| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrmaxle | Structured version Visualization version GIF version | ||
| Description: Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| xrmaxle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrmax1 13095 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
| 2 | 1 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
| 3 | ifcl 4524 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ*) | |
| 4 | 3 | ancoms 458 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ*) |
| 5 | 4 | 3adant3 1132 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ*) |
| 6 | xrletr 13078 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐴 ≤ 𝐶)) | |
| 7 | 5, 6 | syld3an2 1413 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| 8 | 2, 7 | mpand 695 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 → 𝐴 ≤ 𝐶)) |
| 9 | xrmax2 13096 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
| 10 | 9 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
| 11 | simp2 1137 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*) | |
| 12 | simp3 1138 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐶 ∈ ℝ*) | |
| 13 | xrletr 13078 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐵 ≤ 𝐶)) | |
| 14 | 11, 5, 12, 13 | syl3anc 1373 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ∧ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐵 ≤ 𝐶)) |
| 15 | 10, 14 | mpand 695 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 → 𝐵 ≤ 𝐶)) |
| 16 | 8, 15 | jcad 512 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 → (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) |
| 17 | breq1 5098 | . . . 4 ⊢ (𝐵 = if(𝐴 ≤ 𝐵, 𝐵, 𝐴) → (𝐵 ≤ 𝐶 ↔ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶)) | |
| 18 | breq1 5098 | . . . 4 ⊢ (𝐴 = if(𝐴 ≤ 𝐵, 𝐵, 𝐴) → (𝐴 ≤ 𝐶 ↔ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶)) | |
| 19 | 17, 18 | ifboth 4518 | . . 3 ⊢ ((𝐵 ≤ 𝐶 ∧ 𝐴 ≤ 𝐶) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) |
| 20 | 19 | ancoms 458 | . 2 ⊢ ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶) |
| 21 | 16, 20 | impbid1 225 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ifcif 4478 class class class wbr 5095 ℝ*cxr 11167 ≤ cle 11169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 |
| This theorem is referenced by: maxle 13111 mbfmax 25566 itgspliticc 25754 deg1addle2 26023 deg1sublt 26031 cvmliftlem10 35266 iccin 48881 |
| Copyright terms: Public domain | W3C validator |