Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrmaxle | Structured version Visualization version GIF version |
Description: Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
xrmaxle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrmax1 12959 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
2 | 1 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
3 | ifcl 4510 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ*) | |
4 | 3 | ancoms 460 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ*) |
5 | 4 | 3adant3 1132 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ*) |
6 | xrletr 12942 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐴 ≤ 𝐶)) | |
7 | 5, 6 | syld3an2 1411 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
8 | 2, 7 | mpand 693 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 → 𝐴 ≤ 𝐶)) |
9 | xrmax2 12960 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
10 | 9 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
11 | simp2 1137 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*) | |
12 | simp3 1138 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐶 ∈ ℝ*) | |
13 | xrletr 12942 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐵 ≤ 𝐶)) | |
14 | 11, 5, 12, 13 | syl3anc 1371 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐵 ≤ 𝐶)) |
15 | 10, 14 | mpand 693 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 → 𝐵 ≤ 𝐶)) |
16 | 8, 15 | jcad 514 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 → (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) |
17 | breq1 5084 | . . . 4 ⊢ (𝐵 = if(𝐴 ≤ 𝐵, 𝐵, 𝐴) → (𝐵 ≤ 𝐶 ↔ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶)) | |
18 | breq1 5084 | . . . 4 ⊢ (𝐴 = if(𝐴 ≤ 𝐵, 𝐵, 𝐴) → (𝐴 ≤ 𝐶 ↔ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶)) | |
19 | 17, 18 | ifboth 4504 | . . 3 ⊢ ((𝐵 ≤ 𝐶 ∧ 𝐴 ≤ 𝐶) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) |
20 | 19 | ancoms 460 | . 2 ⊢ ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) |
21 | 16, 20 | impbid1 224 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 ∈ wcel 2104 ifcif 4465 class class class wbr 5081 ℝ*cxr 11058 ≤ cle 11060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-pre-lttri 10995 ax-pre-lttrn 10996 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 |
This theorem is referenced by: maxle 12975 mbfmax 24862 itgspliticc 25050 deg1addle2 25316 deg1sublt 25324 cvmliftlem10 33305 iccin 46434 |
Copyright terms: Public domain | W3C validator |