MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrmaxle Structured version   Visualization version   GIF version

Theorem xrmaxle 13161
Description: Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
xrmaxle ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))

Proof of Theorem xrmaxle
StepHypRef Expression
1 xrmax1 13153 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))
213adant3 1132 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))
3 ifcl 4573 . . . . . . 7 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → if(𝐴𝐵, 𝐵, 𝐴) ∈ ℝ*)
43ancoms 459 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐴𝐵, 𝐵, 𝐴) ∈ ℝ*)
543adant3 1132 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐴𝐵, 𝐵, 𝐴) ∈ ℝ*)
6 xrletr 13136 . . . . 5 ((𝐴 ∈ ℝ* ∧ if(𝐴𝐵, 𝐵, 𝐴) ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴) ∧ if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐴𝐶))
75, 6syld3an2 1411 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴) ∧ if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐴𝐶))
82, 7mpand 693 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶𝐴𝐶))
9 xrmax2 13154 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ≤ if(𝐴𝐵, 𝐵, 𝐴))
1093adant3 1132 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ≤ if(𝐴𝐵, 𝐵, 𝐴))
11 simp2 1137 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*)
12 simp3 1138 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐶 ∈ ℝ*)
13 xrletr 13136 . . . . 5 ((𝐵 ∈ ℝ* ∧ if(𝐴𝐵, 𝐵, 𝐴) ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐵 ≤ if(𝐴𝐵, 𝐵, 𝐴) ∧ if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐵𝐶))
1411, 5, 12, 13syl3anc 1371 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐵 ≤ if(𝐴𝐵, 𝐵, 𝐴) ∧ if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶) → 𝐵𝐶))
1510, 14mpand 693 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶𝐵𝐶))
168, 15jcad 513 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶 → (𝐴𝐶𝐵𝐶)))
17 breq1 5151 . . . 4 (𝐵 = if(𝐴𝐵, 𝐵, 𝐴) → (𝐵𝐶 ↔ if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶))
18 breq1 5151 . . . 4 (𝐴 = if(𝐴𝐵, 𝐵, 𝐴) → (𝐴𝐶 ↔ if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶))
1917, 18ifboth 4567 . . 3 ((𝐵𝐶𝐴𝐶) → if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶)
2019ancoms 459 . 2 ((𝐴𝐶𝐵𝐶) → if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶)
2116, 20impbid1 224 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wcel 2106  ifcif 4528   class class class wbr 5148  *cxr 11246  cle 11248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-pre-lttri 11183  ax-pre-lttrn 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253
This theorem is referenced by:  maxle  13169  mbfmax  25165  itgspliticc  25353  deg1addle2  25619  deg1sublt  25627  cvmliftlem10  34280  iccin  47519
  Copyright terms: Public domain W3C validator