| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrmaxle | Structured version Visualization version GIF version | ||
| Description: Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| xrmaxle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrmax1 13076 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
| 2 | 1 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
| 3 | ifcl 4520 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ*) | |
| 4 | 3 | ancoms 458 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ*) |
| 5 | 4 | 3adant3 1132 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ*) |
| 6 | xrletr 13059 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐴 ≤ 𝐶)) | |
| 7 | 5, 6 | syld3an2 1413 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| 8 | 2, 7 | mpand 695 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 → 𝐴 ≤ 𝐶)) |
| 9 | xrmax2 13077 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
| 10 | 9 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
| 11 | simp2 1137 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*) | |
| 12 | simp3 1138 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐶 ∈ ℝ*) | |
| 13 | xrletr 13059 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐵 ≤ 𝐶)) | |
| 14 | 11, 5, 12, 13 | syl3anc 1373 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐵 ≤ 𝐶)) |
| 15 | 10, 14 | mpand 695 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 → 𝐵 ≤ 𝐶)) |
| 16 | 8, 15 | jcad 512 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 → (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) |
| 17 | breq1 5096 | . . . 4 ⊢ (𝐵 = if(𝐴 ≤ 𝐵, 𝐵, 𝐴) → (𝐵 ≤ 𝐶 ↔ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶)) | |
| 18 | breq1 5096 | . . . 4 ⊢ (𝐴 = if(𝐴 ≤ 𝐵, 𝐵, 𝐴) → (𝐴 ≤ 𝐶 ↔ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶)) | |
| 19 | 17, 18 | ifboth 4514 | . . 3 ⊢ ((𝐵 ≤ 𝐶 ∧ 𝐴 ≤ 𝐶) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) |
| 20 | 19 | ancoms 458 | . 2 ⊢ ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) |
| 21 | 16, 20 | impbid1 225 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 ifcif 4474 class class class wbr 5093 ℝ*cxr 11152 ≤ cle 11154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 |
| This theorem is referenced by: maxle 13092 mbfmax 25578 itgspliticc 25766 deg1addle2 26035 deg1sublt 26043 cvmliftlem10 35359 iccin 49020 |
| Copyright terms: Public domain | W3C validator |