∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) ∧ 𝑡 ∈ 𝑁) → 𝑦 ∈ 𝑁) |
79 | 55 | 3ad2ant1 1134 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Ring
∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑊 decompPMat (𝐾 − 𝑘)) ∈ (Base‘𝐴)) |
80 | 79 | adantr 484 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ Ring
∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) ∧ 𝑡 ∈ 𝑁) → (𝑊 decompPMat (𝐾 − 𝑘)) ∈ (Base‘𝐴)) |
81 | 22, 30, 44, 73, 78, 80 | matecld 21177 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ Ring
∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) ∧ 𝑡 ∈ 𝑁) → (𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦) ∈ (Base‘𝑅)) |
82 | 30, 31 | ringcl 19433 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ (𝑥(𝑈 decompPMat 𝑘)𝑡) ∈ (Base‘𝑅) ∧ (𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦) ∈ (Base‘𝑅)) → ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦)) ∈ (Base‘𝑅)) |
83 | 71, 77, 81, 82 | syl3anc 1372 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ Ring
∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) ∧ 𝑡 ∈ 𝑁) → ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦)) ∈ (Base‘𝑅)) |
84 | 83 | ralrimiva 3096 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ Ring
∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → ∀𝑡 ∈ 𝑁 ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦)) ∈ (Base‘𝑅)) |
85 | 30, 68, 69, 84 | gsummptcl 19206 |
. . . . . . . 8
⊢
(((((𝑅 ∈ Ring
∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦)))) ∈ (Base‘𝑅)) |
86 | 22, 30, 44, 37, 34, 85 | matbas2d 21174 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦))))) ∈ (Base‘𝐴)) |
87 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...𝐾) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦)))))) = (𝑘 ∈ (0...𝐾) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦)))))) |
88 | | fzfid 13432 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (0...𝐾) ∈ Fin) |
89 | | simpl 486 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ V) → 𝑁 ∈ Fin) |
90 | 89, 89 | jca 515 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ V) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
91 | 16, 90 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
92 | 91 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
93 | 92 | 3ad2ant2 1135 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
94 | 93 | adantr 484 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
95 | 94 | adantr 484 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
96 | | mpoexga 7801 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦))))) ∈ V) |
97 | 95, 96 | syl 17 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦))))) ∈ V) |
98 | | fvexd 6689 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (0g‘𝐴) ∈ V) |
99 | 87, 88, 97, 98 | fsuppmptdm 8917 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑘 ∈ (0...𝐾) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦)))))) finSupp (0g‘𝐴)) |
100 | 22, 44, 62, 36, 63, 33, 86, 99 | matgsum 21188 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦))))))) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦)))))))) |
101 | 61, 100 | eqtrd 2773 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r‘𝐴)(𝑊 decompPMat (𝐾 − 𝑘))))) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦)))))))) |
102 | 101 | oveqd 7187 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r‘𝐴)(𝑊 decompPMat (𝐾 − 𝑘)))))𝑗) = (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑦)))))))𝑗)) |
103 | | simpl2 1193 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) |
104 | | simpl3 1194 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝐾 ∈
ℕ0) |
105 | 43, 14, 15 | decpmatmullem 21522 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ∧ 𝐾 ∈ ℕ0)) → (𝑖((𝑈(.r‘𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑅 Σg (𝑡 ∈ 𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r‘𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾 − 𝑘)))))))) |
