Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrmaxle | Structured version Visualization version GIF version |
Description: Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
xrmaxle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrmax1 12794 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
2 | 1 | 3adant3 1134 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
3 | ifcl 4500 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ*) | |
4 | 3 | ancoms 462 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ*) |
5 | 4 | 3adant3 1134 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ*) |
6 | xrletr 12777 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐴 ≤ 𝐶)) | |
7 | 5, 6 | syld3an2 1413 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
8 | 2, 7 | mpand 695 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 → 𝐴 ≤ 𝐶)) |
9 | xrmax2 12795 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
10 | 9 | 3adant3 1134 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
11 | simp2 1139 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*) | |
12 | simp3 1140 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐶 ∈ ℝ*) | |
13 | xrletr 12777 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐵 ≤ 𝐶)) | |
14 | 11, 5, 12, 13 | syl3anc 1373 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐵 ≤ 𝐶)) |
15 | 10, 14 | mpand 695 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 → 𝐵 ≤ 𝐶)) |
16 | 8, 15 | jcad 516 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 → (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) |
17 | breq1 5072 | . . . 4 ⊢ (𝐵 = if(𝐴 ≤ 𝐵, 𝐵, 𝐴) → (𝐵 ≤ 𝐶 ↔ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶)) | |
18 | breq1 5072 | . . . 4 ⊢ (𝐴 = if(𝐴 ≤ 𝐵, 𝐵, 𝐴) → (𝐴 ≤ 𝐶 ↔ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶)) | |
19 | 17, 18 | ifboth 4494 | . . 3 ⊢ ((𝐵 ≤ 𝐶 ∧ 𝐴 ≤ 𝐶) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) |
20 | 19 | ancoms 462 | . 2 ⊢ ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) |
21 | 16, 20 | impbid1 228 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 ∈ wcel 2112 ifcif 4455 class class class wbr 5069 ℝ*cxr 10895 ≤ cle 10897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-cnex 10814 ax-resscn 10815 ax-pre-lttri 10832 ax-pre-lttrn 10833 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-op 4564 df-uni 4836 df-br 5070 df-opab 5132 df-mpt 5152 df-id 5471 df-po 5485 df-so 5486 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-er 8414 df-en 8650 df-dom 8651 df-sdom 8652 df-pnf 10898 df-mnf 10899 df-xr 10900 df-ltxr 10901 df-le 10902 |
This theorem is referenced by: maxle 12810 mbfmax 24577 itgspliticc 24765 deg1addle2 25031 deg1sublt 25039 cvmliftlem10 32999 iccin 45908 |
Copyright terms: Public domain | W3C validator |