MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrmaxle Structured version   Visualization version   GIF version

Theorem xrmaxle 12899
Description: Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
xrmaxle ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))

Proof of Theorem xrmaxle
StepHypRef Expression
1 xrmax1 12891 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))
213adant3 1130 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))
3 ifcl 4509 . . . . . . 7 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → if(𝐴𝐵, 𝐵, 𝐴) ∈ ℝ*)
43ancoms 458 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐴𝐵, 𝐵, 𝐴) ∈ ℝ*)
543adant3 1130 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐴𝐵, 𝐵, 𝐴) ∈ ℝ*)
6 xrletr 12874 . . . . 5 ((𝐴 ∈ ℝ* ∧ if(𝐴𝐵, 𝐵, 𝐴) ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴) ∧ if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐴𝐶))
75, 6syld3an2 1409 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴) ∧ if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐴𝐶))
82, 7mpand 691 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶𝐴𝐶))
9 xrmax2 12892 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ≤ if(𝐴𝐵, 𝐵, 𝐴))
1093adant3 1130 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ≤ if(𝐴𝐵, 𝐵, 𝐴))
11 simp2 1135 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*)
12 simp3 1136 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐶 ∈ ℝ*)
13 xrletr 12874 . . . . 5 ((𝐵 ∈ ℝ* ∧ if(𝐴𝐵, 𝐵, 𝐴) ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐵 ≤ if(𝐴𝐵, 𝐵, 𝐴) ∧ if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐵𝐶))
1411, 5, 12, 13syl3anc 1369 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐵 ≤ if(𝐴𝐵, 𝐵, 𝐴) ∧ if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐵𝐶))
1510, 14mpand 691 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶𝐵𝐶))
168, 15jcad 512 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶 → (𝐴𝐶𝐵𝐶)))
17 breq1 5081 . . . 4 (𝐵 = if(𝐴𝐵, 𝐵, 𝐴) → (𝐵𝐶 ↔ if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶))
18 breq1 5081 . . . 4 (𝐴 = if(𝐴𝐵, 𝐵, 𝐴) → (𝐴𝐶 ↔ if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶))
1917, 18ifboth 4503 . . 3 ((𝐵𝐶𝐴𝐶) → if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶)
2019ancoms 458 . 2 ((𝐴𝐶𝐵𝐶) → if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶)
2116, 20impbid1 224 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wcel 2109  ifcif 4464   class class class wbr 5078  *cxr 10992  cle 10994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-pre-lttri 10929  ax-pre-lttrn 10930
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999
This theorem is referenced by:  maxle  12907  mbfmax  24794  itgspliticc  24982  deg1addle2  25248  deg1sublt  25256  cvmliftlem10  33235  iccin  46142
  Copyright terms: Public domain W3C validator