106 | 36, 33, 103, 10, 11, 104, 105 | syl213anc 1390 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖((𝑈(.r‘𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑅 Σg (𝑡 ∈ 𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r‘𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾 − 𝑘)))))))) |
107 | | simpll1 1213 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑡 ∈ 𝑁 ∧ 𝑘 ∈ (0...𝐾))) → 𝑅 ∈ Ring) |
108 | | simplrl 777 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑡 ∈ 𝑁 ∧ 𝑘 ∈ (0...𝐾))) → 𝑖 ∈ 𝑁) |
109 | | simprl 771 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑡 ∈ 𝑁 ∧ 𝑘 ∈ (0...𝐾))) → 𝑡 ∈ 𝑁) |
110 | 15 | eleq2i 2824 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈ 𝐵 ↔ 𝑈 ∈ (Base‘𝐶)) |
111 | 110 | biimpi 219 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ 𝐵 → 𝑈 ∈ (Base‘𝐶)) |
112 | 111 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → 𝑈 ∈ (Base‘𝐶)) |
113 | 112 | 3ad2ant2 1135 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) → 𝑈 ∈ (Base‘𝐶)) |
114 | 113 | adantr 484 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑈 ∈ (Base‘𝐶)) |
115 | 114 | adantr 484 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑡 ∈ 𝑁 ∧ 𝑘 ∈ (0...𝐾))) → 𝑈 ∈ (Base‘𝐶)) |
116 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝑃) =
(Base‘𝑃) |
117 | 14, 116 | matecl 21176 |
. . . . . . . . 9
⊢ ((𝑖 ∈ 𝑁 ∧ 𝑡 ∈ 𝑁 ∧ 𝑈 ∈ (Base‘𝐶)) → (𝑖𝑈𝑡) ∈ (Base‘𝑃)) |
118 | 108, 109,
115, 117 | syl3anc 1372 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑡 ∈ 𝑁 ∧ 𝑘 ∈ (0...𝐾))) → (𝑖𝑈𝑡) ∈ (Base‘𝑃)) |
119 | 40 | ad2antll 729 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑡 ∈ 𝑁 ∧ 𝑘 ∈ (0...𝐾))) → 𝑘 ∈ ℕ0) |
120 | | eqid 2738 |
. . . . . . . . 9
⊢
(coe1‘(𝑖𝑈𝑡)) = (coe1‘(𝑖𝑈𝑡)) |
121 | 120, 116,
43, 30 | coe1fvalcl 20987 |
. . . . . . . 8
⊢ (((𝑖𝑈𝑡) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) →
((coe1‘(𝑖𝑈𝑡))‘𝑘) ∈ (Base‘𝑅)) |
122 | 118, 119,
121 | syl2anc 587 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑡 ∈ 𝑁 ∧ 𝑘 ∈ (0...𝐾))) → ((coe1‘(𝑖𝑈𝑡))‘𝑘) ∈ (Base‘𝑅)) |
123 | | simplrr 778 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑡 ∈ 𝑁 ∧ 𝑘 ∈ (0...𝐾))) → 𝑗 ∈ 𝑁) |
124 | 49 | adantr 484 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑡 ∈ 𝑁 ∧ 𝑘 ∈ (0...𝐾))) → 𝑊 ∈ 𝐵) |
125 | 14, 116, 15, 109, 123, 124 | matecld 21177 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑡 ∈ 𝑁 ∧ 𝑘 ∈ (0...𝐾))) → (𝑡𝑊𝑗) ∈ (Base‘𝑃)) |
126 | 51 | ad2antll 729 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑡 ∈ 𝑁 ∧ 𝑘 ∈ (0...𝐾))) → (𝐾 − 𝑘) ∈
ℕ0) |
127 | | eqid 2738 |
. . . . . . . . 9
⊢
(coe1‘(𝑡𝑊𝑗)) = (coe1‘(𝑡𝑊𝑗)) |
128 | 127, 116,
43, 30 | coe1fvalcl 20987 |
. . . . . . . 8
⊢ (((𝑡𝑊𝑗) ∈ (Base‘𝑃) ∧ (𝐾 − 𝑘) ∈ ℕ0) →
((coe1‘(𝑡𝑊𝑗))‘(𝐾 − 𝑘)) ∈ (Base‘𝑅)) |
129 | 125, 126,
128 | syl2anc 587 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑡 ∈ 𝑁 ∧ 𝑘 ∈ (0...𝐾))) → ((coe1‘(𝑡𝑊𝑗))‘(𝐾 − 𝑘)) ∈ (Base‘𝑅)) |
130 | 30, 31 | ringcl 19433 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧
((coe1‘(𝑖𝑈𝑡))‘𝑘) ∈ (Base‘𝑅) ∧ ((coe1‘(𝑡𝑊𝑗))‘(𝐾 − 𝑘)) ∈ (Base‘𝑅)) → (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r‘𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾 − 𝑘))) ∈ (Base‘𝑅)) |
131 | 107, 122,
129, 130 | syl3anc 1372 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑡 ∈ 𝑁 ∧ 𝑘 ∈ (0...𝐾))) → (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r‘𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾 − 𝑘))) ∈ (Base‘𝑅)) |
132 | 30, 66, 36, 88, 131 | gsumcom3fi 19218 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑅 Σg (𝑡 ∈ 𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r‘𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾 − 𝑘))))))) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r‘𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾 − 𝑘)))))))) |
133 | 10 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑖 ∈ 𝑁) |
134 | 133 | anim1i 618 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ Ring
∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡 ∈ 𝑁) → (𝑖 ∈ 𝑁 ∧ 𝑡 ∈ 𝑁)) |
135 | 43, 14, 15 | decpmate 21517 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑡 ∈ 𝑁)) → (𝑖(𝑈 decompPMat 𝑘)𝑡) = ((coe1‘(𝑖𝑈𝑡))‘𝑘)) |
136 | 42, 134, 135 | syl2an2r 685 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ Ring
∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡 ∈ 𝑁) → (𝑖(𝑈 decompPMat 𝑘)𝑡) = ((coe1‘(𝑖𝑈𝑡))‘𝑘)) |
137 | | simplrr 778 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑗 ∈ 𝑁) |
138 | 137 | anim1ci 619 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ Ring
∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡 ∈ 𝑁) → (𝑡 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) |
139 | 43, 14, 15 | decpmate 21517 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝑊 ∈ 𝐵 ∧ (𝐾 − 𝑘) ∈ ℕ0) ∧ (𝑡 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑗) = ((coe1‘(𝑡𝑊𝑗))‘(𝐾 − 𝑘))) |
140 | 53, 138, 139 | syl2an2r 685 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ Ring
∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡 ∈ 𝑁) → (𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑗) = ((coe1‘(𝑡𝑊𝑗))‘(𝐾 − 𝑘))) |
141 | 136, 140 | oveq12d 7188 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ Ring
∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡 ∈ 𝑁) → ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑗)) = (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r‘𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾 − 𝑘)))) |
142 | 141 | eqcomd 2744 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ Ring
∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡 ∈ 𝑁) → (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r‘𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾 − 𝑘))) = ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑗))) |
143 | 142 | mpteq2dva 5125 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑡 ∈ 𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r‘𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾 − 𝑘)))) = (𝑡 ∈ 𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑗)))) |
144 | 143 | oveq2d 7186 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 Σg (𝑡 ∈ 𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r‘𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾 − 𝑘))))) = (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑗))))) |
145 | 144 | mpteq2dva 5125 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r‘𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾 − 𝑘)))))) = (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑗)))))) |
146 | 145 | oveq2d 7186 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r‘𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾 − 𝑘))))))) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑗))))))) |
147 | 106, 132,
146 | 3eqtrd 2777 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖((𝑈(.r‘𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡 ∈ 𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r‘𝑅)(𝑡(𝑊 decompPMat (𝐾 − 𝑘))𝑗))))))) |
148 | 13, 102, 147 | 3eqtr4rd 2784 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖((𝑈(.r‘𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r‘𝐴)(𝑊 decompPMat (𝐾 − 𝑘)))))𝑗)) |
149 | 148 | ralrimivva 3103 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) →
∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖((𝑈(.r‘𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r‘𝐴)(𝑊 decompPMat (𝐾 − 𝑘)))))𝑗)) |
150 | 43, 14 | pmatring 21443 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring) |
151 | 20, 150 | syl 17 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝐶 ∈ Ring) |
152 | | simprl 771 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑈 ∈ 𝐵) |
153 | | simprr 773 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑊 ∈ 𝐵) |
154 | | eqid 2738 |
. . . . . . 7
⊢
(.r‘𝐶) = (.r‘𝐶) |
155 | 15, 154 | ringcl 19433 |
. . . . . 6
⊢ ((𝐶 ∈ Ring ∧ 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑈(.r‘𝐶)𝑊) ∈ 𝐵) |
156 | 151, 152,
153, 155 | syl3anc 1372 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑈(.r‘𝐶)𝑊) ∈ 𝐵) |
157 | 156 | 3adant3 1133 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) → (𝑈(.r‘𝐶)𝑊) ∈ 𝐵) |
158 | 43, 14, 15, 22, 44 | decpmatcl 21518 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑈(.r‘𝐶)𝑊) ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → ((𝑈(.r‘𝐶)𝑊) decompPMat 𝐾) ∈ (Base‘𝐴)) |
159 | 157, 158 | syld3an2 1412 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) → ((𝑈(.r‘𝐶)𝑊) decompPMat 𝐾) ∈ (Base‘𝐴)) |
160 | 22 | matring 21194 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
161 | 21, 160 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ Ring) |
162 | | ringcmn 19453 |
. . . . 5
⊢ (𝐴 ∈ Ring → 𝐴 ∈ CMnd) |
163 | 161, 162 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ CMnd) |
164 | | fzfid 13432 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) →
(0...𝐾) ∈
Fin) |
165 | 161 | adantr 484 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝐴 ∈ Ring) |
166 | 32 | adantr 484 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝑅 ∈ Ring) |
167 | | simpl2l 1227 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝑈 ∈ 𝐵) |
168 | 40 | adantl 485 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝑘 ∈ ℕ0) |
169 | 166, 167,
168 | 3jca 1129 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐵 ∧ 𝑘 ∈
ℕ0)) |
170 | 169, 45 | syl 17 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴)) |
171 | | simpl2r 1228 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝑊 ∈ 𝐵) |
172 | 51 | adantl 485 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝐾 − 𝑘) ∈
ℕ0) |
173 | 166, 171,
172 | 3jca 1129 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 ∈ Ring ∧ 𝑊 ∈ 𝐵 ∧ (𝐾 − 𝑘) ∈
ℕ0)) |
174 | 173, 54 | syl 17 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝑊 decompPMat (𝐾 − 𝑘)) ∈ (Base‘𝐴)) |
175 | | eqid 2738 |
. . . . . . 7
⊢
(.r‘𝐴) = (.r‘𝐴) |
176 | 44, 175 | ringcl 19433 |
. . . . . 6
⊢ ((𝐴 ∈ Ring ∧ (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴) ∧ (𝑊 decompPMat (𝐾 − 𝑘)) ∈ (Base‘𝐴)) → ((𝑈 decompPMat 𝑘)(.r‘𝐴)(𝑊 decompPMat (𝐾 − 𝑘))) ∈ (Base‘𝐴)) |
177 | 165, 170,
174, 176 | syl3anc 1372 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → ((𝑈 decompPMat 𝑘)(.r‘𝐴)(𝑊 decompPMat (𝐾 − 𝑘))) ∈ (Base‘𝐴)) |
178 | 177 | ralrimiva 3096 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) →
∀𝑘 ∈ (0...𝐾)((𝑈 decompPMat 𝑘)(.r‘𝐴)(𝑊 decompPMat (𝐾 − 𝑘))) ∈ (Base‘𝐴)) |
179 | 44, 163, 164, 178 | gsummptcl 19206 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) → (𝐴 Σg
(𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r‘𝐴)(𝑊 decompPMat (𝐾 − 𝑘))))) ∈ (Base‘𝐴)) |
180 | 22, 44 | eqmat 21175 |
. . 3
⊢ ((((𝑈(.r‘𝐶)𝑊) decompPMat 𝐾) ∈ (Base‘𝐴) ∧ (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r‘𝐴)(𝑊 decompPMat (𝐾 − 𝑘))))) ∈ (Base‘𝐴)) → (((𝑈(.r‘𝐶)𝑊) decompPMat 𝐾) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r‘𝐴)(𝑊 decompPMat (𝐾 − 𝑘))))) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖((𝑈(.r‘𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r‘𝐴)(𝑊 decompPMat (𝐾 − 𝑘)))))𝑗))) |
181 | 159, 179,
180 | syl2anc 587 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) → (((𝑈(.r‘𝐶)𝑊) decompPMat 𝐾) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r‘𝐴)(𝑊 decompPMat (𝐾 − 𝑘))))) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖((𝑈(.r‘𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r‘𝐴)(𝑊 decompPMat (𝐾 − 𝑘)))))𝑗))) |
182 | 149, 181 | mpbird 260 |
1
⊢ ((𝑅 ∈ Ring ∧ (𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) → ((𝑈(.r‘𝐶)𝑊) decompPMat 𝐾) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r‘𝐴)(𝑊 decompPMat (𝐾 − 𝑘)))))) |